The American Journal of Human Genetics, Volume 102 # **Supplemental Data** ## **Identification of Misclassified ClinVar Variants** ## via Disease Population Prevalence Naisha Shah, Ying-Chen Claire Hou, Hung-Chun Yu, Rachana Sainger, C. Thomas Caskey, J. Craig Venter, and Amalio Telenti ### **SUPPLEMENTAL FIGURES** Figure S1: Genetic risk in ACMG-59 conditions with additional P and LP sets Fold-change of observed genetic risk over expected population prevalence using ClinVar variant sets for the ACMG-59 conditions. The observed genetic risk was calculated using the study population. Each point represents a condition; each condition may be represented in more than one set. The navy-blue line at a fold-change of 10 (i.e. inflation) indicates a theoretical penetrance of 10%. Observations above this line are highly suggestive of misclassified variants. A) Fold-change was calculated using variants per variant set: Set-1* consists of pathogenic (P) variants with 2 or more ClinVar review stars (i.e. two or more submitters with assertion criteria, expert panel and practice guideline); Similarly, Set-1_LP consists of LP variants. Set-2* consists of P variants with 1 star (i.e. one submitter with assertion criteria); Similarly, Set-2_LP consists of LP variants. Set-3* consists of P variants with 0 star (i.e. submitter with no assertion criteria submitted in ClinVar); Similarly, Set-3_LP consists of LP variants. Set-4 consists of variants with conflicting interpretations of pathogenicity. B) Fold-change was re-calculated after variants were filtered for disease-specific minor allele frequency thresholds. Figure S2: Genetic risk in Orphanet conditions with additional P and LP sets Fold-change of observed genetic risk over expected population prevalence using ClinVar variant sets for the Orphanet conditions. The observed genetic risk was calculated using the study population. Each point represents a condition; each condition may be represented in more than one set. The navy-blue line at a fold-change of 10 (i.e. inflation) indicates a theoretical penetrance of 10%. Observations above this line are highly suggestive of misclassified variants. A) Fold-change was calculated using variants per variant set: Set-1* consists of pathogenic (P) variants with 2 or more ClinVar review stars (i.e. two or more submitters with assertion criteria, expert panel and practice guideline); Similarly, Set-1_LP consists of LP variants. Set-2* consists of P variants with 1 star (i.e. one submitter with assertion criteria); Similarly, Set-2_LP consists of LP variants. Set-3* consists of P variants with 0 star (i.e. submitter with no assertion criteria submitted in ClinVar); Similarly, Set-3_LP consists of LP variants. Set-4 consists of variants with conflicting interpretations of pathogenicity. B) Fold-change was re-calculated after variants were filtered for disease-specific minor allele frequency thresholds. Figure S3: Genetic risk in ACMG-59 conditions using gnomAD Fold-change of observed genetic risk over expected population prevalence using ClinVar variant sets for the ACMG-59 conditions. Each point represents a condition; each condition may be represented in more than one set. The navy-blue line at a fold-change of 10 (i.e. inflation) indicates a theoretical penetrance of 10%. Observations above this line are highly suggestive of misclassified variants. Fold-change was calculated using variants after disease-specific minor allele frequency filtering per variant set: Set-1 consists of variants with 2 or more ClinVar review stars (i.e. two or more submitters with assertion criteria, expert panel and practice guideline); Set-2 consists of variants with 1 star (i.e. one submitter with assertion criteria); Set-3 consists of variants with 