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Single-Cell RNA-Seq of Mouse Dopaminergic Neurons
Informs Candidate Gene Selection
for Sporadic Parkinson Disease

Paul W. Hook,1 Sarah A. McClymont,1 Gabrielle H. Cannon,1 William D. Law,1 A. Jennifer Morton,2

Loyal A. Goff,1,3,* and Andrew S. McCallion1,4,5,*

Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association

studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used sin-

gle-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time

points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles,

including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop

a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associa-

tions and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in

Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic

PD, informing a new era of PD genetic research.
Introduction

The most commonly used genetic tool today for studying

complex disease is the genome-wide association study

(GWAS). As a strategy, GWASs were initially hailed for

the insight they might provide into the genetic architec-

ture of common human disease risk. Indeed, the collective

data from GWASs since 2005 have revealed a trove of var-

iants and genomic intervals associated with an array of

phenotypes.1 The majority of variants identified in GWASs

are located in non-coding DNA2 and are enriched for

characteristics denoting regulatory DNA.2,3 This regulatory

variation is expected to impact expression of a nearby

gene, leading to disease susceptibility.

Traditionally, the gene closest to the lead SNP has been

prioritized as the gene most likely to be affected by the dis-

ease variation. However, recent studies show that disease-

associated variants can act on more distally located genes,

invalidating genes that were previously extensively stud-

ied.4,5 The inability to systematically connect common

variation with the genes impacted limits our capacity to

elucidate potential therapeutic targets and can waste valu-

able research efforts.

Although GWASs are inherently agnostic to the context

in which disease-risk variation acts, the biological impact

of common functional variation has been shown to be

cell context dependent.2,6 Extending these observations,

Pritchard and colleagues recently demonstrated that

although genes need only to be expressed in disease-rele-

vant cell types to contribute to risk, those expressed prefer-

entially or exclusively therein contribute more per SNP.7
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Thus, accounting for the cellular and gene regulatory

network (GRN) contexts within which variation acts may

better inform the identification of impacted genes. These

principles have not yet been applied systematically to

many of the traits for which GWAS data exist. We have

chosen Parkinson disease (PD) as a model complex

disorder for which a significant body of GWAS data re-

mains to be explored biologically in a context-dependent

manner.

PD is the most common progressive neurodegenerative

movement disorder. Incidence of PD increases with age,

affecting an estimated 1% worldwide beyond 70 years of

age.8,9 The genetic underpinnings of non-familial or spo-

radic PD have been studied through the use of GWASs

with recent meta-analyses highlighting 49 loci associated

with sporadic PD susceptibility.10,11 While a small fraction

of PD GWAS loci contain genes known to be mutated in fa-

milial PD (SNCA and LRRK2),12,13 most indicted intervals

do not contain a known mutated gene or genes. Although

PD ultimately affects multiple neuronal centers, preferen-

tial degeneration of DA neurons in the SN leads to func-

tional collapse of the nigrostriatal pathway and loss of

fine motor control. The preferential degeneration of SN

DA neurons in relation to other mesencephalic DA neu-

rons has driven research interest in the genetic basis

of selective SN vulnerability in PD. Consequently, one

can reasonably assert that a significant fraction of PD-asso-

ciated variation likely mediates its influence specifically

within the SN.

In an effort to illuminate a biological context in which

PDGWAS results could be better interpreted, we undertook
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single-cell RNA-seq (scRNA-seq) analyses of multiple DA

neuronal populations in the brain, including ventral

midbrain DA neurons. This analysis defined the heteroge-

neity of DA populations over developmental time in the

brain, revealing gene expression profiles specific to discrete

DA neuron subtypes. These data further facilitated the defi-

nition of GRNs active in DA neuron populations including

the SN. With these data, we establish a framework to sys-

tematically prioritize candidate genes in all 49 PD GWAS

loci and begin exploring their pathological significance.
Material and Methods

Animals
The Th:EGFP BAC transgenicmice (Tg(Th-EGFP)DJ76Gsat/Mmnc)

used in this study were generated by the GENSAT Project and were

purchased through the Mutant Mouse Resource & Research Cen-

ters (MMRRC) Repository. Mice were maintained on a Swiss

Webster (SW) background with female SW mice obtained from

Charles River Laboratories. The Tg(Th-EGFP)DJ76Gsat/Mmnc

line was primarily maintained through matings between

Th:EGFP-positive, hemizygous male mice and wild-type SW

females (dams). Timed matings for cell isolation were similarly

established between hemizygous male mice and wild-type SW fe-

males. The observation of a vaginal plug was defined as embryonic

day 0.5 (E0.5). All work involving mice (husbandry, colony main-

tenance, and euthanasia) were reviewed and pre-approved by the

institutional care and use committee.

Cplx1 knockout mice and wild-type littermates used for immu-

nocytochemistry were taken from a colony established in Cam-

bridge using founders from mutant mouse lines that were ob-

tained from the Max-Planck-Institute for Experimental Medicine

(Gottingen, Germany). Cplx1 mice in this colony have been back-

crossed onto a C57BL/6J inbred background for at least ten gener-

ations. All experimental procedures were licensed and undertaken

in accordance with the regulations of the UK Animals (Scientific

Procedures) Act 1986. Housing, rearing, and genotyping of mice

has been described in detail previously.14,15 Mice were housed

in hard-bottomed polypropylene experimental cages in groups

of 5–10 mice in a housing facility maintained at 21�C–23�C with

relative humidity of 55%5 10%.Mice had ad libitum access to wa-

ter and standard dry chow. Because homozygous knockout Cplx1

mice have ataxia, they have difficulty in reaching the hard pellets

in the food hopper and drinking from the water bottles. Lowered

waterspouts were provided and access to normal laboratory chow

was improved by providing mash (made by soaking 100 g of chow

pellets in 230 mL water for 60 min until the pellets were soft

and fully expanded) on the floor of the cage twice daily. Cplx1 gen-

otyping to identify mice with a homozygous (Cplx1�/�) or hetero-
zygous (Cplx1þ/�) deletion of Cplx1 was conducted as previously

described,14 using DNA prepared from tail biopsies.

Dissection of Embryonic 15.5 (E15.5) Brains
At 15.5 days after the timed mating, pregnant dams were eutha-

nized and the entire litter of E15.5 embryos were dissected out

of themother and immediately placed in chilled Eagle’s Minimum

Essential Media (EMEM). Individual embryos were then decapi-

tated and heads were placed in fresh EMEM on ice. Embryonic

brains were removed and placed in Hank’s Balanced Salt Solution

(HBSS) withoutMg2þ and Ca2þ andmanipulated while on ice. The
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brains were immediately observed under a fluorescent stereomi-

croscope and EGFPþ brains were selected. EGFPþ regions of inter-

est in the forebrain (hypothalamus) and the midbrain were

then dissected and placed in HBSS on ice. This process was

repeated for each EGFPþ brain. Brain regions from four EGFPþ

mouse pups were pooled together for dissociation.

Dissection of Postnatal Day 7 (P7) Brains
After timed matings, pregnant females were sorted into their own

cages and checked daily for newly born pups. The morning the

pups were born was considered postnatal day 0 (P0). Once the

mice were aged to P7, all the mice from the litter were euthanized

and the brains were then quickly dissected and placed in HBSS

withoutMg2þ and Ca2þ on ice. As before, the brains were observed

under a fluorescent microscope, EGFPþ status for P7 mice was

determined, and EGFPþ brains were retained. For each EGFPþ

brain, the entire olfactory bulb was first resected and placed in

HBSS on ice. Immediately thereafter, the EGFPþ forebrain and

midbrain regions for each brain were resected and also placed

in distinct containers of HBSS on ice. Brain regions from five

EGFPþ P7 mice were pooled together for dissociation.

Generation of Single-Cell Suspensions from Brain Tissue
Resected brain tissues were dissociated using papain (Papain

Dissociation System, Worthington Biochemical Corporation;

Cat#: LK003150) following the trehalose-enhanced protocol re-

ported by Saxena et al.16 with the following modifications. The

dissociation was carried out at 37�C in a sterile tissue culture

cabinet andRNase inhibitorwas added toall solutions.Duringdisso-

ciation, all tissues at all time points were triturated every 10min us-

ing a sterile Pasteur pipette. For E15.5 tissues, this was continued for

nomore than 40min. For P7, this was continued for up to 1.5 hr or

until the tissue appeared to be completely dissociated.

Additionally, for P7 tissues, after dissociation but before cell sort-

ing, the cell pellets were passed through a discontinuous density

gradient in order to remove cell debris that could impede cell

sorting. This gradient was adapted from the Worthington Papain

Dissociation System kit. Briefly, after completion of dissociation

according to the Saxena protocol,16 the final cell pellet was resus-

pended in DNase dilute albumin-inhibitor solution, layered on

top of 5 mL of albumin-inhibitor solution, and centrifuged at

70 3 g for 6 min. The supernatant was then removed.

Fluorescence-Activated Cell Sorting (FACS) and

Single-Cell Collection
For each time point-region condition, pellets were resuspended in

200 mL of media without serum comprised of DMEM/F12 without

phenol red, 5% trehalose (w/v), 25 mM AP-V, 100 mM kynurenic

acid, and 10 mL of 40 U/mL RNase inhibitor (RNasin Plus RNase

Inhibitor, Promega) at room temperature. The resuspended cells

were then passed through a 40 mM filter and introduced into a

FACSmachine (BeckmanCoulterMoFlo Cell Sorter or BectonDick-

inson FACSJazz). Viable cells were identified via propidium iodide

staining, and individual neurons were sorted based on their fluores-

cence directly into lysis buffer in individual wells of 96-well plates

for single-cell sequencing (2 mL Smart-Seq2 lysis buffer þ RNase

inhibitor, 1 mL oligo-dT primer, and 1 mL dNTPs) according to Picelli

et al.17 Blank wells were used as negative controls for each plate

collected. Upon completion of a sort, the plates were briefly spun

in a tabletop microcentrifuge and snap-frozen on dry ice. Single-

cell lysateswere subsequentlykeptat�80�Cuntil cDNAconversion.
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Single-Cell Reverse Transcription, Library Prep, and

Sequencing
Library preparation and amplification of single-cell samples were

performed using a modified version of the Smart-Seq2 protocol.17

Briefly, 96-well plates of single cell lysates were thawed to 4�C,
heated to72�Cfor 3min, then immediatelyplacedon ice. Template

switching first-strand cDNA synthesis was performed as described

above using a 50-biotinylated TSO oligo. cDNAs were amplified

using 20 cycles of KAPAHiFi PCR and 50-biotinylated ISPCRprimer.

