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Comprehensive Analysis of Constraint
on the Spatial Distribution of Missense Variants
in Human Protein Structures

R. Michael Sivley,1 Xiaoyi Dou,2 Jens Meiler,1,3,4 William S. Bush,5,6,* and John A. Capra1,2,4,7,8,*

The spatial distribution of genetic variation within proteins is shaped by evolutionary constraint and provides insight into the func-

tional importance of protein regions and the potential pathogenicity of protein alterations. Here, we comprehensively evaluate the

3D spatial patterns of human germline and somatic variation in 6,604 experimentally derived protein structures and 33,144 computa-

tionally derived homology models covering 77% of all human proteins. Using a systematic approach, we quantify differences in the

spatial distributions of neutral germline variants, disease-causing germline variants, and recurrent somatic variants. Neutral missense

variants exhibit a general trend toward spatial dispersion, which is driven by constraint on core residues. In contrast, germline dis-

ease-causing variants are generally clustered in protein structures and form clusters more frequently than recurrent somatic variants

identified from tumor sequencing. In total, we identify 215 proteins with significant spatial constraints on the distribution of dis-

ease-causing missense variants in experimentally derived protein structures, only 65 (30%) of which have been previously reported.

This analysis identifies many clusters not detectable from sequence information alone; only 12% of proteins with significant clustering

in 3D were identified from similar analyses of linear protein sequence. Furthermore, spatial analyses of mutations in homology-based

structural models are highly correlated with those from experimentally derived structures, supporting the use of computationally

derived models. Our approach highlights significant differences in the spatial constraints on different classes of mutations in protein

structure and identifies regions of potential function within individual proteins.
Introduction

Patterns of genetic variation along the human genome

provide insight into functional and evolutionary con-

straints on different loci. A lack of common genetic varia-

tion in a locus is often indicative of functional constraint,

suggesting that sequence changes negatively influence

reproductive fitness.1 The first systematic examinations

of fully sequenced human genomes established consis-

tently stronger constraint (i.e., less genetic variation) in

protein-coding regions compared to non-coding se-

quences.2–5 Furthermore, early candidate gene-sequencing

studies identified lower rates of non-synonymous variation

than synonymous variation within protein-coding re-

gions,6 highlighting the increased constraint on protein-

altering mutations. Quantifying these patterns of

constraint improved the ability to identify functional re-

gions and interpret the phenotypic effects of genetic muta-

tions.7,8 Building on exome-sequencing data from tens of

thousands of individuals, we are now able to quantify

constraint on a large scale.

Recently developed methods have analyzed the fre-

quency of variation in coding regions to provide estimates

of gene-level constraint based on intolerance to varia-

tion.8,9 However, the proteins encoded by these genes are

often composed of multiple structural domains that

perform distinct functions. Constraint on missense varia-
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tion differs between structural domains; some are highly

constrained, while others are more tolerant of varia-

tion.10,11 Also, mutations to spatially distinct regions

within the same protein often influence risk for different

diseases.12 While gene-level approaches identify strongly

constrained genes in which variation is likely pathogenic,

these assessments do not identify specific protein regions

and functions that are constrained and may overlook

genes with different levels of constraint across their folded

structures.

Analysis of the spatial distribution of missense variants

in proteins can identify specific regions relevant to protein

function and disease.13,14 For example, structural analyses

of tumor-derived somatic mutations have identified spatial

clusters of mutations in many proteins.15–19 These clusters

often overlap known functional regions of oncogenes and

tumor suppressors and can assist in identifying functional

driver mutations. Germline mutations also display non-

random spatial patterns of constraint. Post-translational

modification (PTM) sites cluster in 3D protein structures

and constraint on germline variation at PTM sites is stron-

gest in clustered PTMs.20 Protein-protein interaction (PPI)

interfaces are also depleted for common missense varia-

tion,21 but enriched for disease-causing germline missense

variation, in particular missense variants causing recessive

disease.22 Several algorithms have recently been developed

to identify somatic mutation hotspots, with some
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targeting heterogeneous clusters of multiple mutated

sites15,16 and others seeking small clusters of a few highly

recurrent mutations.17–19 Most somatic mutation clus-

tering approaches incorporate cancer-specific assumptions

into their methodologies13 that limit application to other

variants. Furthermore, these existing approaches have

largely focused on finding clusters, rather than quantifying

spatial constraint.

The recent abundance of human population-based

sequencing studies2,7,23 paired with growth in the number

of solved structures deposited in the Protein Data Bank

(PDB) facilitates the systematic spatial analysis of func-

tional constraint on naturally occurring germline and so-

matic variation in protein structure. In this article, we

describe the comprehensive mapping of millions of hu-

man genetic variants into 6,604 experimentally derived

structures and 33,144 computationally derived homology

models of human proteins. We then introduce an analyt-

ical method for quantifying and comparing spatial

distributions of genetic variation within protein space.

The algorithm can be applied to any type of variation,

identifies both significant clustering and dispersion of var-

iants, and can incorporate relevant residue-level annota-

tions as weights. Using this method, we identify significant

differences between synonymous, missense, and patho-

genic variation that reflect patterns of constraint on pro-

tein structure and function.
Material and Methods

Genetic Variant and Structural Datasets
We analyzed single-nucleotide variants (SNVs) from Genome

Aggregation Database7 (gnomAD), ClinVar (01-07-2016), and

COSMIC v.74. Variant consequences and annotations were deter-

mined using v82 of the Ensembl Variant Effect Predictor for

genomic build GRCh37.24 Synonymous SNVs in gnomAD were

included for comparison with gnomAD missense SNVs. All other

datasets were filtered to include only missense SNVs. For all ana-

lyses involving gnomAD data, amino acids with median

sequencing coverage less than 303 were identified.25 All variants

mapped to those amino acids were excluded from all gnomAD an-

alyses, and no variants were assigned to those amino acids during

permutation.

Genetic variants were mapped into representative protein

structures using Ensembl26 transcript models, which were

matched with UniProt27 accession and Protein Data Bank28

(PDB, 01-07-2017) IDs using cross-reference tables provided by

UniProt. PDB structures were included if they were determined

through X-ray crystallography or solution NMR and contained

at least 20 amino acids. Reference protein sequences were aligned

with observed sequences in the PDB using SIFTS.29 Discrepancies

were corrected by Needleman-Wunsch pairwise alignment with

Biopython.30,31 Computational homology models from Mod-

Base32 (Human 2013 and 2016) were used to extend coverage of

the proteome.

To reduce redundancy, each structural dataset was indepen-

dently reduced to a minimally overlapping set of protein struc-

tures or homology models following an approach similar to
416 The American Journal of Human Genetics 102, 415–426, March
Kamburov et al.16 For each dataset, we iteratively selected the

structure/model that provided the greatest coverage of the target

protein, omitting structures with >10% sequence overlap with

the existing set. For structures/models with similar sequence

coverage, we selected the highest-quality structure (by resolution

for the PDB and the ModBase Quality Score for ModBase).

