Appendix: Matrix Computation of KL Divergence

Consider 61 points spanning from -3 to 3 with 0.1 increments along each ability dimension, and let π_1 denote a 61-by-D matrix, with the (l, d)th element being $\prod_{j=1}^{n_d} P(\theta_i^d)^{y_{ij}} (1 - P(\theta_i^d))^{1-y_{ij}}$. π_2 is computed similarly with item parameters and the response vector from the second occasion. Then the likelihood at every possible ability point (there are 61^D points in total) forms a 61^{D-1} by-61 matrix Υ_t computed recursively as $\Upsilon_t^d = \Upsilon_t^{d-1} \otimes \pi_t^d$, for t = 1, or 2, and D > 2, d = 2, ..., D. π_t^d denotes the *d*th column of π_t , \otimes denotes Kronecker products, and $\Upsilon_t^2 = \pi_t^1 (\pi_t^2)^T$ when D = 2. After expressing the posterior likelihood as a matrix operation in matrix form, the computation of Equation 9 becomes much simpler. In all computations, only one loop with 61 iterations is needed, regardless of the size of D.