0 star (i.e. submitter with no assertion criteria submitted in ClinVar); Set-4 consists of variants with conflicting interpretations of pathogenicity. A) The observed genetic risk was calculated using gnomAD genome data. Figure S4: Genetic risk in Orphanet conditions using gnomAD Fold-change of observed genetic risk over expected population prevalence using ClinVar variant sets for the Orphanet conditions. Each point represents a condition; each condition may be represented in more than one set. The navy-blue line at a fold-change of 10 (i.e. inflation) indicates a theoretical penetrance of 10%. Observations above this line are highly suggestive of misclassified variants. Fold-change was calculated using variants after disease-specific minor allele frequency filtering per variant set: Set-1 consists of variants with 2 or more ClinVar review stars (i.e. two or more submitters with assertion criteria, expert panel and practice guideline); Set-2 consists of variants with 1 star (i.e. one submitter with assertion criteria); Set-3 consists of variants with 0 star (i.e. submitter with no assertion criteria submitted in ClinVar); Set-4 consists of variants with conflicting interpretations of pathogenicity. A) The observed genetic risk was calculated using gnomAD exome data. B) The observed genetic risk was calculated using gnomAD genome data. Figure S5: Number of ClinVar submitters for variants reclassified to conflicting interpretations of pathogenicity For 855 P/LP, 2525 VUS, and 2487 B/LB variants that changed its classification to conflicting interpretations of pathogenicity from May 2016 version of ClinVar to September 2017 version, the plot shows the number of ClinVar submitters. # **SUPPLEMENTAL TABLES** ### **Table S1: ClinVar variant sets** A list of ClinVar variant sets that was used in the study. The chromosomal positions are in GRCh38 human reference built. Provided as a separate excel file. Table S2: Genetic risk in ACMG-59 conditions. | Conditions | Estimated
Population
Prevalence | Mode of
Inheritance | Genes | Observed
Genetic
risk | Fold
Change | Observed
Genetic
Risk
(dMAF) | Fold
Change
(dMAF) | |---|---------------------------------------|---|--|-----------------------------|----------------|---------------------------------------|--------------------------| | Lynch Syndrome | 227.27 | Autosomal
dominant | MLH1
MSH2
MSH6
PMS2 | 105 | 0.5 | 105 | 0.5 | | Familial
hypercholesterolemia | 500 | Autosomal dominant | APOB
LDLR
PCSK9 | 314 | 0.6 | 314 | 0.6 | | Ehlers-Danlos
syndrome, vascular
type | 1 | Autosomal
dominant | COL3A1 | 0 | - | 0 | - | | Familial adenomatous polyposis | 3.2 | Autosomal dominant | APC | 0 | - | 0 | - | | Catecholaminergic polymorphic ventricular tachycardia | 10 | Autosomal
dominant | RYR2 | 10 | - | 10 | - | | Ornithine
transcarbamylase
deficiency | 7.14 | X-linked recessive | ОТС | 10 | - | 10 | - | | Hypertrophic cardiomyopathy, Dilated cardiomyopathy | 400 | Autosomal
dominant;
X-linked
recessive | MYBPC3
MYH7
TNNT2
TNNI3
TPM1
MYL3
ACTC1
PRKAG2
MYL2
LMNA
GLA | 581 | 1.5 | 562 | 1.4 | | WT1-related Wilms tumor | 10 | Autosomal dominant | WT1 | 19 | 1.9 | 19 | 1.9 | | Arrhythmogenic right ventricular cardiomyopathy | 100 | Autosomal
dominant | DSC2
DSG2
DSP
PKP2
TMEM43 | 295 | 3.0 | 229 | 2.3 | | Juvenile polyposis | 6.25 | Autosomal dominant | BMPR1A
SMAD4 | 0 | - | 0 | - | | Hereditary Breast and
Ovarian Cancer | 250 | Autosomal dominant | BRCA1
BRCA2 | 448 | 1.8 | 448 | 1.8 | | MYH-Associated Polyposis; Adenomas, multiple colorectal, FAP type 2; Colorectal adenomatous polyposis,autosomal recessive,with pilomatricomas | 2.5 | Autosomal recessive | митүн | 10 | - | 10 | - | |---|------|-----------------------|---|-----|-------|-----|-------| | Marfan Syndrome,