In comparisons between the PDB and ModBase, only structure-

model pairs with >95% sequence overlap were included to limit

the effects of sequence coverage on observed spatial differences.

We also excluded models for which the solved structure was

used as a template from the comparison. All other models in the

minimally overlapping subset were used to extend coverage for

spatial analyses.

The evolutionary conservation of each protein was quantified as

the average residue level conservation of the protein across species

as quantified by the Jensen-Shannon divergence applied to HSSP

alignments.33 The tolerance of each protein to functional genetic

variation was quantified by the residual variation intolerance score

(RVIS).9 The evolutionary age of each protein was taken from the

ProteinHistorian PPODv4_PTHR7-OrthoMCL_wagner1.0 data-

base.34 The proportion of disorder per protein was calculated

from disordered region annotations in MOBIdb.35 The relation-

ship between spatial statistics and each feature was measured

with linear regression analysis using the python package

scipy.stats.linregress.
Quantifying and Comparing the Spatial Distributions

of Protein-Coding Mutations
We developed a framework for evaluating hypotheses about the

spatial distributions of genetic variants in protein structures based

on Ripley’s K, a spatial descriptive statistic commonly used in

ecology and epidemiology.36–38 Ripley’s K quantifies the spatial

heterogeneity of a set of variants by comparing the proportion

of variants within a given distance from one another to the ex-

pected proportion under a random spatial distribution. Variants

are considered clustered if the proportion of neighbors exceeds

the expectation and dispersed if the number of neighbors is lower

than the expectation. K can be calculated across a range of distance

thresholds (t), enabling the identification of clustering or disper-

sion at different scales (Figure 1A). We define K as

KðtÞ ¼
PN

i

PN
j!¼iI

�
Di j < t

�

NðN � 1Þ ;

where N is the number of variants in the protein structure, Dij is

the Euclidean distance between variants i and j, and I is an indica-

tor function that evaluates to 1 when Dij is less than the distance

threshold t and 0 otherwise. The denominator normalizes for the

number of variant pairs considered. As a result, K can be inter-

preted as the proportion of variant pairs within distance t of one

another. This normalization also allows for comparison between

proteins with different variant counts. Distance thresholds larger

than the approximate size of a functional domain (45Å for struc-

tures, 100 amino acids for sequence) were not considered. Variant

positions were defined as the centroid of the reference amino acid

(Figure 1B).

Missense variants can be observed only at the positions of

amino acids in a protein structure, so complete spatial randomness

is not a valid null model for randomly distributed variants

(Figure 1C). To account for these constraints, we calculate an

empirical null distribution of K through 100,000 random

permutations of variant positions within the structure. Two-tailed
1, 2018



Figure 1. Schematic of Our Framework for Evaluating the Spatial Distribution of Genetic Variants
(A) Spatial distributions candiverge from random in twoways; theymayhave fewer neighbors than expected by chance (dispersed) ormore
neighbors than expected by chance (clustered). Example distributions are illustrated in reference to a random spatial distribution in 2D.
Below each set of points, the resulting K statistic at multiple distance thresholds (red) is plotted in reference to the expected K distribution
under a randomdistribution (gray).Kvaluesbelowtherangeexpectedat randomindicatedispersion, andKvalues above indicate clustering.
(B) Definition of the K statistic. For a range of distance thresholds (t), the number of variants neighboring each variant is computed and
normalized by the total number of variant pairs. The indicator function I evaluates to 1 when two variants are neighbors (the distance
between them [Dij] is less than t) and 0 otherwise.
(C) The observed K values are evaluated in reference to an empirical null distribution generated from 100,000 random permutations of
variant locations within the protein structure.
(D) The spatial distribution trend for each protein is summarized by calculating the area between the observed K values (red points) and
the median permuted K values (black points).
(E) This process is repeated for the K values resulting from each permuted set to generate an empirical null distribution. From this dis-
tribution, we calculate a Z-score and p value for the observed area. Positive Z-scores indicate clustering, negative Z-scores indicate disper-
sion, and Z-scores near zero indicate a lack of spatial constraint.
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p values are derived from the proportion of permuted K values

more extreme than the observed K value. Lastly, Z-scores are calcu-

lated to quantify the direction (clustering or dispersion) and

magnitude of the effect.

To evaluate the spatial distribution of real-valued attributes (e.g.,

evolutionary conservation and solvent accessibility), we compute

a weighted form of the statistic, which we define as

Kweightedðt;wÞ ¼
PN

i

PN
j!¼iI

�
Di j < t

�
wj

PN
i

PN
j!¼iwj

;

where wj is the weight associated with protein position j. We eval-

uate the significance of the weighted K by permuting the weights

over fixed amino acid positions and empirically computing

p values as previously described. This statistic assesses whether

the weights are spatially non-random (clustered or dispersed)

beyond what is explained by their positions alone.

To summarize spatial patternsacrossdistance scales intoaprotein-

level summary statistic, we compute the area between the observed

K curve and an empirical null K curve using Simpson’s rule

(Figure 1D). This process is repeated for each round of permutations

to generate anempirical null distribution. Fromthisdistribution,we

calculate a permutation p value and Z-score for the area between

observed and randomized K curves (Figure 1E). Positive Z-scores

indicate clustering, negative Z-scores indicate dispersion, and

Z-scores near zero indicate spatial randomness (e.g., a lack of spatial

constraint). We control the false discovery rate (FDR) at 10% by

computing q values from the protein-summary p value distribution

in each analysis39 (seeWebResources). This summarizationmethod

captures the general spatial tendencies for each protein.
Automated Identification and Manual Review of

Mutation Clustering in Previous Literature
To estimate the proportion of novel germline and somatic clus-

tering patterns identified by our methodology, we performed an

automated search and manual review of abstracts from PubMed.

For each experimentally derived protein structure with significant

clustering of ClinVar pathogenic or COSMIC recurrent somatic

variants, we identified the primary citation from the Protein

Data Bank for any solved structure of that protein, then queried

all PubMed Central abstracts citing those publications. We filtered

this set of abstracts to those containing cluster-related keywords.

We then manually reviewed the remaining abstracts (N ¼ 218)

to assess whether they described a cluster of naturally occurring

pathogenic variants within protein structure (Table S3). Clusters

were not considered novel if either of the two expert reviewers

flagged any abstract citing that protein structure.
Results

Quantifying Constraint on Spatial Patterns of Genetic

Variation

Wemappedgeneticvariants fromthree largevariantdatasets

into a representative subset of 6,604 experimentally derived

human protein structures from the Protein Data Bank28

(representing 5,209 distinct proteins) and 33,144 computa-

tionally derived homology models from ModBase32 (repre-

senting 17,984 distinct proteins). We considered the spatial

distribution of 1,380,872 synonymous and 2,260,141

missense variants from exome sequencing of 138,632
418 The American Journal of Human Genetics 102, 415–426, March
diverse unrelated adults from the Genome Aggregation

Database7 (gnomAD), 19,274 pathogenic and likely patho-

genic missense variants from ClinVar,40 and 725,267 recur-

rent somatic missense variants (observed in at least two

human tumor samples) from the Catalogue of Somatic

Mutations in Cancer41 (COSMIC).

