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1 Description of Average Product Corrected Mu-
tual Information

1.1 The Mathematical Description of a Protein Multiple
Sequence Alignment

A protein multiple sequence alignment (MSA) can be described by a matrix,
{M ∈ Rnxt : mij ∈ {1, 2, . . . , 21}}, with n residues and t taxa. Each vector,
Mi, represents a residue in the MSA. Each entry mij takes one of 21 values
corresponding to each of the amino acids plus the gap character. The marginal
probability distribution of residues, P (Mi) ∈ R21 is the vector of marginal
probabilities for each amino acid.

pk(Mi) =
1

t

t∑
s=1

δ(Mis, k)

Where k ∈ {1, 2, . . . , 21} is an amino acid and the Kronecker delta, δ(a, b) is
defined as:

δ(a, b) =

{
a = b 1

a 6= b 0

Likewise, the joint probability density of a residue pair, Mi,Mj can be described
by P (Mi,Mj) ∈ R21x21, wherein

pkl(Mi,Mj) =
1

t

t∑
s=1

δ(Mis, k)δ(Mjs, l)

1.2 Shannon Entropy

Shannon entropy quantifies the amount of information required to encode a
probability distribution. It can be applied to marginal or joint probability dis-
tributions. The Shannon entropy of a particular residue, Mi, can be computed
as follows:

H(Mi) = −
21∑
k=1

pk(Mi) log pk(Mi)

In this context, the Shannon entropy describes the degree of conservation of a
given residue. Larger values correspond to less conservation. The base of the
logarithm determines the units of the resulting entropy. It is most common
in computational disciplines to use log2 such that the corresponding entropy is
measured in bits. It is also common to employ the natural logarithm in place
of log2. In which case, the resulting entropy is expressed in units called nats.

Shannon entropy can also be computed for the joint probability distribution
governing two residues Mi,Mj :

H(Mi,Mj) = −
21∑
k=1

21∑
l=1

pkl(Mi,Mj) log pkl(Mi,Mj)
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We refer to this quantity as the joint entropy.

1.3 Mutual Information

Mutual information measures the amount of information shared between two
variables. It describes how much can be learned about the second variable by
observing the first. The mutual information between two residues Mi,Mj in the
MSA is given by:

I(Mi;Mj) =

21∑
k=1

21∑
l=1

pkl(Mi,Mj) log
pkl(Mi,Mj)

pk(Mi)pl(Mj)

Mutual information has an equivalent representation in terms of entropies:

I(Mi;Mj) = H(Mi) +H(Mj)−H(Mi,Mj)

1.4 Normalized Mutual Information

Normalized mutual information was introduced as a technology for multiple
sequence alignment analysis in 2005 [7]. It is computed for a residue pair,
Mi,MJ , by dividing the mutual information by the joint entropy:

NMI(Mi;Mj) =
I(Mi;Mj)

H(Mi,Mj)

NMI is an intriguing modification of mutual information. Unlike raw mutual
information, it is restricted to values between zero and one, NMI(Mi;Mj) ∈
(0, 1]. As we have shown using synthetic alignments, NMI (Figure 1,S1) has very
little dependence upon the entropy of residues in the alignment. Compared
to mutual information, it is less sensitive to artifacts introduced by residue
conservation[4].

Additionally, NMI may be used to construct a normalized distance metric
on the space of MSA residues:

D(Mi,Mj) = 1−NMI(Mi;Mj)

This quantity has very desirable qualities. It is still normalized in the sense that
D(Mi,Mj) ∈ [0, 1). Furthermore it satisfies the criteria of a metric [11]:

D(a, b) ≥ 0 (1)

D(a, b) = 0 ⇐⇒ a = b (2)

D(a, b) = D(b, a) (3)

D(a, b) ≤ D(a, c) +D(b, c) (4)
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1.5 The Average Product Correction

The average product correction was introduced in 2008 [2].

APC(Mi,Mj) =
1

n2

n∑
r=1

I(Mi,Mr)I(Mj ,Mr)

Average product corrected mutual information (MIp) is currently the best
performing information theoretic measure for amino acid covariation as judged
by contact prediction [6]. More accurate contact prediction algorithms have
emerged since the beginning of our study. Such methods rely on optimization
routines involving psuedo-likelihoods and/or sparse priors [1, 8, 5]. They are
computationally costly as compared to simpler information theoretic measures.
Simple measures like MIp offer a nice compromise with intermediate accuracy
and ease of computation.