Amplified cDNA was cleaned with a 1:1 ratio of Ampure XP beads

andapproximately200pgwasused for aone-quarter standard sized

Nextera XT tagmentation reaction. Tagmented fragments were

amplified for 14 cycles and dual indexes were added to each well

to uniquely label each library. Concentrations were assessed with

Quant-iT PicoGreen dsDNA Reagent (Invitrogen) and samples

were diluted to�2 nMandpooled. Pooled librarieswere sequenced

on the Illumina HiSeq 2500 platform to a target mean depth

of �8.0 3 105 50-bp paired-end fragments per cell at the Hopkins

Genetics Research Core Facility.
RNA Sequencing and Alignment
For all libraries, paired-end reads were aligned to the mouse

reference genome (mm10) supplemented with the Th-EGFPþ

transgene contig, using HISAT218 with default parameters

except: -p 8. Aligned reads from individual samples were quanti-

fied against a reference transcriptome (GENCODE vM8)19 supple-

mented with the addition of the EGFP transcript. Quantification

was performed using cuffquant20 with default parameters and

the following additional arguments:–no-update-check –p 8.

Normalized expression estimates across all samples were obtained

using cuffnorm20 with default parameters.
Single-Cell RNA Data Analysis
Expression Estimates

Gene-level and isoform-level FPKM (fragments per kilobase of

transcript per million) values produced by cuffquant20 and the

normalized FPKM matrix from cuffnorm were used as input for

the Monocle 2 single-cell RNA-seq framework21 in R/Bio-

conductor.22 Genes were annotated using the Gencode vM8

release.19 A CellDataSet (cds) was then created using Monocle 2

(v2.2.0)21 containing the gene FPKM table, gene annotations,

and all available metadata for the sorted cells. All cells labeled as

negative controls and empty wells were removed from the data.

Relative FPKM values for each cell were converted to estimates of

absolute mRNA counts per cell (RPC) using the Monocle 2 Census

algorithm23 using the Monocle function ‘‘relative2abs().’’ After

RPCs were inferred, a new cds was created using the estimated

RNA copy numbers with the expression Family set to ‘‘negbino-

mial.size()’’ and a lower detection limit of 0.1 RPC.

QC Filtering

After expression estimates were inferred, the cds containing a

total of 473 cells was run through Monocle 2’s ‘‘detectGenes()’’

function with the minimum expression level set at 0.1 transcripts.

The following filtering criteria were then imposed on the entire

dataset:

(1) Number of expressed genes: The number of expressed

genes detected in each cell in the dataset was plotted and

the high and low expressed gene thresholds were set based

on observations of each distribution. Only those cells that

expressed between 2,000 and 10,000 genes were retained.
The Ameri
(2) Cell mass: Cells were then filtered based on the total mass

of RNA in the cells calculated by Monocle 2. Again, the

total mass of the cell was plotted and mass thresholds

were set based on observations from each distribution.

Only those cells with a total cell mass between 100,000

and 1,300,000 fragments mapped were retained.

(3) Total RNA copies per cell: Cells were then filtered based on

the total number of RNA transcripts estimated for each cell.

Again, the total RNA copies per cell was plotted and RNA

transcript thresholds were set based on observations from

each distribution. Only those cells with a total mRNA

count between 1,000 and 40,000 RPCs were retained.

A total of 410 individual cells passed these initial filters. Outliers

found in subsequent, reiterative analyses described below were

analyzed and removed, resulting in a final cell number of 396.

Log Distribution QC

Analysis usingMonocle 2 relies on the assumption that the expres-

sion data being analyzed follows a log-normal distribution. Com-

parison to this distribution was performed after initial filtering

prior to continuing with analysis and was observed to be well fit.

Reiterative Single-Cell RNA Data Analysis
After initial filtering described above, the entire cds as well as sub-

sets of the cds based on ‘‘age’’ and ‘‘region’’ of cells were created for

recursive analysis. Regardless of how the data were subdivided, all

data followed a similar downstream analysis workflow.

Determining Number of Cells Expressing Each Gene

The genes to be analyzed for each iteration were filtered based on

the number of cells that expressed each gene. Genes were retained

if they were expressed in >5% of the cells in the dataset being

analyzed. These were designated ‘‘expressed_genes.’’ For example,

when analyzing all cells collected together (n¼ 410), a gene had to

be expressed in 20.5 cells (4103 0.05¼ 20.5) to be included in the

analysis. In contrast, when analyzing P7 MB cells (n ¼ 80), a gene

had to be expressed in just four cells (803 0.05¼ 4). This was done

to include genes that may define rare populations of cells that

could be present in any given population.

Monocle Model Preparation

The data were prepared for Monocle analysis by retaining only

the expressed genes that passed the filtering described

above. Size factors were estimated using the Monocle 2

‘‘estimateSizeFactors()’’ function. Dispersions were estimated

using the ‘‘estimateDispersions()’’ function.

High Variance Gene Selection

Genes that have a high biological coefficient of variation (BCV)

were identified by first calculating the BCV by dividing the

standard deviation of expression for each expressed gene by the

mean expression of each expressed gene. A dispersion table was

then extracted using the ‘‘dispersionTable()’’ function from

Monocle 2. Genes with a mean expression > 0.5 transcripts and

a ‘‘dispersion_empirical’’R 1.5*dispersion_fit or 2.0*dispersion_fit

were identified as ‘‘high variance genes.’’

Principal Component Analysis (PCA)

PCA was run using the R ‘‘prcomp()’’ function on the centered and

scaled log2 expression values of the ‘‘high variance genes.’’ PC1

and PC2 were visualized to scan the data for outliers as well as bias

in the PCs for age, region, or plates on which the cells were

sequenced. If any visual outliers in the data were observed, those

cells were removed from the original subsetted cds and all filtering

steps above were repeated. Once there were no visual outliers in

PC1 or PC2, a screeplot was used to determine the number of PCs
can Journal of Human Genetics 102, 427–446, March 1, 2018 429



that contributedmost significantly to the variation in the data. This

wasmanuallydeterminedby inspecting the screeplot and including

only those PCs that occur before the leveling-off of the plot.

t-Distributed Stochastic Neighbor Embedding (t-SNE) and Clustering

Once the number of significant PCs was determined, t-SNE24

was used to embed chosen PC dimensions in a 2D space for visu-

alization. This was done using the ‘‘tsne()’’ function available

through the tsne package (v.0.1-3) in R with ‘‘whiten ¼ FALSE.’’

The parameters ‘‘perplexity’’ and ‘‘max_iter’’ were tested with

various values and set according to what was deemed to give the

cleanest clustering of the data.

After dimensionality reduction via t-SNE, the number of clusters

was determined in an unbiased manner by fitting multiple

Gaussian distributions over the 2D t-SNE projection coordinates

using the R package ADPclust.25 t-SNE plots were visualized using

a custom R script. The number of genes expressed and the total

mRNAs for each cluster were then compared.
Differential Expression Analyses
In order to find differentially expressed genes between brain DA

populations at each age, the E15.5 and P7 datasets were annotated

with regional cluster identity (‘‘subset cluster’’). Differential expres-

sion analysis was performed using the ‘‘differentialGeneTest()’’

function from Monocle 2 that uses a likelihood ratio test to

compare a vector generalized additivemodel (VGAM)using a nega-

tive binomial family function to a reduced model in which one

parameter of interest has been removed. In practice, the following

modelwas fit: ‘‘�subset.cluster’’ for E15.5 or P7 dataset. Geneswere

called as significantly differentially expressed if they had a q value

(Benjamini-Hochberg corrected p value) < 0.05.
Cluster-Specific Marker Genes
In order to identify differentially expressed genes that were

‘‘specifically’’ expressed in a particular subset cluster, R code

calculating the Jensen-Shannon-based specificity score from

the R package cummeRbund26 was used similarly to what was

described in Burns et al.27

Briefly, the mean RPC within each cluster for each expressed

gene as well as the percentage of cells within each cluster that

express each gene at a level >1 transcript were calculated. The

‘‘.specificity()’’ function from the cummeRbund package was

then used to calculate and identify the cluster with maximum

specificity of each gene’s expression. Details of this specificity

metric can be found in Molyneaux et al.28

To identify subset cluster-specific genes, the distribution of spec-

ificity scores for each subset cluster was plotted and a specificity

cutoff was chosen so that only the ‘‘long right tail’’ of each distri-

bution was included (i.e., genes with a specificity score above the

cutoff chosen). Within each iterative analysis, the same cutoff was

used for each cluster or region (specificity R 0.3 or 0.4 depending

on time point analyzed). Once the specificity cutoff was chosen,

genes were further filtered by retaining only genes that were ex-

pressed in R40% of cells within the subset cluster that the gene

was determined to be specific for.
Gene Set Enrichment Analyses
Gene set enrichment analyses were performed in two separate

ways depending upon the situation. A Gene Set Enrichment Anal-

ysis (GSEA) PreRanked analysis was performed when a ranked list

(e.g., genes ranked by PC1 loadings) using GSEA software available

from the Broad Institute (v2.2.4).29,30 Ranked gene lists were up-
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loaded to the GSEA software and a ‘‘GSEAPreRanked’’ analysis

was performed with the following settings: Number of Permuta-

tions ¼ 1,000, Collapse dataset to gene symbols ¼ true, Chip

platform(s) ¼ GENE_SYMBOL.chip, and Enrichment statistic ¼
weighted. Analysis was performed against Gene Ontology (GO)

collections from MSigDB, including c2.all.v5.2.symbols and

c5.all.v5.2.symbols. Top ten gene sets were reported for each

analysis (Table S1 for outliers and Figure 1C for time points).

Figures and tables displaying the results were produced using

custom R scripts.

Unranked GSEA analyses for lists of genes were performed using

hypergeometric tests from the R package clusterProfiler imple-

mented through the functions ‘‘enrichGO()’’, ‘‘enrichKEGG()’’,

and ‘‘enrichPathway()’’ with pvalueCutoff set at 0.01, 0.1, 0.1,

respectively, with default settings.31 These functions were imple-

mented through the ‘‘compareCluster()’’ function.
Weighted Gene Co-Expression Network Analysis

(WGCNA)
WGCNA was performed in R using the WGCNA package

(v1.51)32,33 following established pipelines laid out by the package

authors. Briefly, log2(Transcriptþ1) expression counts for all genes

expressed inR20 cells (n¼ 12,628) in all P7 neuronswere used and

outliers were removed. The soft threshold (power) forWGCNAwas

determined by calculating the scale free topology model fit for a

range of powers (1:10, 12, 14, 16, 18, 20) using the WGCNA func-

tion ‘‘pickSoftThreshold()’’ setting the networkType ¼ ‘‘signed.’’