To quantify and contrast patterns of spatial constraint

on different variant sets, we developed a statistic for evalu-

ating deviations from a random spatial distribution based

on Ripley’s K (see Material and Methods). Spatial distribu-

tions can diverge from random in two ways; variants

may have fewer neighbors than expected by chance

(dispersed) or more neighbors than expected by chance

(clustered) (Figure 1A). This method identifies clustering

and dispersion at any distance scale by quantifying the

density of variation in increasingly larger neighborhoods

(Figure 1B). To determine the significance of an observed

variant distribution, we use a permutation procedure that

accounts for the background distribution of amino acids

in the protein structure (Figures 1C–1E; Material and

Methods). From these permutations, we also derive a

Z-score-based statistic that quantifies the magnitude of

clustering (positive value) or dispersion (negative value)

relative to random expectation (Figures 1D and 1E). This

approach allows for direct comparisons across structurally

distinct proteins. We required at least three variants from a

dataset be present in a protein structure or model to be

analyzed; we report the total number of structures and

models meeting this criteria for each analysis.

To evaluate the use of homology models to extend struc-

tural coverage of the proteome, we compared the results

from PDB and ModBase on shared proteins. We found

that when both experimentally derived and computation-

ally predicted structural models were available for a protein

(>95% sequence overlap and excluding models for which

the solved structure was used as a template; N¼ 3,316), the

spatial analysis results were highly correlated (Figure S1).

Relative to the PDB, the ModBase results displayed low

recall but very high precision (Table S1). Thus, analysis of

computational models often has less power but produces

few false positives. For all analyses, we report the results

on solved structures and predicted models separately. To

reduce redundancy, the PDB-overlapping ModBase models

were excluded from all other analyses.

Synonymous and Missense Variants Have Different

Spatial Distributions

Synonymous genetic variants can have non-neutral ef-

fects, e.g., by influencing alternative splicing, mRNA stabil-

ity, or translational efficiency; however, they ultimately

result in an identical translated sequence for a given tem-

plate mRNA and rarely influence the folded protein.42,43

Thus, we hypothesized that synonymous variants are not

subject to significant spatial constraint in protein

structure. Consistent with this hypothesis, synonymous

variants from gnomAD are nearly randomly distributed

in protein structure (Figure 2A, PDB: median Z ¼ 0.1,
1, 2018



Figure 2. Synonymous, Missense, and Disease-Associated Protein-Coding Variants Have Significantly Different Spatial Constraints
Each panel summarizes the spatial constraints on a different variant set. For each set, the distribution of summary Z-scores is plotted as a
violin plot, with experimentally derived protein structures plotted above the center axis and computationally predicted homology
models plotted below the center axis. The Z-scores of proteins with spatial distributions significantly different from random (by permu-
tation, FDR < 0.1) are overlaid as points. Positive and negative Z-scores indicate clustering and dispersion, respectively. Summary statis-
tics and all p values are provided in Table S2.
(A) Synonymous variants from gnomADare approximately randomly distributed, as indicated by Z-score distributionswithmedian near 0.
(B) In contrast,missense variants fromgnomAD trend toward spatial dispersion, butmany structures exhibit significant variant clustering.
(C) Pathogenic missense variants from ClinVar are the most strongly clustered variant set, with significant clustering in 381
structures/models.
(D) COSMIC recurrent somatic missense variants are also nearly randomly distributed, but 26 structures/models exhibit significant
clustering.
ModBase: median Z ¼ 0.06) and deviated from a random

distribution in only 2 of the 34,178 structures tested

(PDB: 2P64 and 4RWT). These results were stable across

distinct CATH structural architectures (Figure S2), indi-

cating that synonymous variation is generally uncon-

strained in the context of protein structure.

In contrast, the spatial distribution of missense variants

is constrained by the functional consequences of amino

acid substitutions.13,44,45 Thus, we hypothesized that

missense variants are non-randomly distributed within

protein structure. In particular, we expected missense var-

iants from gnomAD to be enriched in regions tolerant of

amino acid substitution and depleted in regions of func-

tional or structural importance. As expected, missense

variants displayed significant constraint on their spatial

distribution (Figure 2B). We identified 326 structural

models with significant evidence of dispersed missense

variants and 87 structural models with significant evidence

of spatial clustering (Figure 2B, Table S1). There was a

strong overall trend toward spatial dispersion (PDB: me-

dian Z ¼ –0.49, ModBase: median Z ¼ –0.22). Missense

variation is therefore subject to significant spatial

constraint within protein structure.

Previous analyses of missense variants reported enrich-

ment for missense variants at the protein surface.44 There-

fore, we hypothesized that the strong trend toward spatial

dispersion of gnomADmissense variants is due to selective

constraint against variation in the core residues of many

proteins, which can destabilize the protein structure and

disrupt function.We investigated the relationship between

spatial dispersion and relative solvent accessibility (RSA)

and found that residues with high RSA are significantly
The Ameri
spatially dispersed (Figure S3). Furthermore, residues with

neutral missense variants were more solvent accessible

than residues overall and significantly dispersed missense

variants were more solvent accessible than missense vari-

ants overall (Figure S4). In contrast, significantly clustered

missense variants were no more or less solvent accessible

than all residues, suggesting that clustered missense vari-

ants are found in many structural contexts and reflect

intolerance to amino acid substitution in diverse structural

domains. The significant spatial dispersion of missense

variants demonstrates the prevalence of well-known pat-

terns such as widespread constraint on the protein core

and greater tolerance of missense variation at the protein

surface.44

Germline Pathogenic Missense Variants Are

Significantly Clustered in Protein Structure

Amino acids that are evolutionarily conserved across

diverse species (and thus likely functional) are spatially

constrained and significantly clustered within protein

structure (Figure S5).46,47 Because deleterious mutations

often impact evolutionarily conserved amino acids44 and

many studies have identified clustering of disease-causing

mutations in specific proteins, we hypothesized that

missense variants causing heritable diseases would

commonly be spatially clustered. Indeed, germline patho-

genic missense variants from ClinVar were the most

clustered of all variant datasets analyzed (Figure 2C, PDB:

median Z ¼ 1.14, ModBase: median Z ¼ 0.81); 35% of

PDB structures (211 of 599) and 17% of ModBase models

(170 of 974) with at least three ClinVar pathogenic variants

exhibited significant clustering at FDR < 10%. Through
can Journal of Human Genetics 102, 415–426, March 1, 2018 419



automated search and manual review of the literature, we

estimate that approximately 70% of the identified patho-

genic clusters are previously unreported and may provide

novel insight into disease mechanisms (Table S3).