MIp(Mi,Mj) = I(Mi,Mj)−APC(Mi,Mj)

Despite its favorable performance, MIp has a similar entropy dependence to
uncorrected MI (Figure 1, S1). We show here that this entropy dependence can
be partially mitigated by normalizing to the joint entropy yielding the following
measure:

APC-NMI(Mi,Mj) =
I(Mi,Mj)−APC(Mi,Mj)

H(Mi,Mj)

This simple measure is readily computed and has less dependence on entropy
than MIp (Figure 1, S1).

1.6 Limitations of Covariation Measures in Inferring Co-
evolution

The underlying phylogeny of biological samples have long been known to corrupt
covariates between taxa [3]. This is a serious consideration when performing
covariation analysis on multiple sequence alignments. Put succinctly, the un-
derlying phylogeny of a sample may impact the observed pattern of covariation.
The average product correction is purported to account for this bias to some
extent. However, recent work from the molecular evolution community[9] sug-
gests that covariation signal recovered from MIp strongly depends on the rate
of evolution. Particularly, this study reports that high scoring residue pairs cor-
respond to slowly evolving residues. The authors raise the concern that residues
in the protein core tend to evolve more slowly and are thereby more likely to
be selected by MIp. Such arguments suggest that the favorable performance of
MIp in the task of contact prediction may be artifactual, because core residues
are close in 3D space.

There are further issues confounding the inference of proper co-evolution
from covariation. Namely, the sampling bias inherent in extant sequences ren-
ders covariation estimates inaccurate irrespective of the underlying phylogeny.
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Covariation relies on the assumption that sequences are drawn at random from
the underlying distribution of sequences comprising a protein family. This as-
sumption will be violated any time that an MSA is constructed from extant
sequences owing to the bias of sequence databases toward model organisms.

The final issue confounding the inference of co-evolution from multiple se-
quence alignments is the issue of conservation. Residue covariation measures
including SCA5 and MI have been shown to depend strongly on the entropy of
residues in the MSA [10, 4]. We and others [7] have shown that this bias can
be mitigated by normalizing to the joint entropy.

1.7 Rationale for choosing Met47 for further analysis

We obtained 14 subnetworks in our APC-NMI analysis (Fig. 1). When these
14 subnetworks were mapped on the structure, it was clear that most of them
could be explained by covariation due to structural considerations. The Supple-
mental Figure Fig. S4C, showing 3 of the 14 subnetworks mapped onto the Cpn
structure, highlights several important points (also clearly observable in pymol
session included as supplemental information):

• Most subnetworks are small and correspond to spatially contiguous inter-
actors, which probably is the reason why these residues covary

• The fact that for most subnetworks mapping onto the structure shows that
they engage in structural interactions between residues non-contiguous in
sequence but spatially coupled is in itself quite nice and validates our
approach reveals meaningful interactions. However, these subnetworks
are less interesting in terms of understanding allostery.

• The largest network corresponds to residues centered around the nucleotide:
clearly this is the network of interest to understand the allostery of ATP.
Validating the functional significance of this subnetwork for ATPase func-
tion, many of its residues have been functionally linked to the ATPase
function of Cpns. Other residues in the network that are not in contact
with the neighboring subunits may indeed have interesting properties of
their own, but would not be involved in the complex-wide phenomena we
were looking to study. Further, we did not want to introduce the com-
plication of potentially destabilizing the structure of individual subunits
by mutating core residues. This left the interfacial residue Met 47 as our
best candidate for further analysis, since it connected the networks in two
adjacent subunits. Considering how laborious it is to study allostery and
understand its mechanism, the integration of structural and computational
insights is essential.

• We note that all residues in the network (Fig 1F) are given high scores
along the first component of the APC-NMI matrix indicating that they
are contributing to the same underlying process. We consider the spec-
tral decomposition of the network as an equally important indicator of
covariation to the raw pairwise scores.
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[10] Tiberiu Teşileanu, Lucy J Colwell, and Stanislas Leibler. Protein sec-
tors: statistical coupling analysis versus conservation. PLoS Comput. Biol.,
11(2):e1004091, February 2015.

[11] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic
measures for clusterings comparison: Variants, properties, normalization
and correction for chance. J. Mach. Learn. Res., 11(Oct):2837–2854, 2010.

6