Loeys-Dietz
Syndromes, and
Familial Thoracic
Aortic Aneurysms and
Dissections | 20 | Autosomal
dominant | ACTA2
FBN1
MYH11
SMAD3
TGFBR1
TGFBR2 | 114 | 5.7 | 76 | 3.8 | | Romano-Ward Long
QT Syndromes Types
1, 2, and 3, Brugada
Syndrome | 50 | Autosomal
dominant | KCNH2
KCNQ1
SCN5A | 305 | 6.1 | 305 | 6.1 | | Multiple Endocrine
Neoplasia Type 1 | 3.3 | Autosomal dominant | MEN1 | 0 | - | 0 | - | | Li-Fraumeni Syndrome | 7 | Autosomal dominant | TP53 | 48 | 6.8 | 48 | 6.8 | | Retinoblastoma | 6 | Autosomal dominant | RB1 | 48 | 7.9 | 38 | 6.4 | | Neurofibromatosis type 2 | 1.78 | Autosomal dominant | NF2 | 0 | - | 0 | - | | Familial Medullary Thyroid Cancer (FMTC);Multiple Endocrine Neoplasia Type 2 | 2.9 | Autosomal
dominant | RET | 57 | 19.7 | 10 | 3.3 | | Peutz-Jeghers
Syndrome | 2.2 | Autosomal dominant | STK11 | 0 | - | 0 | - | | PTEN Hamartoma
Tumor Syndrome | 0.5 | Autosomal dominant | PTEN | 0 | - | 0 | - | | Hereditary Paraganglioma- Pheochromocytoma Syndrome | 0.3 | Autosomal
dominant | SDHAF2
SDHB
SDHC
SDHD | 48 | 158.8 | 48 | 158.8 | | Tuberous Sclerosis
Complex | 17.2 | Autosomal dominant | TSC1
TSC2 | 0 | - | 0 | - | | Von Hippel Lindau
syndrome | 2.3 | Autosomal dominant | VHL | 0 | - | 0 | - | | Wilson disease | 10 | Autosomal recessive | АТР7В | 0 | - | 0 | - | | Malignant
hyperthermia
susceptibility | 1 | Autosomal
dominant | CACNA1S
RYR1 | 219 | 219.2 | 133 | 133.4 | A list of ACMG-59 conditions with at least one P/LP variant from set-1, set-2 or set-3 observed in the study. The last two columns with "dMAF" suffix ("Observed Genetic risk (dMAF)" and "Fold Change (dMAF)") are observed genetic risk and fold change calculated after filtering variants using disease-specific minor allele frequency (dMAF) filter. The population prevalence and genetic risk are calculated per 100,000. Fold change was not calculated if only one individual of the 10,495 samples was identified with genetic risk of the disease condition. Table S3: Genetic risk in Orphanet conditions. | Orphanet
ID | Condition | Estimated
Population
Prevalence | Mode of
Inheritance | Genes | Observed
Genetic
risk | Fold
Change | Observed
Genetic
Risk
(dMAF) | Fold
Change
(dMAF) | |----------------|--|---------------------------------------|------------------------|---|-----------------------------|----------------|---------------------------------------|--------------------------| | 48 | Congenital bilateral absence of vas deferens | 50 | Autosomal recessive | CFTR | 10 | - | 10 | - | | 55 | Oculocutaneous albinism | 45 | Autosomal recessive | OCA2 | 10 | - | 10 | - | | 60 | Alpha-1-antitrypsin deficiency | 63.5 | Autosomal recessive | SERPINA1 | 191 | 3.00 | 38 | 0.60 | | 122 | Birt-Hogg-Dubé
syndrome | 0.5 | Autosomal dominant | FLCN | 29 | 57.17 | 29 | 57.17 | | 130 | Brugada syndrome | 75 | Autosomal
dominant | CACNA1C- AS1;CACNA1C ;CACNA1C- AS2;CACNA1C ;CACNA1C;CA CNA2D1;CACN B2;GPD1L;KC NE3;NSUN6;C ACNB2;SCN10 A;SCN3B;SCN5 A;TRPM4 | 38 | 0.51 | 38 | 0.51 | | 145 | Hereditary breast and ovarian cancer syndrome | 250 | Autosomal dominant | BRCA1;BRCA2 | 400 | 1.60 | 353 | 1.41 | | 212 | Cystathioninuria | 7.1 | Autosomal recessive | СТН | 10 | - | 0 | - | | 232 | Sickle cell anemia | 467.3 | Autosomal recessive | НВВ | 19 | 0.04 | 19 | 0.04 | | 268 | Autosomal
recessive limb-
girdle muscular
dystrophy type 2B | 0.13 | Autosomal recessive | DYSF | 10 | - | 0 | - | | 282 | Frontotemporal dementia | 3 | Autosomal dominant | CHMP2B;POU
1F1;MAPT | 10 | - | 10 | - | | 287 | Ehlers-Danlos
syndrome, classic
type | 5 | Autosomal
dominant | COL5A1;COL5
A2;LOC10144
8202;COL5A1 | 10 | - | 10 | - | | 324 | Fabry disease | 1.11 | X-linked
recessive | RPL36A-
HNRNPH2;GL
