Supplemental Table 1 – Free fatty acid amounts in cellular extracts. These data are graphically shown in Figure 2 of the manuscript. Provided are mean metabolite amounts per cell number (nmol/mg DNA) \pm SD, n=4. iBA – immortalized brown adipoctes,low – below detection limit, iso – treated with 10 μ M isoproterenol for 1h.

	p														
								nmol/n	ng DNA						
		C12	2:0	C14	4:0	C1.	5:0	C1	6:0	C1	6:1	C18	8:1	C18	3:2
cell	treatment	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD
iBA	control	1,0	0,3	6,9	2,0	13,7	2,7	147,0	19,3	85,9	13,2	94,3	11,1	3,7	0,4
iBA	iso	4,2	0,9	229,7	16,8	292,2	67,4	1691,1	104,2	665,9	114,2	584,2	79,3	20,5	1,9
3T3L1	control	0,5	0,3	low	low	7,2	0,8	68,0	10,6	30,3	5,9	24,5	5,0	1,6	0,2
3T3L1	iso	0,4	0,6	1,3	0,7	22,4	2,8	111,5	12,8	53,1	3,1	35,5	1,8	2,9	0,4
C2C12	control	1,7	1,1	low	low	low	low	89,4	21,9	42,8	8,2	74,7	11,3	12,3	2,8
C2C12	iso	1,7	0,5	low	low	low	low	109,4	23,3	39,1	3,5	73,1	5,4	13,3	0,6

Supplemental Table 2 – Purine nucleotide metabolites and cations in cellular extracts. These data are graphically shown in Figures 3,5 and 6 of the manuscript. Provided are mean metabolite amounts per cell number (nmol/mg DNA) \pm SD, n=4 (3 for primary BA and HEK). iBA – immortalized brown adipoctes, primary BA – primary brown adiopcytes, HEK – HEK293, HEK-UCP1 – HEK293 stably overexpressing UCP1, mock/GMPR – transiently transfected with mock or GMPR expression vector, low – below detection limit, n.d. – not determined, iso – treated with 10 μ M isoproterenol for 1h.

															nmoi/	mg DINA													
		A	ГР	Αľ	OP	A٨	/IP	G	ГР	GE)P	GN	1P	IM	P	hypoxa	nthine	xantl	hine	ura	ite	inos	ine	guand	osine	magne	esium	calci	um
cell	treatment	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD												
iBA	control	959	116,4	172,3	18,2	36,9	4,6	349,5	230,4	73,6	8,7	20,6	2,1	13,2	2,1	33,9	20,8	39,3	10,5	585,6	197,7	34,2	16,7	5,4	1,5	3837	388,9	638	195,9
iBA	iso	532	52,7	128,6	9,4	38,9	4,0	232,8	101,0	74,6	5,7	27,0	2,8	43,9	7,0	101,3	14,4	91,4	18,2	370,1	70,4	117,6	26,5	19,9	2,1	5889	3818	10526	8532
3T3L1	control	2429	447,0	264,5	47,0	40,1	9,5	379,2	82,0	101,1	20,2	12,8	2,4	37,5	10,8	56,2	13,1	42,0	7,3	66,7	37,2	83,0	15,7	17,7	4,9	4822	1011	low	low
3T3L1	iso	2061	195,3	375,3	50,8	84,7	11,4	303,4	42,2	128,2	8,7	32,6	0,3	36,5	5,9	34,5	8,7	23,2	2,9	32,4	10,7	31,7	9,6	4,5	1,1	4689	177	low	low
C2C12	control	5805	829,6	417,3	60,8	49,6	6,7	732,3	179,8	101,6	13,1	6,7	1,9	41,9	33,8	61,4	13,6	0,0	0,0	42,4	44,8	166,3	47,0	15,1	2,8	10386	2091	523	360,9
C2C12	iso	6002	876,5	419,6	25,1	48,8	6,4	680,4	76,2	103,0	18,2	7,6	2,0	15,2	3,6	57,8	11,8	0,0	0,0	46,8	23,4	162,1	45,2	13,8	4,3	11396	825	1580	1067
primary BA	control	575	95,1	217,6	54,8	81,7	43,1	137,1	23,2	87,2	24,6	13,1	4,9	145,6	54,8	2,9	1,0	0,6	0,7	310,0	123,5	19,9	9,7	1,2	1,0	n.d.	n.d.	n.d.	n.d.
primary BA	iso	202	68,3	171,0	52,6	85,2	16,1	83,8	26,8	79,6	16,9	34,5	8,2	151,3	39,6	8,0	2,2	1,2	0,7	482,0	50,6	12,1	6,1	2,3	1,2	n.d.	n.d.	n.d.	n.d.
HEK	mock	1121	69,61	55,09	7,887	11,22	0,961	214,5	7,974	10,29	0,178	1,738	0,055	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
HEK	GMPR	1161	183,9	44,07	6,232	9,046	1,111	195	17,83	9,426	0,838	1,509	0,217	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
HEK-UCP1	mock	1086	100,7	61,18	8,997	7,744	1,262	369,8	61,26	15,83	1,621	0,886	0,064	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
HEK-UCP1	GMPR	842,4	90,47	56,16	7,239	10,25	2,308	170,7	26,98	17,03	1,125	1,228	0,177	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Supplemental Table 3 – Purine nucleotide metabolites in supernatants. These data are graphically shown in Figure 4 of the manuscript. Provided are mean metabolite amounts per cell number (nmol/mg DNA) \pm SD, n=4. iBA – immortalized brown adipoctes, low – below detection limit, n.d. – not determined, iso – treated with 10μ M isoproterenol for 1h.

