2

3

4 Supplemental Figure 1: Hypoosmotic shock does not cause growth inhibition in *E. coli*.

- 5 Related to Figure 1.
- 6 A) Concentration of sorbitol in the growth medium during an 800-mM hypoosmotic shock.
- 7 The medium was exchanged within 3 s during this experiment.
- 8 B) Population-averaged elongation rate of *E*. *coli* cells during the shock (n = 32 cells).

9 C) Length of representative *E. coli* cells during the shock. The dotted lines indicate the time 10 of shock.

11

12 Supplemental Figure 2: SigmaW has no effect on the growth-inhibition response. Related to

13 Figure 2.

14 Population-averaged elongation rate of wild-type *B. subtilis* 168 and BKE1730 cells lacking the

15 sigma factor σ_w (n = 25 and n = 68 chains for strains 168 and BKE1730, respectively). Shading

16 indicates ± 1 standard deviation (s.d.).

27	mM sorbitol) with wild-type levels of AccDA (black line) and induction of AccDA
28	overexpression for 45 min (red line; $n = 54$ and $n = 104$ chains for uninduced and
29	induced, respectively). Shading in (C) and error bars in (D) indicate ± 1 s.d. **:
30	Student's <i>t</i> -test, $p < 0.0001$.
31	E) Inhibition period versus mechanical strain of <i>B. subtilis</i> YK1738 across a range of shock
32	magnitudes (150 mM $< C_{out} <$ 750 mM), with wild-type levels of AccDA (blue dots) and
33	induction of AccDA overexpression for 45 min (red dots; each point represents the
34	average of 19-164 chains). Error bars indicate ±1 s.d.

36 Supplemental Figure 4: Response to hypoosmotic shock in the presence of antibiotics.

37 Related to Figure 4.

A) Population-averaged elongation rate in response to 800-mM hypoosmotic shock, where the medium was switched from LB + 800 mM sorbitol to LB + 10 μ g/mL vancomycin (*n* = 5 chains).

- B) Population-averaged elongation rate decreased with increasing concentration of
- 42 chloramphenicol in the growth medium (each point represents the average of 15-37 cell

43 chains). Error bars indicate ± 1 s.d.

- 44 C) Population-averaged elongation rate versus time during a 500-mM hypoosmotic shock
- 45 (from LB + 500mMsorbitol to LB) from experiments in which 0, 1, 2, or 4 μ g/mL
- 46 chloramphenicol was included in the growth medium (each trace represents the average
- 47 of 15-37 cell chains).

48	D)	Elongation rate during a 500-mM hypoosmotic shock predicted by the tension-inhibition
49		model when the initial elongation rate (\dot{e}) was specified to the experimental value
50		observed when 0, 1, 2, or 4 μ g/mL chloramphenicol was included in the growth medium.
51	E)	Population-averaged elongation rate versus time during a 500-mM hypoosmotic shock
52		(from LB + 500 mM sorbitol to LB) from four experiments in which 0, 0.5, 1, or 2
53		μ g/mL fosfomycin was included in the growth media (each trace represents the average
54		of 34-70 cell chains).

64

65 Supplemental Figure 6: DiOC₂(3) reports membrane depolarization by sodium azide.

- 67 Population-averaged fluorescence intensity of cells stained with $DiOC_2(3)$ during a 5-min
- treatment with 1 mg/mL sodium azide (n = 12 chains). Shading indicates ± 1 s.d.

⁶⁶ Related to Figure 7.

69 Supplemental Tables

Supplemental Table 1: List of strains used in this study. Related to STAR Methods.

Strain	Species	Genotype	Reference
JH642	B. subtilis	Wildtype, <i>trpC2</i>	Bacillus Genetic
		pheA1	Stock Center
		-	1A96
BMD122	B. subtilis	168, sfGFP-mbl::spec	Gift from the Ethan
			Garner Lab
YK1738	B. subtilis	168CA Ω <i>amyE</i> :: P_{xyl} -	Gift from the Jeff
		accDA spc	Errington Lab
		_	(Mercier et al., Cell
			2013)
SMB80	B. subtilis	JH642, <i>mscL</i> ∷ <i>spc</i> ,	Gift from the Erhard
		$\Delta(ydhY::ery),$	Bremer Lab
		$\Delta(yfkC::tet),$	(Hoffmann et al., Appl
		$\Delta(ykuT::cat)$	Env Microbiol 2008)
BKE01730	B. subtilis	168, <i>sigW::MLS</i>	Gift from the Carol
			Gross lab (Koo et al.,
			Cell Syst 2017)
JAT150	Listeria	$1040\beta S, actA::comK$	Laboratory stock
	monocytogenes		
CN1491	Clostridium	Wildtype	ATCC13124, gift
	perfringens		from the
			Justin Sonnenburg
			Lab