A power of 10 was chosen. Network adjacency was then calculated

using the WGCNA function ‘‘adjacency()’’ with the following

settings: power ¼ 10 and type ¼ ‘‘signed.’’ Adjacency calculations

were used to then calculate topological overlap using the

WGCNA function ‘‘TOMsimilarity()’’ with the following settings:

TOMtype ¼ ‘‘signed.’’ Distance was then calculated by subtracting

the topological overlap from 1. Hierarchical clustering was

then performed on the distance matrix and modules were

identified using the ‘‘cuttreeDynamic()’’ function from the dynam-

icTreeCut package34 with the following settings: deepSplit ¼ T;

pamRespectsDendro¼ FALSE, andminClusterSize¼ 20. This anal-

ysis initially identified 18 modules. Eigengenes for each module

were then calculated using the ‘‘moduleEigengenes()’’ function

and each module was assigned a color. Two modules (‘‘grey’’ and

‘‘turquoise’’) were removed at this point. Turquoise was removed

because it contained 11,567 genes or all the genes that could not

be grouped with another module. Grey was removed because it

contained only four genes, falling below theminimum set module

size of 20. Significance of correlations betweenmodule eigengenes

and subset cluster identity was calculated using the Student

asymptotic p value for correlations employed by the WGCNA

‘‘corPvalueStudent()’’ function. Gene set enrichments for modules

were determined by using the clusterProfiler R package.31 The

correlations between the t-SNE position of a cell and the module

eigengenes were calculated using custom R scripts.
Prioritizing Genes in PD GWAS Loci
Topologically Associated Domain (TAD) and Megabase (Mb) Gene

Data

The data for human TAD boundaries were obtained from human

embryonic stem cell (hESC) Hi-C data35 and converted from hu-

man genome hg18 to hg38 using the liftOver tool from UCSC

Genome Browser. PD GWAS SNP locations in hg38 were inter-

sected with the TAD information to identify TADs containing a
1, 2018



Figure 1. scRNA-Seq Analysis of Isolated Cells Allows Their Separation by Developmental Time
(A) Diagram of scRNA-seq experimental procedures for isolating and sequencing EGFPþ cells. Timeline adapted from Barallobre et al.41

(B) Principal component analysis (PCA) on all cells collected using genes with highly variant transcriptional profiles. The cells that were
included are those that passed quality control measures. The greatest source of variation (PC1) is explained by the time point at which
the cells were collected, not the region from which the cells were collected.
(C) The top ten Gene Ontology (GO) gene sets enriched in genes with positive (red) and negative (green) PC1 loadings from the PCA
plot in (B). Gene sets are arranged by normalized enrichment scores (NES) and all gene sets displayed had a false discovery rate (FDR)
q value % 0.05.
(D) A t-distributed stochastic neighbor embedding (t-SNE) plot of all collected cells that passed quality control measures colored by
regional identity. E15.5 cells cluster together while P7 cells cluster primarily by regional identity.
(E) A t-SNE plot of all collected cells colored by subset cluster identity. Through iterative analysis, time point-regions collected can be
separated into multiple subpopulations (13 in total).
Abbreviations: midbrain, MB; forebrain, FB; olfactory bulb, OB; fluorescence activated cell sorting, FACS.
PD GWAS SNP. The data for 51 Mb regions surrounding PD

GWAS SNPs was obtained by taking PD GWAS SNP locations in

hg38 and adding or subtracting 1 3 106 from each location. All

hg38 Ensembl (v.87) genes that fell within the TADs or megabase

regions were then identified by using the biomaRt R package.36,37

All genes were then annotated with PD locus and SNP informa-
The Ameri
tion. Mouse homologs for all genes were identified using human

to mouse homology data from Mouse Genome Informatics

(MGI). Gene homologs were manually annotated using the

MGI database if a homolog was found to exist. The TAD and

megabase tables were then combined to create a final PD GWAS

locus-gene table.
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PD GWAS Loci Gene Scoring

Genes within PD GWAS loci were initially scored using two

gene lists: genes with an average expression R 0.5 transcripts

in the SN cluster in our data (points ¼ 1; number of genes ¼
6,126) and genes with an average expression R 0.5 transcripts

in the SN population in La Manno et al.38 (points ¼ 1; num-

ber of genes ¼ 5,406). La Manno et al. data (GSE76381_

MouseAdultDAMoleculeCounts.cef.txt.gz) was accessed via the

Gene Expression Omnibus (GEO: GSE76381). Further prioritiza-

tion was accomplished by using three gene lists: genes that were

differentially expressed between P7 subset clusters (points ¼ 1);

genes found to be ‘‘specifically’’ expressed in the P7 MB SN cluster

(points¼ 1); and genes found in theWGCNAmodules that are en-

riched for PD gene sets (points ¼ 1). Expression in the SN cluster

was considered the most important feature and was weighted as

such through the use of two complementary datasets with genes

found to be expressed in both receiving priority. Furthermore, a

piece of external data, the probability of being loss-of-function

(LoF) intolerant (pLI) scores for each gene from the ExAC data-

base,39 was added to the scores in order to rank loci that were

left with R2 genes in the loci after the initial scoring. pLI scores

were downloaded March 30, 2017 (fordist_cleaned_exac_r03_

march16_z_pli_rec_null_data.txt).
In Situ Hybridization Data
In situ hybridization data were downloaded from the Allen Insti-

tute through the Allen Brain Atlas (Web Resources). The image

used in Figure 4A was obtained from the Reference Atlas at the Al-

len Brain Atlas. URLs for all Allen Brain Atlas in situ data analyzed

and downloaded for SN marker genes (Figure 4B) are available in

Table S5. Data for SN expression in situ data for PD GWAS genes

(Figure 5B) were obtained from the following experiments:

1056 (Th), 79908848 (Snca), 297 (Crhr1), 74047915 (Atp6v1d),

72129244 (Mmp16), and 414 (Cntn1). Data accessed on 03/02/17.
Single-Molecule In Situ Hybridization (smFISH)
For in situ hybridization experiments, untimed pregnant Swiss

Webster mice were ordered from Charles River Laboratories

(Crl:CFW(SW)). Mice were maintained as previously described.

Pups were considered P0 on the day of birth. At P7, the pups

were decapitated, the brain was quickly removed, and the brain

was then washed in 13 PBS. The intact brain was then transferred

to a vial containing freshly prepared 4% PFA in 13 PBS and incu-

bated at 4�C for 24 hr. After 24 hr, brains were removed from PFA

and washed three times in 13 PBS. The brains were then placed in

a vial with 10% sucrose at 4�C until the brains sunk to the bottom

of the vial (usually �1 hr). After sinking, brains were immediately

placed in a vial containing 30% sucrose at 4�C until once again

sinking to the bottom of the vial (usually overnight). After cryo-

protection, the brains were quickly frozen in optimal cutting

temperature (O.C.T.) compound (Tissue-Tek) on dry ice and stored

at �80�C until use. Brains were sectioned at a thickness of 14 mm

and mounted on Superfrost Plus microscope slides (Fisherbrand,

Cat. # 12-550-15) with two sections per slide. Sections were then

dried at room temperature for at least 30 min and then stored

at �80�C until use.

RNAscope in situ hybridization (Advanced Cell Diagnostics) was

used to detect single RNA transcripts. RNAscope probes were used

to detect Th (C1; Cat No. 317621, Lot: 17073A), Slc6a3 (C2;

Cat No. 315441-C2, Lot: 17044A), Lhx9 (C3; Cat No. 495431-C3,

Lot: 17044A), and Ldb2 (C3; Cat No. 466061-C3, Lot: 17044A).
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The RNAscope Fluorescent Multiplex Detection kit (Cat No.

320851) and the associated protocol provided by the manufac-

turer were used, with slight modifications. Briefly, frozen tissues

were removed from �80�C and equilibrated at room temperature

for 5 min. Slides were then washed at room temperature in

13 PBS for 3 min with agitation, then immediately washed in

100% ethanol by moving the slides up and down 5–10 times.

The slides were then allowed to dry at room temperature and

hydrophobic barriers were drawn using a hydrophobic pen

(ImmEdge Hydrophobic Barrier PAP Pen, Vector Laboratories,

Cat. # H-4000) around the tissue sections. The hydrophobic bar-

rier was allowed to dry overnight. After drying, the tissue sections

were treated with RNAscope Protease IV at room temperature for

30 min and then slides were washed in 13 PBS. Approximately

100 mL of multiplex probe mixtures (C1, Th; C2, Slc6a3; and C3,

one of Lhx9 or Ldb2) containing either approximately 96 mL C1:

2 mL C2: 2 mL C3 (Th:Slc6a3:Lhx9) or 96 mL C1: 0.6 mL C2: 2 mL

C3 (Th:Slc6a3:Ldb2) were applied to appropriate sections. Both

mixtures provided adequate in situ signals. Sections were then

incubated at 40�C for 2 hr in the ACD HybEZ oven. Sections

were then sequentially treated with the RNAscope Multiplex Fluo-

rescent Detection Reagents kit solutions AMP 1-FL, AMP 2-FL,

AMP 3-FL, and AMP 4 Alt B-FL, with washing in between each in-

cubation, according tomanufacturer’s recommendations. Sections

were then treated with DAPI provided with the RNAscope

Multiplex Fluorescent Detection Reagents kit. One drop of Prolong

Gold Antifade Mountant (Invitrogen, Cat # P36930) was then

applied to each section and a coverslip was then placed on the

slide. The slides were then stored in the dark at 4�C overnight

before imaging. Slides were further stored at 4�C throughout imag-

ing. Manufacturer-provided positive and negative controls were

performed alongside experimental probe mixtures according to

manufacturer’s protocols. Four sections that encompassed rele-

vant populations in the P7 ventral MB (SN, ventral tegmental

area [VTA], etc.) were chosen for each combination of RNAscope

smFISH probes and subsequent analyses.
smFISH Confocal Microscopy
RNAscope fluorescent in situ experiments were analyzed using

the Nikon A1 confocal system equipped with a Nikon Eclipse Ti

inverted microscope running Nikon NIS-Elements AR 4.10.01

64-bit software. Images were captured using a Nikon Plan Apo l

603/1.40 oil immersion lens with a common pinhole size of

19.2 mM, a pixel dwell of 28.8 ms, and a pixel resolution of

1,024 3 1,024. DAPI, FITC, Cy3, and Cy5 channels were used to

acquire RNAscope fluorescence. Positive and negative control

slides using probe sets provided by the manufacturer were used

in order to calibrate laser power, offset, and detector sensitivity,

for all channels in all experiments performed.
smFISH Image Analysis and Processing
Confocal images were saved as .nd2 files. Images were then pro-

cessed in ImageJ as follows. First, the .nd2 files were imported

into ImageJ and images were rotated in order to reflect a ventral

midbrain orientation with the ventral side of the tissue at the bot-

tom edge. Next, the LUT ranges were adjusted for the FITC (range:

0–2,500), Cy3 (range: 0–2,500), and Cy5 (range: 0–1,500) chan-

nels. All analyzed images were set to the same LUT ranges. Next,

the channels were split and merged back together to produce a

‘‘composite’’ image. Scale bars were then added. Cells of interest

were then demarcated and duplicated and the channels were split.
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Immunohistochemistry and Quantification of Th

Striatum Staining in Cplx1�/� Mice
Mice (n ¼ 8 Cplx1�/�; n ¼ 3 WT littermates; ages between 4 and

7.5 weeks) were euthanized and their brains fresh-frozen on

powdered dry ice. Brains were sectioned at 35 mm and sections

were mounted onto Superfrost-plus glass slides (VWR Interna-

tional). Sections were peroxidase inactivated, and one in every

ten sections was processed immunohistochemically for tyrosine

hydroxylase. Sections were incubated in primary anti-tyrosine hy-

droxylase antibody (AB152, Millipore) used at 1/2,000 dilution in

1% normal goat serum in phosphate-buffered saline and 0.2%

Triton X-100 overnight at 4�C. Antigens were visualized using a

horseradish peroxidase-conjugated anti-rabbit second antibody

(Vector, PI-1000, 1/2,000 dilution) and by using diaminobenzi-

dine (DAB; Sigma). The slides were stored in the dark (in black slide

boxes) at room temperature (21�C).
Images of stained striatum were taken using a Nikon AZ100 mi-

croscope equipped with a 23 lens (Nikon AZ Plan Fluor, NA 0.2,

WD45), a Nikon DS-Fi2 camera, and NIS-Elements AR 4.5 soft-

ware. Appropriate zoom and light exposure were determined

before imaging and kept constant for all slides and sections.

Density of THþ DAB staining wasmeasured using ImageJ software.

Briefly, images were imported into ImageJ and the backgroundwas

subtracted (default 50 pixels with ‘‘light background’’ selected).

Next, images were converted to 8-bit and the image was inverted.

Five measurements of density were taken for each side of a stria-

tum in a section along with a density measurement from adjacent,

unstained cortex. Striosomes were avoided during measuring

when possible. Striatal measurements had background (defined

as staining in the adjacent cortex in a section) subtracted. The

mean section measurements (intensity/pixels squared) for each

brain were calculated and represented independent measure-

ments of the same brain. Variances were compared between the

WT and KO populations. A two-sample t test was then used to

compare WT versus Cplx1�/� section densities with the following

parameters in R using the ‘‘t.test()’’ function: alternative ¼ ‘‘two-

sided,’’ var.equal ¼ ‘‘T.’’
Results

scRNA-Seq Characterization Defines DA Neuronal

Subpopulation Heterogeneity

In order to characterize DA neuron molecular phenotypes,

we undertook scRNA-seq on cells isolated from distinct

anatomical locations of the mouse brain over develop-

mental time. We used FACS to retrieve single DA neurons

from the Tg(Th-EGFP)DJ76Gsat BAC transgenic mouse

line, which expresses EGFP under the control of the tyro-

sine hydroxylase (Th) locus.40 We microdissected both

midbrain (MB) and forebrain (FB) from E15.5 mice, ex-

tending our analyses to MB, FB, and olfactory bulb (OB)

in P7 mice (Figure 1A). Brains from four and five mice

were pooled for E15.5 and P7, respectively. E15.5 and P7

time points were chosen based on their representation

of stable MB DA populations, either after neuron birth

(E15.5) or between periods of programmed cell death

(P7) (Figure 1A).41

Quality control and outlier analysis identified 396 high-

quality cell transcriptomes to be used in our analyses. We
The Ameri
initially sequenced RNA from 473 single cells to an average

depth of �8 3 105 50-bp paired-end fragments per cell.

Using Monocle 2, we converted normalized expression

estimates into estimates of RNA copies per cell.23 Cells

were filtered based on the distributions of total mass, total

number of mRNAs, and total number of expressed genes

per cell (Figures S1A–S1C; detailed in Material and

Methods). After QC, 410 out of 473 cells were retained.

Using principal component analysis (PCA) as part of the

iterative analysis described below, we identified and

removed 14 outliers determined to be astrocytes, micro-

glia, or oligodendrocytes (Figure S1E; Table S1), leaving

396 cells (�79 cells/time point-region; Figure S1D).

To confirm that our methods can discriminate between

different populations of neurons, we first explored differ-

ences between time points. In order to do this, we identi-

fied genes with highly variable transcriptional profiles

and performed PCA. As anticipated, we observed that the

greatest source of variation was between developmental

ages (Figure 1B). Genes associated with negative PC1 load-

ings (E15.5 cells) were enriched for gene sets consistent

with mitotically active neuronal, undifferentiated precur-

sors (Figure 1C). In contrast, genes associated with positive

PC1 loadings (P7 cells) were enriched for ontology terms

associated with mature, post-mitotic neurons (Figure 1C).

This initial analysis establishes our capacity to discriminate

among biological classes present in our data using PCA as a

foundation.

Recursive Analysis of scRNA-Seq Data Reveals 13 DA Neuron

Subtypes

We set out to identify clusters of single cells within time

points and anatomical regions. Following a workflow

similar to the recently described ‘‘dpFeature’’ procedure,42

we identified highly variable genes and performed PCA

using those gene transcriptional profiles. We selected the

PCs that described the most variance in the data and

used t-SNE24 to further elucidate the relationships between

our cells. We then identified clusters of cells in an unsuper-

vised manner using local Gaussian densities.25 The steps

taken in this analysis were performed in a recursive

manner for both time points across all regions to further

explore heterogeneity (see Material and Methods).

Analysis of all cells revealed E15.5 cells from both MB

and FB cluster together (Figure 1D), supporting the notion

that they are less differentiated. By contrast, cells isolated

at P7 mostly cluster by anatomical region, suggesting pro-

gressive functional divergence with time (Figure 1D). The

recursive analysis performed across all time points and re-

gions revealed a total of 13 clusters (E15.5 FB.1-2, MB.1-2;

P7 OB.1-3, FB.1-2, MB.1-4; Figure 1E), demonstrating the

diversity of DA neuron subtypes and providing a frame-

work upon which to evaluate the biological context of ge-

netic association signals across closely related cell types.

Using known markers, we confirmed that all clusters

expressed high levels of pan-neuronal markers (Snap25,

Eno2, and Syt1) (Figure S2A). By contrast, we observed

scant evidence of astrocyte (Aldh1l1, Slc1a3, Aqp4, and
can Journal of Human Genetics 102, 427–446, March 1, 2018 433



Table 1. Summary of Cell Population Identities

Age Cluster Identity

E15.5 FB.1 forebrain neuroblast

FB.2 post-mitotic forebrain Thþ neurons

MB.1 midbrain neuroblast

MB.2 post-mitotic midbrain DA neuron

P7 FB.1 arcuate nucleus neuroendocrine Thþ neurons

FB.2 mixture of arcuate nucleus Thþ subtypes

MB.1 ventral tegmental area (VTA)

MB.2 postnatal neuroblast

MB.3 periaqueductal gray area (PAG)

MB.4 substantia nigra (SN)

OB.1 least mature Thþ neurons

OB.2 progressively maturing Thþ neurons

OB.3 most mature Thþ neurons

Summary of the identities of cell populations identified through recursive
scRNA-seq analysis of E15.5 and P7 DA neurons. 13 cell populations are
described, each with their age, cell cluster name, and biological identity.
Additional information can be found in Table S3.
Gfap; Figure S2A) or oligodendrocyte markers (Mag, Mog,

and Mbp; Figure S2A), thus confirming we successfully iso-

lated our intended substrate, Thþ neurons.

scRNA-Seq Reveals Biologically and Temporally Discrimi-

nating Transcriptional Signatures

With subpopulationsofDAneuronsdefinedbyourdata,we

set out to assign a biological identity to each cluster. To do

this, we identified differentially expressed genes between

clusters within each time point, then identified marker

genes for each cluster within each time point (see Material

and Methods; Table S2). Since the age of the mice consti-

tuted the greatest source of variation in the data

(Figure 1B), we undertook differential expression analyses

and downstream analyses separately for each time point.

Among the four clusters identified at E15.5, two

were represented in t-SNE space as a single large group

that included cells from both MB and FB (E15.MB.1,

E15.FB.1), leaving two smaller clusters that were comprised

solely of MB or FB cells (Figure S3A). Both E15.MB.1 and

E15.FB.1 showmarkers consistent with neuroblast popula-

tions (Tables 1 and S3). The isolated MB cluster (E15.MB.2;

Figures S3A and S3C) specifically expressed Foxa1, Lmx1a,

Pitx3, and Nr4a2 and thus likely represents a post-mitotic

DA neuron population43 (Tables 1, S2, and S3). Similarly,

the discrete E15.FB.2 cluster expressed markers of post-

mitotic FB/hypothalamic neurons (Figures S3A and S3B),

including Six3, Six3os1, Sst, and Npy (Tables 1, S2, and

S3). These embryonic data did not discriminate between

cells populating known domains of DA neurons, such as

the SN or ventral tegmental area (VTA).