Missense variants causing dominant and recessive dis-

eases can usually be attributed to gain and loss of function,

respectively.48 Protein sequence analyses have revealed

that loss-of-function variants can disrupt numerous critical

elements of a protein structure, while gain-of-function var-

iants are limited to a smaller subset of regions with func-

tional potential.48 We evaluated whether this relationship

holds for protein structure using the dataset of dominant

and recessive variants from the Human Gene Mutation

Database (HGMD)49 curated by Turner et al.48 Both domi-

nant and recessive variants are significantly clustered in

structure (Figure S6); however, dominant variants are clus-

tered at shorter distances (median peak significance: 8Å)

than recessive variants (median peak significance: 14Å)

indicating more focal clustering. The smaller clusters

formed by dominant variants support the hypothesis

that gain-of-functionmutations are limited to specific sites

with functional potential, while loss-of-function muta-

tions more generally disrupt regions of functional impor-

tance. In summary, the frequent clustering of germline

pathogenic missense variants underscores the spatial

constraint on protein-coding variation and likely high-

lights regions of protein structures that are functionally

and clinically relevant.

Recurrent Somatic Mutations Are Clustered in a Small

Subset of Protein Structures

Several studies of tumor-derived somatic mutations have

identified clustering in both sequence and structure that

may highlight protein regions important for tumorigen-

esis.14–19Wehypothesized that recurrent somaticmutations

identified from tumor samples would exhibit patterns of

spatial constraint similar to germline pathogenic missense

variants. Surprisingly, we found that recurrent somatic mu-

tations fromCOSMIC exhibited aweak overall trend toward

spatial dispersion (Figure 2D; PDB: median Z ¼ –0.11,

ModBase: median Z ¼ –0.12). Consistent with previous

studies, we also identified significant clustering in a small

fractionof protein structures (18of 3,084, 0.6%) andmodels

(12 of 9,346, 0.1%). This set consists of 25 unique proteins

and includes many known cancer proteins,50 12 of which

have been identified by at least one previous study of

somatic mutation clustering,15–19 and one of which was

identified from our manual review of the literature. To our

knowledge, somatic mutation clustering in the remaining

12 proteins has not been previously reported: AR,

CCDC160, COMP, CREBBP, DDX3X, ITLN2, MROH2B,

PCDHAC1, SEZ6, SIRPA, SMO, and TET2 (Figure S7).

Neutral and Pathogenic Missense Variants Have Distinct

Spatial Patterns

Given broad evidence of spatial constraint on both puta-

tively neutral and pathogenic variants, we hypothesized
420 The American Journal of Human Genetics 102, 415–426, March
that neutral and pathogenic distributions are spatially com-

plementary—with functionally important regions depleted

of neutral variants and enriched for pathogenic variants. To

test this, we evaluated whether proteins with clustering (or

dispersion) of neutral variants from gnomAD were also

likely to exhibit clustering (or dispersion) of germline path-

ogenic variants from ClinVar (Figure 3A) or recurrent so-

matic mutations from COSMIC (Figure 3B).

Over all proteins, there was no significant linear relation-

ship between gnomAD-derived and ClinVar-derived

Z-scores (Spearman’s rho ¼ –0.02, p ¼ 0.61; Figure 3A). The

majority (67%) of proteins with significant evidence of

spatial constraint exhibit clustering of germline pathogenic

variation on a background of dispersed neutral variation

(Figure 3A, lower right).Meanwhile, some (30%) exhibit sig-

nificant germline pathogenic clustering on a background of

modest neutral clustering, and a small fraction (3%) of pro-

teins show trends toward significant dispersion of both.

No protein exhibits significant clustering of neutral variants

in the context of dispersed pathogenic variants.

Filamin-B (FLNB), a protein that links the cellular

membrane to the actin cytoskeleton, illustrates the most

common spatial pattern: dispersion of neutral missense

variation and clustering of pathogenic missense variation.

Pathogenic variation is clustered in the second calponin-

homology (CH2) domain; CH2 is responsible for actin

binding (Figure 3C). While complete loss of FLNB causes

the recessive syndrome spondylocarpotarsal synostosis

(SCT [MIM: 272460]), missense variants in the CH2

domain cause autosomal-dominant atelosteogenesis, types

I and III (AO1 [MIM: 108720], AO3 [MIM: 108721]), and

Larsen syndrome (LRS [MIM: 150250]). Missense variants

in CH2 have been shown to increase actin binding affinity,

suggesting a gain-of-function disease mechanism.51 The

spatial dispersion of neutral missense variants indicates

that substitutions to the core of the protein are likely desta-

bilizing and thus may cause FLNB loss of function.

There was also no significant linear relationship

between gnomAD-derived and COSMIC-derived Z-scores

(Spearman’s rho ¼ 0.02, p ¼ 0.20; Figure 3B). As for germ-

line variants, the most common scenario was significantly

clustered recurrent somatic mutations on a background of

dispersed neutral variation (45%), but significantly

clustered recurrent somatic mutations rarely coincided

with significant neutral missense variant distributions

(Figure 3B, right). For example, recurrent somatic muta-

tions in PTPN11 (MIM: 176876), which encodes the pro-

tein tyrosine-protein phosphatase non-receptor type 11

(SHP-2), are clustered at the structural interface between

the protein tyrosine phosphatase (PTP) and Src-homology

2 (SH2) domains (Figure 3D). Germline pathogenic

missense variants at this interface are associated

with LEOPARD syndrome (LPRD1 [MIM: 151100]),

Noonan syndrome (NS1 [MIM: 163950]), and increased

risk for juvenile myelomonocytic leukemia (JMML [MIM:

607785]). Somatic mutations to PTPN11 are often found

in leukemias and several solid tumors.52 The relative
1, 2018



Figure 3. Pathogenic and Neutral
Missense Variants Have Distinct Spatial
Distributions
(A and B) Comparison of the gnomAD
missense Z-scores against ClinVar patho-
genic (A) and COSMIC recurrent somatic
(B) univariate Z-scores for experimentally
derived protein structures. The inset re-
ports the percentage of significant struc-
tures in each quadrant. The distribution
over all structures is shown as a density
plot, with black indicating higher density
(log-scale). Large circles indicate structures
with significant spatial distributions of
either set of variants (two-sided permuta-
tion p value, FDR < 10%). Circles are
colored red if the structure exhibits signifi-
cant constraint on the variant set plotted
on the x-axis, blue for significant contraint
on the y-axis variant set, and purple if
there is significant on both.
(C) Pathogenic variants (red) in FLNB
(PDB: 4B7L) are clustered in the second cal-
ponin-homology domain, responsible for
actin binding; neutral variants (blue) are
distributed throughout the structure.
(D) Germline disease-causing (red) and
recurrent somatic (pink) missense variants
in PTPN11 (PDB: 5I6V) are clustered and
frequently overlapping (orange) at the
structural interface of the PTP (pink
ribbon) and SH2 (blue ribbon) domains.
orientation of the PTP and SH2 domains determines