A | 10 | - | 10 | - | | 325 | Congenital factor II deficiency | 0.05 | Autosomal recessive | F2 | 48 | 952.83 | 0 | - | | 377 | Gorlin syndrome | 5.3 | Autosomal
dominant | LOC10050734
6;PTCH1;PTCH
1;PTCH2;SUFU | 19 | 3.60 | 0 | - | | 429 | Hypochondroplasia | 3.3 | Autosomal dominant | FGFR3 | 10 | - | 10 | - | |-------|--|------|-----------------------|-------------------------------|------|-------------|-----|--------| | 524 | Li-Fraumeni
syndrome | 7 | Autosomal dominant | TP53 | 29 | 4.08 | 29 | 4.08 | | 558 | Marfan syndrome | 20 | Autosomal dominant | FBN1;TGFBR2 | 29 | 1.43 | 19 | 0.95 | | 565 | Menkes disease | 2.5 | X-linked recessive | АТР7А | 19 | 7.62 | 0 | - | | 586 | Cystic fibrosis | 111 | Autosomal recessive | CFTR | 10 | - | 10 | - | | 597 | Central core
disease | 0.4 | Autosomal dominant | RYR1 | 86 | 214.39 | 57 | 142.93 | | 636 | Neurofibromatosis type 1 | 50 | Autosomal dominant | NF1 | 19 | 0.38 | 19 | 0.38 | | 652 | Multiple endocrine neoplasia type 1 | 3.3 | Autosomal dominant | MEN1;RET | 10 | - | 10 | - | | 653 | Multiple endocrine neoplasia type 2 | 2.9 | Autosomal dominant | RET | 57 | 19.71 | 10 | - | | 661 | Ondine syndrome | 0.5 | Autosomal dominant | BDNF-
AS;BDNF;GDN
F;RET | 324 | 647.93 | 0 | - | | 676 | Hereditary chronic pancreatitis | 0.57 | Autosomal dominant | CFTR;CTRC;SPI
NK1 | 2820 | 4948.0
5 | 172 | 300.90 | | 758 | Pseudoxanthoma elasticum | 2.5 | Autosomal recessive | ABCC6 | 152 | 60.98 | 19 | 7.62 | | 759 | Central precocious puberty | 20 | Autosomal dominant | KISS1R | 152 | 7.62 | 0 | - | | 790 | Retinoblastoma | 6 | Autosomal dominant | RB1 | 10 | - | 10 | - | | 882 | Tyrosinemia type 1 | 54 | Autosomal recessive | FAH | 76 | 1.41 | 0 | - | | 1243 | Best vitelliform macular dystrophy | 20 | Autosomal dominant | BEST1 | 19 | 0.95 | 19 | 0.95 | | 2152 | Mowat-Wilson syndrome | 1.7 | Autosomal dominant | ZEB2 | 10 | - | 10 | - | | 2337 | Non-epidermolytic
palmoplantar
keratoderma | 2.5 | Autosomal
dominant | AQP5 | 19 | 7.62 | 19 | 7.62 | | 2686 | Cyclic neutropenia | 0.1 | Autosomal dominant | ELANE | 10 | - | 10 | T | | 3193 | Supravalvular aortic stenosis | 13.3 | Autosomal dominant | ELN | 10 | - | 0 | - | | 32960 | Tumor necrosis
factor receptor 1
associated periodic
syndrome | 0.1 | Autosomal
dominant | TNFRSF1A | 48 | 476.42 | 0 | - | | 44890 | Gastrointestinal stromal tumor | 14.5 | Autosomal dominant | KIT;PDGFRA;S
DHB;SDHC | 19 | 1.31 | 19 | 1.31 | | 79241 | Biotinidase
deficiency | 5 | Autosomal recessive | BTD | 10 | - | 10 | - | | 79432 | Oculocutaneous albinism type 2 | 46.15 | Autosomal recessive | OCA2 | 10 | - | 10 | - | |--------|--|-------|-----------------------|--|----|-------|----|-------| | 98672 | Autosomal dominant optic atrophy | 83 | Autosomal
dominant | OPA1 | 10 | 1 | 10 | - | | 98878 | Hemophilia A | 19.3 | X-linked recessive | F8 | 10 | 1 | 10 | - | | 98879 | Hemophilia B | 4 | X-linked recessive | F9 | 10 | 1 | 10 | - | | 100985 | Autosomal
dominant spastic
paraplegia type 4 | 0.91 | Autosomal
dominant | SPAST | 10 | 1 | 10 | - | | 101016 | Romano-Ward syndrome | 40 | Autosomal dominant | KCNQ1 | 29 | 0.71 | 29 | 0.71 | | 182090 | Pulmonary arterial hypertension | 5.2 | Autosomal
dominant | BMPR2;ENG;L
OC102723566
;ENG;SMAD9 | 57 | 10.99 | 57 | 10.99 | A list of Orphanet conditions with at least one P/LP variant from set-1, set-2 or set-3 observed in the study. The last two columns with "dMAF" suffix ("Observed Genetic risk (dMAF)" and "Fold Change (dMAF)") are observed genetic risk and fold change calculated after filtering variants using disease-specific minor allele frequency (dMAF) filter. The population prevalence and genetic risk are calculated per 100,000. Fold change was not calculated if only one individual of the 10,495 samples was identified with genetic risk of the disease condition.