By contrast, P7 cells mostly cluster by anatomical region

and each region has defined subsets (Figures 1D, 1E
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and 2A). Analysis of P7 FB revealed two distinct cell clusters

(Figure 2B). Expression of the neuropeptides Gal and

Ghrh and the Gsx1 transcription factor place P7.FB.1 cells

in the arcuate nucleus (Tables 1, S2, and S3).44–46 The iden-

tity of P7.FB.2, however, was less clear, although subsets of

cells therein did express other arcuate nucleus markers for

Thþ/Ghrh� neuronal populations, e.g., Onecut2, Arx, Prlr,

Slc6a3, and Sst (Figure S3D; Table S3).46 All three identified

OB clusters (Figure 2C) express marker genes of OB DA

neuronal development or survival (Tables S2 and S3;

Figure S3E).47 It has previously been reported that Dcx

expression diminishes with neuronal maturation48 and

Snap25 marks mature neurons.49 We observe that these

OB clusters seem to reflect this continuum of maturation

wherein expression of Dcx diminishes and Snap25

increases with progression from P7.OB1 to OB3

(Figure S3E). This pattern is mirrored by a concomitant in-

crease in OB DA neuron fate specification genes

(Figure S3E).47,50 In addition, we identified four P7 MB

DA subset clusters (Figure 2D). Marker gene analysis

confirmed that three of the clusters correspond to DA

neurons from the VTA (Otx2 and Neurod6; P7.MB.1),51,52

the periaqueductal gray area (PAG; Vip and Pnoc;

P7.MB.3),53,54 and the SN (Sox6, Aldh1a7, Ndnf, Serpine2,

Rbp4, and Fgf20; P7.MB.4)38,51,55,56 (Tables 1, S2, and S3).

These data are consistent with recent scRNA-seq studies

of similar populations.38,57 Through this marker gene

analysis, we successfully assigned a biological identity to

12/13 clusters (Table 1).

Multiplex, smFISH Confirms the Existence of a Putative Post-

natal Neuroblast Population

The only cluster without a readily assigned identity was

P7.MB.2. This population of P7 MB DA neurons, P7.MB.2

(Figure 2D), is likely a neuroblast-like population based

onmarker gene analysis (Tables 1 and S3). Like the overlap-

ping E15.MB.1 and E15.FB.1 clusters (Figure S3A), this clus-

ter preferentially expresses markers of neuronal precursors/

differentiation/maturation (Table S3). In addition to

sharing markers with the neuroblast-like E15.MB.1 cluster,

P7.MB.2 exhibits gene expression consistent with embry-

onic mouse neuroblast populations38 as well as cell divi-

sion and neuron development58–62 (Tables S2 and S3).

Consistent with the hypothesis, this population displayed

lower levels of both Th and Slc6a3, markers of mature DA

neurons, than the terminally differentiated and phenotyp-

ically discrete P7 MB DA neuron populations of the VTA,

SN, and PAG (Figure 3A).

With this hypothesis in mind, we sought to ascertain

the spatial distribution of P7.MB.2 DA neurons through

multiplex, smFISH for Th (pan-P7 MB DA neurons),

Slc6a3 (P7.MB.1, P7.MB.3, P7.MB.4), and one of the

neuroblast marker genes identified through our analysis,

either Lhx9 or Ldb2 (P7.MB.2) (Figure 3A). In each

experiment, we scanned the ventral midbrain for cells

that were Thþ/Slc6a3� and positive for the third gene.

Thþ/Slc6a3�/Lhx9þ cells were found scattered in the dorsal

SN pars compacta (SNpc) along with cells expressing Lhx9
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Figure 2. Subclusters of P7 Thþ Neurons Are Identified Based on Marker Gene Analyses
(A) A t-SNE plot of all P7 neurons collected colored by subset cluster identity. The neurons mostly cluster by regional identity.
(B) t-SNE plot of P7 FB neurons. P7 FB neurons cluster into two distinct populations.
(C) t-SNE plot of P7 OB neurons. P7 OB neurons cluster into three populations. These populations represent a trajectory of ThþOBmatu-
ration (Table S3) as indicated by the red arrow.
(D) A t-SNE plot of P7 MB neurons. P7 MB neurons cluster into four clusters: the substantia nigra (SN), the ventral tegmental area (VTA),
the periaqueductal gray area (PAG), and a neuroblast-like population.
alone (Figures 3B and 3D). Expression of Ldb2was found to

have a similar pattern to Lhx9, with Thþ/Slc6a3�/Ldb2þ

cells found in the dorsal SNpc (Figures 3C and 3D).

Expression of Lhx9 and Ldb2 was low or non-existent in

Thþ/Slc6a3þ cells in the SNpc (Figures 3B and 3C). Impor-

tantly, cells expressing these markers express Th at lower

levels than Thþ/Slc6a3þ neurons (Figures 3B and 3C),

consistent with our scRNA-seq data (Figure 3A). Thus,

with the resolution of the spatial distribution of this neuro-

blast-like P7 MB DA population, we assign biological iden-

tity to each defined brain DA subpopulation (Table 1).

SN-Specific Transcriptional Profiles and GRNs Highlight Its

Association with PD

Overall, our analyses allowed us to successfully separate

and identify 13 brain DA neuronal populations present

at E15.5 and P7, including SN DA neurons (Table 1). Moti-

vated by the clinical relevance of SN DA neurons to PD, we

set out to understand what makes them transcriptionally

distinct from the other MB DA neuron populations.

In order to look broadly at neuronal subtypes, we evalu-

ated expression of canonical markers of other neuronal

subtypes in our Thþ neuron subpopulations. We noted

that Th and EGFP were inconsistently detected in some

E15.5 clusters (Figure S4A). This likely reflects lower Th

transcript abundance at this developmental state, but suf-

ficient expression of the EGFP reporter to permit FACS

collection (Figure S4B). The expression of other DA

markers, Ddc and Slc18a2, mirror Th expression, while

Slc6a3 expression is more spatially and temporally

restricted (Figure S4A). The SN cluster displays robust

expression of all explored canonical DA markers

(Figure S4A). Multiple studies have demonstrated that

Thþ neurons may also express markers characteristic

of other major neuronal subtypes.63–65 We found

that all but the SN and PAG showed expression of

either GABAergic (Gad1/Gad2/Slc32a1) or glutamatergic

(Slc17a6) markers (Figure S4A). This neurotransmitter

specificity may represent a valuable avenue for exploring

the preferential vulnerability of the SN in PD.
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Next, we postulated that genes whose expression

defined the P7 SN DA neuron cluster might illuminate

their preferential vulnerability in PD. We identified 110

SN-specific genes, by first finding all differentially ex-

pressed genes between P7 subset clusters and then using

the Jensen-Shannon distance to identify cluster specific

genes (see Material and Methods; Table S2). Prior reports

confirm the expression of 49 of the 110 SN-specific genes

(�45%) in postnatal SN (Table S4). We then sought evi-

dence to confirm or exclude SN expression for the remain-

ing 61 genes (55%). Of these, 25/61 (�41%) were detected

in the adult SN by in situ hybridization (ISH) of coronal

sections in adult (P56) mice (Allen Brain Atlas, ABA),

including Col25a1, Fam184a, Ankrd34b,Nwd2, and Cadps2

(Figures 4A and 4B; Table S5). Only 4/61 genes, for which

ISH data existed in the ABA, lacked clear evidence of

expression in the adult SN (Table S5). The ABA lacked

coronal ISH data on 32/61 genes, so we were unable to

confirm their presence in the SN. Collectively, we identi-

fied 110 postnatal SN DA marker genes and confirmed

the expression of those genes in the adult rodent SN for

74 (67%) of them, including 25 previously uncharacterized

markers of this clinically relevant cell population.

We next asked whether we could identify significant

relationships between cells defined as being P7 SN DA

neurons and distinctive transcriptional signatures in our

data. In order to do this, we performed weighted gene

co-expression network analysis (WGCNA).32,33 WGCNA

learns modules of genes with similar expression patterns

across individual cells. By using expression data for all

expressed genes in our P7 DA neuron dataset, we identify

16 co-expressed gene modules (Figure S5; Table S6).

By calculating pairwise correlations between modules

and P7 subset cluster identity, we reveal that 7/16 mod-

ules are significantly and positively correlated (Bonferroni

corrected p < 3.5 3 10�4) with at least one subset cluster

(Figure 4C). We graphically represented the eigenvalues

for each module in each cell in P7 t-SNE space, confirming

that a majority of these significant modules (6/7), except
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Figure 3. Multiplex, smFISH Confirms the Existence of a Putative Postnatal Neuroblast Population
(A) Boxplots displaying the expression of four genes (Th, Slc6a3, Lhx9, and Ldb2) across all subclusters identified. E15.MB.1 and P7.MB.2
labels are bold due to similar expression profile of displayed genes (Tables S2 and S3). 51.53 interquartile range is represented by the
whiskers on the boxplots. Data points beyond 1.53 interquartile range are considered as outliers and plotted as black points.
(B) Representative image of multiplex single molecule fluorescent in situ hybridization (smFISH) for Th, Slc6a3, and Lhx9 in the mouse
ventral midbrain. Zoomed-in panels represent cell populations observed. Scale bar, 50 mm.
(C) Representative image of multiplex smFISH for Th, Slc6a3, and Ldb2, in the mouse ventral midbrain. Zoomed-in panels represent cell
populations observed. Scale bar, 50 mm.
(D) Diagram of ventral midbrain summarizing the results of smFISH. Thþ/Slc6a3�/Lhx9þ and Thþ/Slc6a3�/Ldb2þ cells are both found in
the dorsal SN.
Abbreviations: NB, neuroblast; SN, substantia nigra; VTA, ventral tegmental area; IPN, interpeduncular nucleus.
for ‘‘lightcyan,’’ displayed robust spatial, isotype enrich-

ment (Figure 4D).

In order to identify the biological relevance of these

modules, each module was tested for enrichment for

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways, Gene Ontology (GO) gene sets, and Reactome

gene sets. Two modules, the ‘‘brown’’ and ‘‘green’’ mod-

ules, were significantly associated with the Parkinson dis-

ease KEGG pathway gene set (Figure 4C; Table S7). Interest-

ingly, the ‘‘brown’’ module was also significantly correlated

with the P7 VTA population (P7.MB.1) and enriched for

addiction gene sets (Table S7), highlighting the link be-

tween VTA DA neurons and addiction.66 Strikingly, only

the P7 SN cluster was significantly correlated with both

PD-enriched modules (Figure 4C). This specific correlation

suggests that these gene modules may play a role in the

preferential susceptibility of the SN in PD.

Integrating SN DA Neuron-Specific Data Enables Prioritiza-

tion of Genes within PD-Associated Intervals

With these context-specific data in hand, we posited that

SN DA neuron-specific genes and the broader gene co-

expression networks that correlate with SN DA neurons

might be used to prioritize genes that may be affected by
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disease-associated variation within PD GWAS loci. Such a

strategy would be agnostic to prior biological evidence

and independent of genic position relative to the lead

SNP, the traditional method used to prioritize causative

genes.