													nmol/	mg DNA											
		ТА	ГР	ΑI	OP	AN	ΛP	GT	Р	GI	DP	G۱	ЛP	IM	Р	hypoxa	nthine	xant	hine	ura	ate	ino	sine	guan	osine
cell	treatment	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD
iBA	control	low	low	low	low	0,42	0,19	low	low	low	low	low	low	low	low	0,17	0,20	low	low	low	low	low	low	low	low
iBA	iso	low	low	1,25	0,09	4,99	0,60	low	low	low	low	1,35	0,21	low	low	44,65	27,09	13,04	23,71	56,27	13,93	9,97	17,74	1,22	0,95
3T3L1	control	low	low	2,27	0,77	7,09	2,64	low	low	1,50	0,17	1,12	0,55	low	low	4,48	1,36	low	low	low	low	low	low	0,26	0,52
3T3L1	iso	low	low	1,97	0,69	5,79	1,23	low	low	1,32	0,40	0,71	0,29	low	low	16,60	14,27	5,40	10,81	37,48	6,40	3,26	5,40	1,31	1,43
C2C12	control	low	low	8,00	1,80	15,63	4,11	low	low	2,86	0,30	2,15	0,87	low	low	25,67	6,41	low	low	low	low	7,45	1,32	1,93	0,47
C2C12	iso	low	low	9,48	1,65	23,53	6,35	low	low	4,37	0,94	2,62	1,15	low	low	30,83	8,10	low	low	10,83	7,38	79,35	137,43	4,66	5,16

Supplemental Table 4 – Sequence of primers used in quantitative transcript detection as shown in Figure 1. The geometric mean of abundance of the upper five target transcripts served as normalizer for the eight lower transcripts.

Target	forward primer	reverse primer
Eef2	ACCTGCCTGTCAATGAGTCC	CAGCATGTGGCAGTATCAGG
TF2B	TGG AGA TTT GTC CAC CAT GA	GAA TTG CCA AAC TCA TCA AAA CT
Aktb	CACCACACCTTCTACAATGA	GTACGACCAGAGGCATACAG
Hsp90	AGGAGGGTCAAGGAAGTGGT	TTTTTCTTGTCTTTGCCGCT
TBP	ACTTCACATCACAGCTCCCC	CTTCGTGCAAGAAATGCTGA
Gmpr	GAGCTCAGACACAGCCATGA	ACTCGGCTCAACACTGAGGT
Ampd1	CAGAGCCTCGCTTATCCATC	ATTCTCCAGCATCTTTCCGA
Gda	GGAATTTGATGCCCTCTTGA	GAGCTGGAGAATGGAACGAC
Ada	AAGGAACTTCTGGAACGGCT	TCCAAGGTCTGGAAGGAATG
lmpdh1	AAAGCCTATCTGTCCTGCGA	AGTTCTGGAGGGAGGCTGTT
Gmps	ACACCTGGCAATGAGATTCC	GGGGGCTTTGAAGTTAGGTC
Adsl	GTTTGGCTGAAGCGTTTCTC	CCATTGCCATGATGTTC
Adss	GAGCTACCTGTCAACGCACA	ACGCCAGCTGAAAACTCATT