whether SHP-2 is in its active or inactive state. Disease-

causing mutations have been shown to disrupt the interac-

tion interface, with mutations causing NS1 leading to a

more energetically favorable active state relative to wild-

type53 (gain-of-function) and mutations causing LPRD1

resulting in an inactive state54 (dominant negative). It has

been proposed that the association withNoonan syndrome

may be mediated by disruption of a cluster of phosphoryla-

tion sites.20 Despite significant clustering of germline and

somatic pathogenic variants, neutral missense variants in

SHP-2 are randomly spatially distributed throughout the

structure. Overall, these results demonstrate consistent,

uncorrelated differences in the spatial constraint on neutral

missense and pathogenic variants, indicating that when

considered broadly across all proteins, patterns of neutral

variation are not strongly predictive of the spatial

constraint on known pathogenic variants.

Analysis of Protein Structure Reveals Significant Patterns

of Spatial Constraint Not Identified from Protein

Sequence

Experimentally derived protein structures are available

for approximately 22% of human proteins. Computa-

tionally derived homology models expand coverage (of

at least part of the protein) to 77%, but there are thou-

sands of human proteins for which we do not have reli-
The Ameri
able structural information. The linear protein sequence

is available for all proteins but does not represent the

functional context of the protein. Thus, we hypothesized

that significant spatial patterns within the three-dimen-

sional protein structure may not be identifiable from pro-

tein sequence alone. We repeated our analysis using the

protein sequence of each experimentally derived protein

structure to compute the linear K statistic and measured

the overall correlation and predictive performance

compared to structure-based K analyses. There is little

overlap in the proteins identified as significantly con-

strained by each analysis (Table 1). Sequence-based ana-

lyses of missense variation recalled at most 37% of the

significant spatial patterns identified in protein structure,

suggesting that many significant spatial patterns in

protein structure are introduced by protein folding.

Conversely, the observed precision in each analysis

(between 0.18 and 0.81) indicates that significant spatial

patterns of variants in protein sequence are often disrup-

ted in the folded protein structure. Overall, the statistics

for sequence and structure are correlated (Spearman’s

rho between 0.31 and 0.52), but proteins without sig-

nificant constraint in either sequence or structure drive

this pattern (Figure 4). These results demonstrate that

sequence-based analyses do not accurately predict signif-

icant spatial constraint on missense variation in protein

structure.
can Journal of Human Genetics 102, 415–426, March 1, 2018 421



Table 1. Protein Sequence Is a Poor Predictor of Spatial Patterns in Protein Structure

N

Significant Proteins Performance

Structure Sequence Both Precision Recall

gnomAD synonymous 6,413 2 2 1 0.50 0.50

gnomAD missense 6,425 169 38 7 0.18 0.04

ClinVar pathogenic 589 213 32 26 0.81 0.12

COSMIC recurrent 3,052 19 12 7 0.58 0.37

Structural analysis identified more significant constraint than sequence analysis for all missense variant datasets. Precision and recall were calculated by treating
structure-derived results as truth and sequence-derived results as predictions.
Variant Spatial Patterns Are Similar across Proteins with

Different Evolutionary Origins, Tolerance to Variation,

and Amounts of Disorder

Many functional, evolutionary, and structural factors

could influence the distribution of genetic variants across

protein structures. To evaluate the impact of such factors,

we used linear regression analysis to quantify the relation-

ship between the spatial distribution of variants in a

protein and its (1) evolutionary origin, (2) residue-level

conservation across species, (3) intolerance to variation

in humans, and (4) amount of structural disorder. The

spatial distributions observed show very little association

with the evolutionary history of the proteins considered

(Figures S9A–S11A); the greatest proportion of variance ex-

plained (R2) in the spatial statistics by any evolutionary

metric is only 0.009 by intolerance to variation (as quanti-

fied by RVIS) with germline missense variants. Though the

magnitudes of all the associations are very small, a few

achieve statistical significant due to the large sample size.

Neutral missense variants are slightly more constrained

in proteins with markers of functional importance: evolu-

tionary conservation (R2 ¼ 0.004; p ¼ 3.17 3 10�42)

and protein intolerance to variation (R2 ¼ 0.009;

p ¼ 2.57 3 10�14). Pathogenic missense variants are not

significantly associated with any of these evolutionary

metrics. Furthermore, the significant spatial patterns

observed in our variant analyses held when analyzing pro-

teins at the extremes of these evolutionary metrics (Figures

S9B–S11B). Thus, the trends in the spatial patterns of ge-

netic variation identified here are present across proteins

with diverse evolutionary origins and levels of genetic

variation.

Many proteins contain dynamic mobile regions that

may not adopt a single stable structural conforma-

tion.55,56 These disordered regions are often critical to

protein function but may not be present in or accurately

represented by available PDB and ModBase structures.

To evaluate the influence of protein disorder on our

spatial analyses, we calculated the proportion of each

protein annotated as disordered by MOBIdb35 and tested

its correlation with spatial patterns. The amount of disor-

dered sequence is not substantially correlated with our

spatial metrics; the greatest proportion of variance ex-

plained was only 0.002 for recurrent somatic variants
422 The American Journal of Human Genetics 102, 415–426, March
(Figure S12A). Due to the large sample size, these modest

effects achieved statistical significance for synonymous

(R2 ¼ 0.0008; p ¼ 0.0025) and recurrent (R2 ¼ 0.002;

p ¼ 0.001) somatic variants. Furthermore, the overall

spatial patterns are similar across proteins with high and

low disorder (Figure S12B). This suggests that our observa-

tions are robust to differences in levels of disorder. With

the increasing understanding of mobile and disordered

protein regions, adapting our spatial statistics to account

for disorder is a promising area for future work.
Discussion

By projecting millions of variants observed in human pop-

ulations into three-dimensional protein structures, we

comprehensively quantified patterns of spatial constraint

on human genetic variation within its functional and

evolutionary context. As expected, synonymous variants

are nearly randomly distributed within protein structures.

In contrast, missense variants exhibit significant disper-

sion in some proteins and significant clustering in others,

reflecting the diversity of constraints on protein structure

and function. The spatial dispersion of missense variants

is often driven by intolerance to substitutions in the pro-

tein core. Germline pathogenic missense variants display

evidence of spatial clustering in more than three quarters

of protein structures andmodels, and hundreds of proteins

exhibit significantly more variant clustering than expected

in the absence of constraint. In contrast, significant clus-

tering of recurrent somatic mutations was identified in

relatively few proteins. Finally, we demonstrate that pro-

tein sequence is a poor substitute for protein structure in

the analysis of variant spatial distributions in 3D and

that our findings are robust to differences in protein evolu-

tionary origins, overall levels of genetic variation, and the

amount of protein disorder.