To investigate pertinent genes within PD GWAS loci, we

identified all human genes within topologically associated

domains (TADs) and 2-megabase (Mb) intervals encom-

passing each PD-associated lead SNP. TADs were chosen

because regulatory DNA impacted by GWAS variation is

more likely to act on genes within their own TAD.67 While

topological data do not exist for SN DA neurons, we used

TAD boundaries from hESCs as a proxy, as TADs are gener-

ally conserved across cell types.35 To improve our analyses,

we also selected 51 Mb intervals around each lead SNP,

thus including the upper bounds of reported enhancer-

promoter interactions.68,69 All PDGWAS SNPs interrogated

were identified by the most recent meta-analyses (49 SNPs

in total),10,11 implicating a total of 1,751 unique genes

(both protein coding and non-coding; Table S8). We then

identified corresponding one-to-one mouse to human

homologs (1,009/1,751; �58%), primarily through the

Mouse Genome Informatics (MGI) homology database.
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Figure 4. Genetic Markers and Gene Modules Reveal Context-Specific SN DA Biology
(A) Reference Atlas diagram from the Allen Brain Atlas (ABA) of the P56 mouse ventral midbrain. Important abbreviations include: VTA,
ventral tegmental area; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata.
(B) Confirmation of SN DA neuronmarker genes through the use of ABA in situ hybridization data. Coronal, P56 mouse in situ data were
explored in order to confirm the expression of 25 previously uncharacterized SN markers. Th expression in P56 mice was used as an
anatomical reference during analysis.
(C) Correlation heatmap of the Pearson correlation between module eigengenes and P7 Thþ subset cluster identity. Modules are
represented by their assigned colors at the bottom of the matrix. Modules that had a positive correlation with a subset cluster and
had a correlation p value less than the Bonferroni corrected significance level (p < 3.5 3 10�4) contain an asterisk. SN cluster
(P7.MB.4) identity is denoted by a black rectangle. Modules (‘‘green’’ and ‘‘brown’’) that were enriched for the ‘‘Parkinson’s Disease’’
KEGG gene set are labeled with ‘‘PD.’’
(D) The eigengene value for each P7 neuron in the sevenWGCNAmodules shown to be significantly positively associated with a subset
cluster overlaid on the t-SNE plot of all P7 neurons (Figure 2A). Plotting of eigengenes confirms strict spatial restriction of module
association. Only the ‘‘lightcyan’’ module does not seem to show robust spatial restriction.
To prioritize these genes in GWAS loci, we developed a

gene-centric score that integrates our data as well as data

in the public domain. We began by intersecting the PD

loci genes with our scRNA-seq data as well as previously

published SN DA expression data,38 identifying 430 genes

(430/1,009; �43%) with direct evidence of expression

in SN DA neurons in at least one dataset. These 49 PD

loci are significantly enriched for genes expressed in

SN DA neurons when compared to randomly selected

GWAS loci (Figure S6A). Each PD-associated interval con-

tained R1 of those SN-expressed genes (Table S8); this is

more than what is expected from 49 random GWAS loci

(Figure S6B). Emphasizing the need for a novel, systematic

strategy, in 20/49 GWA intervals (�41%), the most prox-

imal gene to the lead SNP was not detectably expressed
The Ameri
in mouse SN DA neuron populations (Tables S8 and S9).

Three loci contained only one SN DA-expressed gene:

Mmp16 (rs60298754 locus, Figure 5A), Tsnax (rs10797576

locus), and Satb1 (rs4073221 locus). The number of PD

loci with only one gene expressed is slightly less than ex-

pected from 49 random GWAS loci (Figure S6C). The rele-

vance of these candidate genes to neuronal function/

dysfunction is well supported.70–73 This establishes gene

expression in a relevant tissue as a powerful tool in the

identification of genes impacted by disease variation.

In order to prioritize likely disease-associated genes in

the remaining 46 loci, we scored genes on three criteria:

whether genes were identified as specific markers for

the P7.MB.4 (SN) cluster (Table S2), whether the genes

were differentially expressed between all P7 DA neuron
can Journal of Human Genetics 102, 427–446, March 1, 2018 437



Figure 5. Context-Specific SN DA Data Allow for the Prioritization of Genes in PD GWAS Loci
(A) A locus plot displaying 4-megabase regions in the human genome (hg38) centered on PD GWAS SNPs in six loci. Genes are displayed
as boxes on their appropriate strand. Genes are shaded by their prioritization score and gene names are displayed for genes with a score of
3 or higher in each locus.

(legend continued on next page)
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populations, and whether the genes were included in PD

gene set enriched and SN-correlated gene modules uncov-

ered in WGCNA (Table S6). This strategy facilitated further

prioritization of a single gene in 21 additional loci

including the rs356182 (SNCA), rs76904798 (PDZRN4),

and rs11158026 (GCH1) loci (Figure 5A; Tables 2 and S9).

Importantly, using this approach we indict the gene impli-

cated in familial PD alpha-synuclein (SNCA) as responsible

for the observed PD association with rs356182 (Figure 5A;

Tables 2 and S9). Thus, by using context-specific data

alone, we were able to prioritize a single candidate gene

in roughly half (24/49,�49%) of PD-GWAS associated loci.

Furthermore, at loci in which a single gene did not

emerge, we identified dosage-sensitive genes by consid-

ering the probability of being loss-of-function (LoF) intol-

erant (pLI) metric from the ExAC database.39,74 Since

most GWAS variation is predicted to impact regulatory

DNA and in turn impact gene expression, it follows that

genes in GWAS loci that are more sensitive to dosage

levels may be more likely to be candidate genes. With

that in mind, the pLI for each gene was used to further

‘‘rank’’ the genes within loci where a single gene was not

prioritized. For those loci, including rs17649553 and

rs8118008 loci (Figure 5A), we report a group of top-

scoring candidate genes (Tables 2 and S9). Expression of

prioritized genes in the adult SN adds to the validity of

the genes identified as possible candidates (Figure 5B).

Two particularly interesting examples that emerge from

this scoring are found at the rs17649553 and rs34311866

loci. The rs17649553 locus contains MAPT, which has pre-

viously been implicated in multiple neurodegenerative

phenotypes, including PD (MIM: 168600). We instead

prioritize CRHR1 and NSF before it (Table 2). We detect

Mapt and Nsf expression consistently across all assayed

DA neurons (Figure 5C). By contrast, expression of Crhr1,

encoding the corticotropin releasing hormone receptor 1,

is restricted to P7 DA neurons in the SN and the more

mature OB neuronal populations (Figure 5C). Similarly,

at the rs34311866 locus, our data show that although all

three proximal genes are expressed in the SN (TMEM175,

GAK, DGKQ), the adjacent CPLX1 was one of the priori-

tized genes (Tables 2 and S9).

There are multiple lines of evidence that strengthen

CPLX1 as a candidate. Expression of CPLX1 is elevated in

the brains of individuals with PD and Cplx1 is elevated
(B) In situ hybridization from the Allen Brain Atlas (ABA) of five priorit
mouse in situ data were used.
(C) Boxplots displaying expression of prioritized genes from the MA
sented by the whiskers on the boxplots. Data points beyond 1.53 i
points.
(D) Representative light microscopy images of Thþ innervation densi
1 mm.
(E) Boxplots comparing the level of Thþ striatum innervation betwee
35 mm, horizontal sections inWTmice (mice¼ 3, sections¼ 16) and C
represents the average signal from a stained, 35 mmsection. Statistical
in order to preserve observed variability (WT n ¼ 16, Cplx1 KO n ¼ 4
significantly lower in Cplx1 KOmice (t¼ 6.4395, df¼ 54, p¼ 3.3863
by the whiskers on the boxplots, are considered as outliers and plott
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in the brains of mice overexpressing SNCA with a

familial PD mutation, c.157G>A (p.Ala53Thr) (GenBank:

NM_000345.3).75,76 Additionally, mice deficient in Cplx1

display an early-onset, cerebellar ataxia along with pro-

longed motor and behavioral phenotypes.14,15 However,

the impact of Cplx1 deficiency on the integrity of the

nigrostriatal pathway, to date, has not been explored.

In order to confirm CPLX1 as a candidate, we performed

immunohistochemistry (IHC) for Th in the Cplx1

knockout mouse model (Tables S10 and S11).14,15,77 We

measured the density of Thþ innervation in the striatum

of Cplx1�/� mice and controls (Figure 5D, Table S10)

and found that Cplx1�/� mice had significantly lower

Thþ staining in the striatum (p value ¼ 3.385 3 10�8;

Figure 5E). This indicates that Cplx1 KO mice have less

Thþ fiber innervation and a compromised nigrostriatal

pathway, supporting its biological significance in MB DA

populations and to PD.
Discussion

Midbrain DA neurons in the SN have been the subject of

intense research since being definitively linked to PD

nearly 100 years ago.78 While degeneration of SN DA neu-

rons in PD is well established, they represent only a subset

of brain DA populations. It remains unknown why nigral

DA neurons are particularly vulnerable. We set out to

explore this question using scRNA-seq. Recently, others

have used scRNA-seq to characterize the mouse MB,

including DA neurons.38 Here, we extend these data signif-

icantly, extensively characterizing the transcriptomes of

multiple brain DA populations longitudinally and discov-

ering GRNs associated with specific populations.
A Postnatal MB Thþ Cell Type Is a Putative Progenitor-

like MB DA Neuron

Our analysis of embryonic and postnatal MB Thþ neurons

revealed a population of neurons, present at both embry-

onic and postnatal time points (E15.MB.1 and P7.MB.2),

that share expressed genes indicative of MB DA neuron

progenitors. While progenitor cell populations in the

ventral MB have been previously characterized at embry-

onic time points,38 the existence of a postnatal MB progen-

itor neuron population has not been noted in previous
ized genes alongwith Th for an anatomical reference. Coronal, P56

PT locus (Figure 5A; Table 2). 51.53 interquartile range is repre-
nterquartile range are considered as outliers and plotted as black

ty in the striatum of WT and Cplx1 knockout (KO) mice. Scale bar,

n WT and Cplx1 KO mice. DAB staining density was measured in
plx1 KOmice (mice¼ 8, sections¼ 40). Each point in the boxplot
analyses were performed between conditions with section averages
0). A two-sample t test revealed that Thþ innervation density was
10�8). Data points outside of 1.53 interquartile range, represented
ed as black points.
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Table 2. Summary of the Systematic Scoring of Genes in 49 GWAS Loci Associated with PD

Lead SNP Top Candidate Genes Prioritized by

rs6430538 UBXN4;CCNT2;R3HDM1;RAB3GAP1 SN expression; pLI

rs14235 MAPK3;VKORC1; BOLA2B SN expression; differential expression; pLI

rs11724635 CPEB2 SN expression; differential expression

rs11060180 ARL6IP4 SN expression; differential expression

rs8118008 ATRN; NOP56; MRPS26; C20orf27;IDH3B SN expression; differential expression; pLI

rs3793947 DLG2;CCDC90B SN expression; differential expression; pLI

rs6812193 G3BP2;CCNI;CDKL2 SN expression; differential expression; pLI

rs591323 FGF20; ZDHHC2; TUSC3; MICU3; MTMR7 SN expression; differential expression; SN specific; pLI

rs35749011 KCNN3 SN expression; differential expression; SN specific; WGCNA module

rs11158026 GCH1 SN expression; differential expression; SN specific; WGCNA module

rs199347 RAPGEF5 SN expression; differential expression

rs9275326 ATP6V1G2 SN expression; differential expression; WGCNA module

rs117896735 PRDX3;NANOS1;INPP5F;SFXN4 SN expression; differential expression; pLI

rs7077361 FAM171A1 SN expression; differential expression

rs115185635 CHMP2B SN expression; differential expression

rs76904798 PDZRN4 SN expression; differential expression; WGCNA module

rs17649553 CRHR1; NSF; MAPT SN expression; differential expression; pLI

rs12637471 DCUN1D1; ABCC5; PARL SN expression; pLI

rs329648 OPCML SN expression; differential expression

rs60298754 MMP16 SN expression

rs34016896 B3GALNT1 SN expression; differential expression

rs823118 LRRN2; KLHDC8A; SRGAP2 SN expression; differential expression; pLI

rs12456492 RIT2;SYT4 SN expression; differential expression; pLI

rs10797576 TSNAX SN expression

rs356182 SNCA SN expression; differential expression; WGCNA module

rs62120679 UQCR11 SN expression; differential expression; WGCNA module

rs11868035 COPS3; NT5M SN expression; differential expression; pLI

rs1474055 STK39;B3GALT1 SN expression; differential expression; pLI

rs34311866 MAEA; CPLX1; ATP5I; TMEM175 SN expression; differential expression; WGCNA module; pLI

rs1555399 VTI1B; ATP6V1D SN expression; differential expression; pLI

rs2823357 HSPA13 SN expression

rs2414739 TLN2; RORA SN expression; pLI

rs143918452 NISCH; PCBP4; SPCS1; SMIM4 SN expression; differential expression; pLI

rs78738012 ANK2; CAMK2D SN expression; differential expression; pLI

rs601999 DNAJC7; ATP6V0A1; ACLY; PSME3; CNP;
RPL27; VAT1; COA3; HAP1

SN expression; differential expression; pLI

rs11343 SYT17 SN expression; differential expression; WGCNA module

rs2740594 FAM167A SN expression; differential expression; SN specific; WGCNA module

rs2694528 NDUFAF2 SN expression

rs10906923 FAM171A1 SN expression; differential expression

rs8005172 ZC3H14 SN expression

(Continued on next page)
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Table 2. Continued

Lead SNP Top Candidate Genes Prioritized by

rs34043159 RPL31; CREG2 SN expression; differential expression; pLI

rs4653767 SRP9; PSEN2; PARP1 SN expression; pLI

rs12497850 SMARCC1; PRKAR2A; RHOA; NICN1; UQCRC1;
APEH; TCTA; TMA7; GPX1; IMPDH2; QARS;
SHISA5; WDR6

SN expression; differential expression; pLI

rs4073221 SATB1 SN expression

rs353116 SCN3A; CSRNP3 SN expression; differential expression; pLI

rs13294100 BNC2 SN expression; differential expression; SN specific; WGCNA module

rs2280104 CHMP7; DMTN SN expression; differential expression; pLI

rs4784227 TOX3; AKTIP SN expression; differential expression; WGCNA module; pLI

rs9468199 ZSCAN26 SN expression

Scoring was carried out at described in the Results and Material and Methods. Candidate genes are presented for each of 49 PD GWAS loci analyzed. Information
for each PD GWAS locus is presented including the lead SNP for each locus, the prioritized genes in each locus, and which data prioritized the top genes. Detailed
scoring for each gene can be found in Table S9.
single-cell studies.38,57 Notably, previous studies character-

ized postnatal neurons marked by transgenes under Slc6a3

regulatory control. Given that we demonstrate this marker

to be absent from P7.MB.2 cluster, it follows that this pop-

ulation would likely have been overlooked. By contrast,

our use of Th left this population available for discovery.

We show through smFISH that specific markers for this

population place it in the dorsal portion of the SN at P7.

One may speculate regarding the function of a postnatal

MB progenitor population. While beyond the scope of this

paper, some clues may be found in the literature about Thþ

neuron development. Studies of SN DA neuron develop-

ment inmice have shown that there are two periods of pro-

grammed cell death, with peak apoptosis occurring at P2

and P14 (Figure 1A).79 Paradoxically, even though there

are high levels of cell death at these points, the actual num-

ber of Thþ neurons in the mouse SN does not decrease.79,80

It has been shown that this can be explained by increasing

levels of Th in cells over time, leading to ‘‘new’’ neurons ap-

pearing that are able to be immunostained.79 These results

have led to the suggestion that there is a ‘‘phenotypic

maturation’’ of MB DA neurons during the early postnatal

time period.79 This phenomenon may explain the pres-

ence of our ‘‘progenitor-like’’ MB DA neurons at P7, which

display much lower levels of Th than other populations.

Prioritization of Genes within PD GWAS Loci Identifies

Genes that May Contribute to Common PD

Susceptibility

Our data facilitate the iterative and biologically informed

prioritization of gene candidates for all PD-associated

genomic intervals. In practice, the gene closest to the

lead SNP identified within a GWAS locus is frequently

treated as the prime candidate gene, often without consid-

ering tissue-dependent context. Our study overcomes this

by integrating genomic data derived from specific cell con-

texts with analyses that are agnostic to one another. We
The Ameri
posit that genes pertinent to PD are likely expressed within

SN DA neurons. This hypothesis is consistent with the

recent description of the ‘‘omnigenic’’ nature of common

disease, wherein variation impacting genes expressed in a

disease tissue explain the vast majority of risk.7

First, we identify intervals that reveal one primary candi-

date, i.e., those that harbor only one SN-expressed gene.

Next, we examine those intervals with many candidates

and prioritize based on a cumulative body of biological

evidence. In total, we prioritize 5 or fewer candidates in

47/49 (�96%) PD GWAS loci studied, identifying a single

gene in 24 loci (24/49; �49%) and 3 or fewer genes in

�84% of loci (41/49). Ultimately this prioritization reduces

the candidate gene list for PD GWAS loci dramatically from

1,751 genes to 112 genes.

The top genes we identify in three PD loci (rs356182,

SNCA; rs591323, FGF20; rs11158026, GCH1) have been

directly associated with PD, MB DA development, and

MB DA function56 (MIM: 163890, 128230). Furthermore,

our prioritization of CPLX1 in the rs34311866 locus is

supported by multiple lines of evidence. Additionally, we

demonstrate that the integrity of the nigrostriatal pathway

is disrupted in Cplx1 knockout mice. Dysregulation of

CPLX1 RNA is also a biomarker in individuals with pre-

PD prodromal phenotypes harboring the PARK4 muta-

tion (SNCA gene duplication).81 These results validate our

approach and strengthen the argument for the use of

context-specific data in pinpointing candidate genes in

GWAS loci.

In light of the recently described ‘‘omnigenic’’ hypothe-

sis of complex traits, we anticipate that risk variants may

impact common cellular pathways within this primary

impacted cell population. Consistent with this, many of

the genes prioritized (Table 2) have been shown to impact

mitochondrial biology,82–86 the dysfunction of which has

been extensively implicated in PD.87 The prioritized genes

may represent ‘‘core’’ genes that in turn can affect the
can Journal of Human Genetics 102, 427–446, March 1, 2018 441



larger mitochondrial-associated regulatory networks active

in the disease-relevant cell type (SN DA neurons). One

such gene we identify is PARL (presenilin-associated rhom-

boid like). PARL encodes a protease that cleaves PINK1,

which has been implicated in PD pathology.88–90 Further,

recently a variant in PARL has been associated, but not

definitively linked, with early-onset PD (MIM: 607858).

While our method successfully prioritized one gene with

a known role in familial PD (SNCA), we do not prioritize

LRRK2, another familial PD-associated gene harbored

within a PD GWAS locus (rs76904798 locus). LRRK2 is

not prioritized simply because it is not detectably ex-

pressed in our SN DA neuronal population. This is ex-

pected as numerous studies have reported little to no

LRRK2 expression in Thþ MB DA neurons both in mice

and humans.91,92 Instead, our method prioritizes PDZRN4.

This result does not necessarily argue against the potential

relevance of LRRK2 but instead provides an additional

candidate that may contribute to PD susceptibility.

Further, we acknowledge that our focus on SN neurons

risks overlooking variants whose immediate functional

context lies in other cells, yielding non-cell-autonomous

influence on the SN (see discussion below). This same

logic should be noted for two other PD-associated loci

(rs35749011 and rs17649553), wherein our scoring priori-

tizes different genes (KCNN3 and CRHR1/NSF, respectively)

than one previously implicated in PD (GBA and MAPT)

(MIM: 168600). Notably, KCNN3, CRHR1, and NSF all

have previous biological evidence making them plausible

candidates.93–95

Comparison of PD Gene Prioritization Schemes

Studying disease-relevant tissue has proven to be essential

for elucidating the genetic architecture underlying GWA

signals;2 our scoring method relies upon data from the

most overtly relevant cell type to PD, SN DA neurons.

While this study was under consideration for publication,

Chang and colleagues11 endeavored to prioritize PD GWAS

loci using publically available data. Although their pipe-

line strives to be ‘‘neuro-centric,’’ it is not predicated on

the biological relevance of candidates to SN DA neurons.

Through comparison of the two scoring paradigms, the

methods agree on at least one gene in 17/44 (�39%)

jointly scored loci, including SNCA (Table S12), bolstering

the evidence for those candidate genes. However, we see

�44% (31/71) of the genes prioritized by Chang et al.11

are not expressed in either of the SN DA expression data-

sets used in our scoring scheme (Table S12), including

LRRK2 (addressed above). One prime example of this

discrepancy is the rs12637471 locus. Chang et al.11 iden-

tify MCCC1 to be the prime candidate in the locus. How-

ever, we find that MCCC1 is not expressed in SN DA neu-

rons (Table S8). Instead, we prioritize PARL, which has

an established role in a PD pathogenesis pathway.88,89

Our focus on disease-relevant cell type data also leads us

to identify genes previously implicated in neurodegenera-

tion, which make obvious candidates. As described, in the
442 The American Journal of Human Genetics 102, 427–446, March
rs34311866 locus, we identify CPLX1 and functionally

confirm its relevance. We also identify ATRN (attractin)

in the rs8118008 locus. Loss of Atrn has been shown to

cause age-related neurodegeneration of SN DA neurons

in rats,96,97 making it an ideal candidate. Neither gene is

identified using other metrics11 (Table S12).