Several studies have examined the spatial clustering of

somatic mutations within protein structures.15–19 The

number of proteins exhibiting somatic mutation clus-

tering varies between studies: Kamburov et al. identified

only 17 proteins with significant somatic clustering, while

Meyer et al. identified 75 proteins with high-scoring

somatic clusters (Figure S7). Our analysis of the Protein
1, 2018



Figure 4. Protein Sequence Is a Poor
Predictor of Spatial Patterns in Protein
Structure
The Ripley’s K Z-score for significant spatial
constraint on each protein in the PDB set
computed over its 3D structure is con-
trasted with the K Z-score computed using
its 1D sequence for each variant dataset:
(A) gnomAD synonymous, (B) gnomAD
missense, (C) ClinVar, and (D) COSMIC.
Axes are scaled independently for each
comparison. The distribution over all
structures is shown as a density plot, with
black indicating higher density. Large
circles indicate structures with spatial
distributions significantly different from
random; circles are colored blue if signifi-
cant in the structural analysis, yellow if
significant in the sequence analysis, and
green if significant in both analyses. The
sequence- and structure-derived Z-scores
are correlated for each variant dataset
(Spearman’s rho between 0.31 and 0.52),
but sequence analysis identified very few
proteins with significant spatial distribu-
tions in protein structure (Table 1).
Data Bank and ModBase identified 25 proteins with sig-

nificantly clustered recurrent somatic mutations from

COSMIC, of which 12 had been previously identified.

The variation between methods is attributable to differ-

ences in many aspects of the studies, including the algo-

rithms, mutation cluster definitions, limits on cluster

size, and the genetic and structural datasets considered.

Prior approaches focused on the identification of clusters

of somatic variants, and thus they may not have identified

other patterns of spatial constraint, such as dispersion. Key

advances of our approach to characterizing spatial distribu-

tions include identification of both significant clustering

and dispersion (at any scale) compared to an appropriate

null distribution and avoiding domain-specific assump-

tions. As a result, our method captures additional patterns

of spatial constraint on genetic variation over all proteins.

This may consequently reduce its power to identify some

somatic mutation clusters detected by cancer-focused ap-

proaches, in particular those that detect clusters of two

highly recurrent mutations. However, we note that our

method identifies a similar number of proteins as other

studies aimed at identifying proteins with significant over-

all clustering of somatic mutations15,16 (Figure S7).

The mutation datasets considered also influence the po-

wer of different methods to detect spatial patterns. For our

analysis of somatic mutations in cancer, we selected the

COSMIC dataset for consistency with our use of ClinVar,

a submission-based database of pathogenic germline vari-
The American Journal of Human G
ants, and to maximize the number of

available variants for analysis. How-

ever, the use of a submission-based

system introduces the potential for re-

porting bias into the representation
of proteins and mutations. In contrast, the Cancer

Genome Atlas (TCGA) provides consistent, whole-exome

sequencing data from many cancer studies and tumor

types but has smaller sample size. We attempted to analyze

recurrent somatic mutations from 18 TCGA studies in

solved protein structures, but most structures did not

satisfy our inclusion criteria (three or more recurrent so-

matic mutations), so we instead analyzed all somatic

TCGA mutations. We identified three proteins with signif-

icant clustering (including two known cancer proteins,

TP53 and STK11). There was no significant difference in

the overall distribution of COSMIC and TCGA results

(Figure S8), suggesting that bias in the COSMIC dataset

did not critically affect our overall findings.

The stronger clustering of germline disease-causing vari-

ation compared to recurrent somatic variants may reflect

differences in spatial constraint and phenotypic effects of

variation outside of the germline.12 There are likely differ-

ences in variant tolerance between germline and somatic

contexts; germline variants are present in all tissues and

are subject to many powerful constraints throughout

development. In contrast, somatic variants influence

only a subset of tissues and developmental time points

and thus may be tolerated in contexts that would be lethal

in the germline.12 Alternatively, germline and somatic dif-

ferences may be attributable to relaxed constraint within

the tumor context, which is already highly dysregulated.

While we limited our analyses to recurrent somatic
enetics 102, 415–426, March 1, 2018 423



mutations (observed in multiple tumors), this dataset

likely still contains some neutral passenger mutations,

which may further explain the overall similarity between

the somatic and neutral missense variant results.

By characterizingboth clustering anddispersion,we iden-

tified spatial patterns of genetic variation thathavenot been

previouslydescribed. For example, our comparative analysis

identified 3% of proteins with significant spatial dispersion

of both neutral and pathogenic germlinemissense variants.

This interesting group of proteins includes enzymes, activa-

tors, chaperones, and inhibitors with many intermolecular

interactions. Furthermore, these proteins harbor variants

associated with reduced rather than abolished activity,

which may be related to their frequent annotation as likely

loss-of-function intolerant genes.7

These and other spatial patterns we detected provide a

useful perspective from which to study protein function

and the phenotypic effects of coding variation; however,

there are limitations to our approach. First, high-quality

protein structural information is available for only �25%

of human proteins, and available protein structures often

do not cover the entire protein sequence, leaving much of

the proteome inaccessible to spatial analyses. Computa-

tionally derived homology models extend partial coverage

to 77% of human proteins, and these models are often suf-

ficiently accurate to enable evaluation of spatial patterns of

variation. However, there is still bias in the proteins avail-

able for structural analysis. For example, it is more difficult

to experimentally determine the structure of membrane

proteins than soluble proteins, reducing both the number

of solved protein structures and the availability of structural

templates for homology modeling.57 Intrinsically disor-

dered proteins are also less representedwithin structural da-

tabases, due to their lack of a stable tertiary structure. Struc-

turalmodels are also often lacking for themultiple isoforms

known to exist formanyproteins.When this information is

available, our methodology can contrast patterns in alter-

native isoforms, different 3D conformations, and protein

complexes, but our current analyses focus on a minimally

overlapping subset of protein structures and homology

models representing canonical isoforms of human pro-

teins. These structures are only a subset of the dynamic

and biologically relevant conformations adopted by pro-

teins. Nonetheless, they are informative representations

of the functional context of missense variation, and by

analyzing them, we identified significant spatial patterns

that were not found in analyses of linear sequence.

Another challenge is the incomplete knowledge of all

pathogenic variantswithin a protein.Weused germline dis-

ease-causing missense variants from the curated ClinVar

database, a submission-based resource that may also

include some incorrect disease assignments. Most variants

in ClinVar are linked to rare Mendelian diseases, and thus

may represent an extreme that does not generalize to vari-

ants influencing complex diseases.We anticipate thatmap-

ping pathogenic variants across homologous protein fam-

ilies, and potentially even from model organisms, will
424 The American Journal of Human Genetics 102, 415–426, March
significantly increase the number of human proteins with

sufficient numbers of variants for spatial analysis. It will

also be valuable to examine the spatial distribution of pro-

tein-coding mutations associated with complex disease.