Despite this success, we acknowledge several notable

caveats. First, not all genes in PD-associated human loci

have identified mouse homologs via the MGI homology

database used. The majority of genes without identified

mouse homologs are classified as non-coding genes which

include microRNAs (miRNAs), long non-coding RNAs

(lncRNAs), and pseudogenes (Figure S7). Thus, it remains

possible that we may have overlooked the contribution

of some human non-coding genes whose biology cannot

be comprehensively queried in this study.

Second, we assume that identified genetic variation acts

in a manner that is at least preferential, if not exclusive,

to SN DA neurons. It is possible that genetic variation

contributing to risk of PDmay be acting in other cell types.

While SN DA neurons are primarily affected in PD, other

cell types, especially microglia and astrocytes, have been

shown to play a role in PD.98,99 In addition, both of these

cell types have been implicated in PD through the process

of neuroinflammation.98,99 Intriguingly, PD-causing muta-

tions in LRRK2 have been shown to affect microglia and

play a role in neuroinflammation.100 The expression and

function of LRRK2 in microglia instead of SN DA neurons

could be another explanation as to why LRRK2 is not prior-

itized in our scoring system. While out of the scope of this

paper, future work will be needed to assess whether glial

transcriptional landscapes or genes modulated by neuroin-

flammation could explain some genetic signals underlying

sporadic PD.

These caveats notwithstanding, our strategy sets the stage

for a new generation of independent and combinatorial

functional evaluation of gene candidates for PD-associated

genomic intervals. Emerging studies, including ours,

highlight the need for strategies that can systematically

identify biologically pertinent gene candidates. Such strate-

gies are necessary for the community to take full advantage

of the immense body of GWAS data now in the public

domain.Wedemonstrate thepotential powerof integrating

scRNA-seqdata fromdisease-relevantpopulations to illumi-

nate corresponding GWASs and facilitate systematic priori-

tization and testing of gene candidates within risk loci.
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Supplemental Figures 
 
Figure S1. Quality control used for filtering single-cell RNA-seq data that led to a total dataset 
comprised of 396 cells 
 

 
 
 
 

Figure S1. Quality control used for filtering single-cell RNA-seq data that led to a total dataset 
comprised of 396 cells. A) Histogram showing the final distribution of the number of genes 
expressed per cell (n cells = 396). B) Histogram showing the final distribution of the total mRNA 
per cell (n cells = 396). C) Histogram showing the final distribution of the total mass (fragments 



mapped to the transcriptome) per cell (n cells = 396). D) Barplot showing the number of cells in 
each timepoint-region. There was a mean of 79 cells/timepoint region. E) Principal component 
analysis (PCA) plots from the iterative analyses performed on P7 FB, P7 OB, and P7 MB cell 
populations. Initial analyses in these timepoint-regions revealed outliers that were subsequently 
removed. 



Figure S2. Expression of various marker genes confirms successful isolation of neurons 
 

 
 
Figure S2. Expression of various marker genes confirms successful isolation of neurons. 
Included are boxplots showing the expression of pan-neuronal, pan-astrocyte, and pan-
oligodendrocyte marker in all 13 subpopulations. All subpopulations show robust expression of 
pan-neuronal markers. +/- 1.5x interquartile range is represented by the whiskers on the boxplots. 
Data points beyond 1.5x interquartile range are considered as outliers and plotted as black points.  
  



Figure S3. Clusters of Th+ neurons are discovered through iterative, marker gene analysis. 
 
 

 
 
Figure S3. Clusters of Th+ neurons are discovered through iterative, marker gene analysis. A) t-
SNE plots of all E15.5 cells colored by regional identity and subset cluster assignment. B) t-SNE 
plot of FB E15.5 cells colored by subset cluster assignment. E15.5 FB cells cluster in two 
distinct populations. C)  t-SNE plot of MB E15.5 cells colored by subset cluster assignment. 
E15.5 MB cells cluster in two distinct populations. D) Boxplots showing the expression of 
markers used to identify the P7.FB.2 cluster (Table S3). +/- 1.5x interquartile range is 
represented by the whiskers on the boxplots. Data points beyond 1.5x interquartile range are 
considered as outliers and plotted as black points. E) Boxplots showing the expression of 
markers used to identify P7 olfactory bulb clusters (Table S3). +/- 1.5x interquartile range is 



represented by the whiskers on the boxplots. Data points beyond 1.5x interquartile range are 
considered as outliers and plotted as black points. 
  



Figure S4. Expression of various marker genes confirms successful isolation of Th+ neurons 
 
 

 
 
Figure S4. Expression of various marker genes confirms successful isolation of Th+ neurons.  A) 
Boxplots showing the expression of markers for dopaminergic (DA), GABAergic, or 
glutamatergic neurons. +/- 1.5x interquartile range is represented by the whiskers on the 
boxplots. Data points beyond 1.5x interquartile range are considered as outliers and plotted as 
black points. B) Representative example of fluorescence activated cell sorting (FACS) plot used 
to isolate E15.5 MB EGFP+ cells. EGFP fluorescence levels are represented on the x-axis and 
RFP fluorescence levels are represented on the y-axis. Cells were collected that fell within the 
area outlined in green. 
  



Figure S5. WGCNA analysis reveals 16 modules in P7 scRNA-seq data 
 
 

 
 
Figure S5. WGCNA analysis reveals 16 modules in P7 scRNA-seq data. A) A dendrogram of 
showing the relationship of P7 cells (n = 223) based on expressed genes. The cells are annotated 
by regional identity. B) Scale independence plot showing the scale free topology model fit for 
different levels of soft threshold power. This plot was used to determine the soft threshold that 
would be used for the rest of the analysis (soft threshold = 10). C) Hierarchical clustering shows 
the relationship between identified WGCNA modules. 
  



Figure S6. Results from simulations involving National Human Genome Research Institute 
(NHGRI) - European Bioinformatics Institute (EBI) GWAS catalog loci. 
 

 
 
Figure S6. Results from simulations involving NHGRI-EBI GWAS catalog loci. Simulations 
were performed using all loci downloaded from the NHGRI-EBI GWAS catalog on November 
27, 2017 (Web Resources). Only genes with a defined mouse homolog were included in the 
simulations. Simulations were performed using custom R scripts. Note that genes included in the 
simulations are those found within +/- 1 Mb of the lead SNP. A) Histogram showing the 
percentage of genes in 49 random GWAS loci that are expressed in SN DA neurons, simulated 
10,000 times. This simulation showed that the percentage of genes expressed in SN DA neurons 
from PD GWAS loci (430/1009, ~43%; vertical red line) was significantly higher than what is 
expected from random 49 GWAS loci (one-tailed test applied to a normal distribution; P-value = 
0.04039). Normality of data was confirmed by qqplot. B) Histogram showing the number of loci 
out of 49 random GWAS loci that contain at least one SN DA neuron expressed gene, simulated 
10,000 times. All 49 PD GWAS loci analyzed have at least one SN DA expressed gene, which is 
slightly higher than what is expected from 49 random GWAS loci (right of the red, vertical line). 
C) Histogram showing the number of loci out of 49 random GWAS loci that contain only one 
SN DA neuron expressed gene, simulated 10,000 times. The number of PD GWAS loci that 
contain only one SN DA neuron expressed gene (n = 3; red, vertical line) is slightly less than 
what would be expected from 49 random GWAS loci. 
 
  



Figure S7. The distribution of gene biotypes assigned to genes extracted from PD GWAS loci 
 

 

 



Figure S7. The distribution of gene biotypes assigned to genes extracted from PD GWAS loci. 
A) Barplot displaying the frequency of gene biotypes in the 742 genes without mouse homologs 
identified in PD GWAS loci. 92/742 (~12%) of those genes are annotated as protein coding. All 
1009 genes with mouse homologs were annotated as “protein_coding.” B) Barplot displaying the 
frequency of protein coding genes without mouse homologs in each PD GWAS locus studied. 24 
loci include at least one protein coding gene without a mouse homolog. 
 
  



 
Supplemental Table Titles and Descriptions 
 
Table S1. A table with gene set enrichment analysis (GSEA) results for outliers removed 
during iterative analyses. 
 
Table S2. A table with marker genes found for all 13 identified DA neuron populations. 
 
Table S3. A table summarizing marker genes and observations that led to the biological 
classification of all 13 DA neuron populations. Provides additional information for Table 1. 
 
Table S4. A table showing marker genes of SN DA neurons with previous literature 
evidence of marking the SN. 
 
Table S5. A table showing novel marker genes of SN DA neurons with summary of SN 
expression for each from Allen Brain Atlas (ABA) in situ data. 
 
Table S6. A table showing all genes that comprise each identified WGCNA module. 
 
Table S7. A table with Gene Ontology, Reactome, and KEGG enrichment results for all 
WGCNA modules. 
 

Table S8. A table with meta-data for each locus in Table 1. This includes the “Lead SNP” 
associated with each locus, the “Closest Genes” to the lead SNP, and whether or not the 
closest genes are expressed (“Closest Gene Expressed”). This also has meta-data for genes 
in each locus including: the number of human genes (“num_genes”), the number of genes 
expressed in either of the SN DA scRNA-seq datasets used in scoring 
(“num_expressed_either”), the number of genes expressed in both SN DA scRNA-seq 
datasets using in scoring (“num_expressed_both”), the number of genes that had a one-to-
one mouse homolog (“num_homolog”), and the number of genes that did not have a one-
to-one mouse homolog (“num_no_homolog”).  
 
Table S9. A table with detailed prioritization scoring for all genes within PD GWAS loci. 
 
Table S10. A table summarizing information about Cplx1 and WT mice used in this study 
including mouse name, age, genotype, the number of striatal sections measured, and the 
date immunohistochemistry was performed. 
 
Table S11. A table showing all measurements taken for Cplx1 and WT mice. 
 

Table S12. A table summarizing the comparison of PD GWAS gene prioritization metrics 
found in this paper and in Chang, et al (2017). 
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