Finally, we consider missense variants from the gnomAD

dataset to be putatively neutral. Although gnomAD ex-

cludes individuals with severe pediatric disease and is not

enriched for pathogenic variants,7 the dataset likely does

include variants that contribute to late-onset and complex

diseases. Nonetheless, this variant set reflects the largest

population-level assessment of coding sequence variation,

and the resulting comparisons are a representative,

comprehensive, and informative quantification of spatial

patterns of genetic variation in protein structure.

In summary, we provide a consistent statistical frame-

work in which to identify significant constraint on genetic

variation in protein structures and identify significant dif-

ferences in the spatial distribution of synonymous, non-

synonymous, and pathogenic protein-coding variation.

We identifyhundredsofproteinswith significant clustering

of germline disease-causingmissense variants, themajority

of which have not been previously reported in the litera-

ture. Structural analysis of these spatial clusters has the po-

tential to uncover previously unknown disease etiologies

and suggest potential drug targets.More broadly, our results

indicate that selective constraint influences the spatial dis-

tribution of missense variation in protein structures and

support the use of large reference datasets to highlight re-

gions of functional importance and disease relevance.

To facilitate further analyses, we provide ASTRID, a

web-interface for viewing the structural locations of all

gnomAD, ClinVar, and COSMIC variants, along with the

results of all spatial analyses, in the representative set of

6,604 experimentally derived human protein structures

and 33,144 computationally derived homology models

(see Web Resources).
Supplemental Data

Supplemental Data include 12 figures and 3 tables and can be

found with this article online at https://doi.org/10.1016/j.ajhg.

2018.01.017.
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Supplementary Figures 

 

 
Figure S1: Spatial statistics derived from PDB structures and ModBase homology models are significantly correlated. 
PDB-derived spatial statistics (Ripley’s K Z-score) are plotted against ModBase-derived spatial statistics on shared, sequence-
matched proteins for each genetic dataset: (A) gnomAD synonymous, (B) gnomAD missense, (C) ClinVar pathogenic, and (D) 
COSMIC recurrent. The distribution over all pairs is shown as a density plot, with black indicating higher density. Proteins 
significant in the PDB analysis are shown in yellow, significant in the ModBase analysis shown in blue, and significant in both in 
green. We required >95% sequence overlap for each pair of PDB and ModBase structural models, and excluded any pair where 
the PDB structure was used as the initial template for the ModBase model. 



	

	

 
 

 
Figure S2: Synonymous variants display similar unconstrained spatial patterns across proteins in different structural 
domains. Structural domains are defined by CATH (Class Architecture Topology Homology). The number of experimentally 
derived proteins analyzed from each class is provided to the right of the class label. Domains with fewer than 20 analyzed protein 
structures were excluded. The distribution of the length of the proteins in each class is summarized on the left, and the 
distribution of Ripley’s K Z-scores for gnomAD synonymous variants is summarized on the right. The stability of Z-scores 
across distinct structural domains and sizes confirms that our permutation procedure accurately corrects for the background 
distribution of amino acids in each structure. 



	

	

 
Figure S3: Tolerance of missense variation in solvent accessible residues produces significant spatial dispersion. 
Distribution of protein Z-scores for the PDB structures from the weighted Ripley’s K analysis of relative solvent accessibility 
(RSA). In 96% of proteins, observed spatial distributions of RSA values are significantly more dispersed than expected by 
chance; this indicates that, as expected, surface-exposed residues are identified as spatially dispersed. This is a useful benchmark 
for interpreting the significant spatial dispersion observed among missense variants from gnomAD. It suggests that neutral 
missense variants may preferentially affect amino acids at the protein surface (Figure S4), consistent with previously observed 
patterns of 1000 Genomes missense variants1. 
 

 
Figure S4: Significantly dispersed missense variants are also significantly more solvent accessible. Residues at which 
missense variants are observed are significantly more solvent accessible than residues overall (Median RSAmissense=0.22, Median 
RSAall=0.17, p ≈ 0, Mann-Whitney U test). Furthermore, dispersed missense variants are significantly more solvent accessible 
than all missense (Median RSAdispersed=0.34, p = 1.6x10-71). This is consistent with constraint against missense mutations in the 
core of these proteins. In contrast, significantly clustered missense variants have similar solvent accessibility patterns to all 
residues (Median RSAclustered=0.14, p = 0.19), suggesting that missense variant clusters commonly occur throughout the protein. 
Solvent accessibility was calculated with DSSP2 and normalized by the maximum solvent accessible surface area of each amino 
acid in an Ala-X-Ala tripeptide. 

 

 
Figure S5: Evolutionarily conserved residues are significantly clustered in protein structures. Evolutionary conservation is 
a predictor of functionally important residues, and it has been shown to cluster within protein structure at functionally important 
sites within a limited set of proteins3–6. To evaluate this effect comprehensively, we quantified the evolutionary conservation of 
all amino acids in our PDB dataset using Jensen-Shannon divergence5 across multiple sequence alignments from HSSP2 and 
performed a weighted, spatial analysis of the conservation scores. We identified significant clustering of evolutionary 
conservation in 3,193 of 5,407 proteins (59%, FDR<0.1) and significant dispersion in 486 proteins (9%). (Figure S5). These 
results suggest strong spatial constraint on protein function and suggest that functionally important residues are commonly 
clustered within protein structure. 



	

	

 
Figure S6: Autosomal dominant and recessive missense variants from the Human Gene Mutation Database (HGMD) are 
both spatially clustered in protein structure, but dominant variants form smaller clusters. Within proteins with significantly 
clustered variation, dominant variants (NAD=19) formed significantly smaller clusters (median peak significance distance: 8Å) 
than recessive variants (NAR=29; median peak significance: 14Å; p = 0.0005, Mann–Whitney U test). These findings support 
previous conclusions that both gain- and loss-of-function variants are more clustered than neutral variants. The smaller clusters 
formed by dominant variants additionally support the hypothesis that gain-of-function mutations are localized to specific sites 
with functional potential, while loss-of-function mutations more generally disrupt regions of functional importance. 
 

 
Figure S7: Comparison of our findings with previous studies of somatic mutation clustering. The Venn diagram gives the 
overlap in genes found to harbor significantly clustered somatic missense variation between related studies. AR, CBL, 
CCDC160, COMP, CREBBP, DDX3X, ITLN2, MROH2B, PCDHAC1, SEZ6, SIRPA, SMO, and TET2 were uniquely 
identified by our analysis of COSMIC recurrent somatic missense variation. All studies identified significant clustering in BRAF, 
FBXW7, EGFR, and PIK3CA. See the Discussion for a description of differences in the goals, methodologies, and datasets in 
each analysis. 



	

	

 

Figure S8: COSMIC recurrent somatic mutations and somatic mutations from TCGA display similar overall spatial 
trends. General conclusions about the spatial distribution of somatic mutations are consistent between COSMIC and TCGA. 
There is no statistically significant difference between the distributions of spatial constraint (Ripley’s K Z-scores) on somatic 
variants from COSMIC and TCGA (p = 0.185 Mann-Whitney U). In general, analysis of COSMIC identified more proteins with 
significant constraint, likely due to the larger number of mutations in COSMIC. Nonetheless, analysis of TCGA variants 
identified clusters in two known cancer proteins that were not detected in COSMIC. 



	

	

 
Figure S9: Quantifying the impact of protein evolutionary conservation on spatial statistics. To evaluate the impact of 
protein evolutionary conservation between species on the observed patterns of variant spatial constraint, we evaluated the 
correlation between evolutionary conservation and the K Z-score (Kz) for each class of variant and compared K Z-score 
distributions over proteins stratified by evolutionary conservation. Residue-level evolutionary conservation scores were 
calculated using Jensen-Shannon divergence5, and protein conservation was defined as the mean residue-level conservation score. 
(A) Evolutionary conservation (binned into equally sized groups) plotted against the K Z-score (Kz, mean and 95% confidence 
intervals plotted for each bin). Evolutionary conservation explained very little of the overall variance in spatial distributions (R2 
between 0.0001 and 0.004). However, due to the large sample size, the modest associations with synonymous (R2=0.0003; 
p=0.0001), missense (R2=0.004; p=3.17e-42), and recurrent somatic dispersion (R2=0.0002; p=0.0138) were statistically 
significant. (B) Our conclusions about the spatial distributions of all variant sets held when analyzing proteins at the extremes of 
the conservation score distribution (+/– 1 standard deviation), and no significant differences were observed between the stratified 
sets (p between 0.06 and 0.98, Mann-Whitney U test). 

	



	

	

 
Figure S10: Quantifying the impact of genic intolerance to variation on spatial statistics. To evaluate the impact of genic 
intolerance to variation on the observed patterns of variant spatial constraint, we evaluated the correlation between Residual 
Variance Intolerance Score (RVIS)7 and the K Z-score (Kz) for each class of variant and compared K Z-score distributions over 
proteins stratified by RVIS. Genic intolerance to variation (RVIS) was mapped to each protein using UniProt cross-references8. 
Proteins with high RVIS have more common functional variation, and those with negative scores are more intolerant to 
functional variation. (A) RVIS (binned into equally sized groups) plotted against the K Z-score (Kz, mean and 95% confidence 
intervals plotted for each bin). RVIS explained very little of the overall variance in spatial distributions (R2 between 0 and 0.009). 
However, due to the large sample size, the modest RVIS associations with missense clustering (R2=0.009; p=2.57e-14) and with 
recurrent somatic dispersion (R2=0.001; p=0.0418) were statistically significant. (B) gnomAD missense variants in proteins with 
high tolerance to variation (RVIS > 1 standard deviation from the mean) are significantly less dispersed than those in proteins 
with lower RVIS (p=2.25e–10 PDB, p=5.00e–05 ModBase, Mann-Whitney U test). Nonetheless, the overall spatial trends hold 
when proteins are stratified by RVIS. 

 



	

	

 
Figure S11: Quantifying the impact of protein age on spatial statistics. To evaluate the impact of protein evolutionary age on 
the observed patterns of variant spatial constraint, we evaluated the correlation between protein age and the K Z-score (Kz) for 
each class of variant and compared K Z-score distributions over proteins stratified by age. Protein age was quantified by 
ProteinHistorian using the PPODv4_PTHR7-OrthoMCL_wagner1.0 dataset9.  (A) Protein ages (binned into equally-sized 
groups) plotted against the K Z-score (Kz, mean plotted for each bin). Protein age explained very little of the overall variance in 
spatial distributions (R2 between 0.0001 and 0.0058). However, due to the large sample size, protein age is significantly 
associated with missense dispersion (R2=0.0008; p=0.0282) and with recurrent somatic clustering (R2=0.0058; p=2.72e-05). (B) 
The spatial distributions of all variant sets were qualitatively similar when analyzing proteins at the extremes of the protein age 
distribution (+/– 1 standard deviation). 

 



	

	

 
Figure S12: Quantifying the impact of protein disorder on spatial statistics. To evaluate the impact of protein disorder on the 
observed patterns of variant spatial constraint, we evaluated the correlation between disorder and the K Z-score (Kz) for each 
class of variant and compared K Z-score distributions over proteins stratified by amount of disorder. The proportion of disorder 
per protein is calculated from annotations in MOBIdb10, and defined as the proportion of the total protein sequence annotated as 
disordered. (A) Protein disorder (binned into equally-sized groups) plotted against the K Z-score (Kz, mean and 95% confidence 
intervals plotted for each bin). Protein disorder explained very little of the overall variance in spatial distributions (R2 between 0 
and 0.0023). However, due to the large sample size, protein disorder is significantly associated with synonymous (R2=0.0008; 
p=0.0025) and recurrent somatic clustering (R2=0.002; p=0.001). (B) Our conclusions about the spatial distributions of all variant 
sets held when analyzing proteins at the extremes of the disorder distribution (> 1 standard deviation above the mean and no 
disorder). However, modest but significant, differences in the spatial distributions of germline missense, pathogenic, and 
recurrent somatic variants were detected when stratifying each group by proportion of disordered sequence (p between 0.001 to 
0.03). 



	

	

Supplementary Tables 

 

  
Spearman Correlation Significant Proteins 

 

 
N rho p-value PDB ModBase Both Precision Recall 

gnomAD synonymous 1826 0.94 0 0 0 0 - - 

gnomAD missense 1824 0.95 0 36 23 18 0.78 0.50 

ClinVar pathogenic 177 0.98 1.06E-128 59 40 38 0.95 0.64 

COSMIC recurrent 961 0.96 0 4 3 3 1.00 0.75 

Table S1: ModBase homology models accurately identify spatial patterns observed in experimentally derived structures. 
Quantifications of 3D spatial constraint (Ripley’s K Z-score) calculated from experimentally derived structures (PDB) and 
homology models (Modbase) of the same protein are significantly correlated (also see Figure S1). Precision and recall were 
calculated by evaluating the agreement of significance as determined by analysis of ModBase-derived models with results on the 
corresponding experimentally derived (PDB) structures. The moderate recall of structures with significant spatial constraint 
suggests that analyses of homology models are less powered to detect significant spatial patterns. The high precision, especially 
for pathogenic variants, indicates that significant spatial patterns detected in homology models are also found in solved 
structures. We required >95% sequence overlap for each pair of PDB and ModBase structural models, and excluded any pair 
where the PDB structure was used as the initial template for the ModBase model. 
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