

Figure S1. Binding analysis of Cry1A toxins to contaminating proteins from EGFP-expressing Sf9 cells. Membrane proteins from EGFP-expressing Sf9 cells (2L culture) were incubated with an anti-FLAGtag-antibody-conjugated gel and proteins which non-specifically bound the gel were collected and immobilized on a CM5 sensor chip. 400 nM Cry1Aa and Cry1Ab toxins were injected over the sensor chip of Biacore J as analytes.

1:1 Langmuir binding model A + B \leftrightarrows AB

500 T

Two-state reaction (conformational change) $A + B \leftrightarrows AB \leftrightarrows AB^*$

Bivalent binding model $2A + B \leftrightarrows AB + A \leftrightarrows AAB$

Figure S2. Curve fitting of the sensorgram displaying the binding response between the Cry1Aa toxin and BmABCC3-FLAG. Purified BmABCC3 was immobilized on a CM5 sensorchip of Biacore; 400, 800, and 1600 nM Cry1Aa toxins were applied, respectively. The thick black lines

indicate the actual response curves, and the thin gray dotted lines show fitting curves based on binding models. X^2 indicates the chi-square value.

DAP

GFP

Figure S3. Expression levels of BmABCC3 mutants in HEK293T cells. (A) HEK293T cells were transfected with BmABCC3 mutant expression vectors. EGFP, which was fused to the C-termini of the BmABCC3 mutants, and DAPI, which stains nuclear DNA, were visualized under a fluorescence microscope after 48 h as described in the Materials and methods. Scale bar indicates 20 µm. (B)

Table S1. Primers used in this study

Purpose	Name	Sequence
Human cell expression	3.1_BmABC_GFP_F	ccacccGGATCCGATATGAATAGTGATGGGGAGAGC
	3.1_BmABC_GFP_R	GCTCACCATTTTTCTGTATTTCTACCAA
	BmABC_GFP_FLAG_F	CAGAAAAAATGGTGAGCAAGGGCGAGGA
	BmABC_GFP_FLAG_R	ttgtagtcCTTGTACAGCTCGTCCATGC
	GFP_FLAG_3.1_F	TGTACAAGgactacaaagaccatgacgg
	GFP FLAG 3.1 R	GAATTCGGTACCGATcttgtcatcgtcatccttgt

BmABCC3_GFentryF BmABCC3 GFentryR BmABCC2_F1 Insect cell expression BmABCC2 R1 BmABCC2 F2 BmABCC2_R2 BmABCC3_HindF BmABCC3_XhoR BmABCC3_EAT_inverseF BmABCC3 mutants BmABCC3__EAT_inverseR BmABCC3 LSF inverseF BmABCC3_LSF_inverseR BmABCC3 AELL inverseF BmABCC3 AELL inverseR BmABCC3_SYWS_inverseF BmABCC3_SYWS_inverseR BmABCC3_ECL2IS_inverseF CCACCCGGATCCGATATGGGTGTTGGAAGTGAAAA GCCCTTGCTCACGATTCTCATGTTTTCTTCAGAT CGCtctagaATGGACTACAAAGACCATG TCATGGTCTTTGTAGTCCATTTTTTCTGTATTTCTACCAA TTGGTAGAAATACAGAAAAAATGGACTACAAAGACCATGA CTAtctagaCTTGTCATCGTCATCCTTGTAATC actaagcttATGGGTGTTGGAAGTGAAAA actctcgagTCTCATGTTTTCTTTCAGAT ACAGTGGAAGCGACTATTACGCAAATGGAAGCGGT CGTAATAGTCGCTTCCACTGTCCAATACGTGAGCA TACTGGCTCAGTTTCTGGACGAATGCAATGGCA CGTCCAGAAACTGAGCCAGTAGTCAGCGCCAGC TGTTATTTgcaGAGCTGCTCACGTATTGGACAGT AGCTCtgcAAATAACAGAGGTGTTATAATACGTAA CTCtCGTATTGGtCAGTGGATCCGCCTATTACGC CTGaCCAATACGaGAGCAGCTCTCCAAATAACAG GGCTACaTTtcAGCTGGTGTTGCAGCTCT

BmABCC3_ECL2IS_inverseR ACCAGCTgaAAtGTAGCCCAGATAGCAGACAG BmABCC3 ECL3YIS inverseF AACAATaCATcAgCGCTGCACAACTCAATATCACA BmABCC3_ECL3YIS_inverseR AGCGCTGATGTATTGTTGTAAGGGATAAATCACAG BmABCC3_ECL5Y_inverseF TCGCACTGccTTGGACATTGATTCCTTCTGT BmABCC3 ECL5Y inverseR AATGTCCAAggCAGTGCGATTGCGTTCAA GACTTTaGTAcCcTCATTGCCGTGGGAAGTG BmABCC3 ECL6STL inverseF BmABCC3_ECL6STL_inverseR GAgGgTACtAAAGTCTATAAAGATGAACACTAAAATAAC BmABCC2 RTF TCTTGCCATTGCAAGTTTGTCT BmABCC2 RTR AGCGATGCCTTGTTGTTGA BmABCC3 RTF ATTGATGCCTGCTGGTTCGAA BmABCC3 RTR ACGTTTTACCAGATTGTTGCTA ActinA3_RTF CGTACCACCGGTATCGTGCT ActinA3 RTR GAGGATCTTCATGAGGTAGTCGGTC

qPCR

oxin	Cry1Aa			Cry1Ab			Cry1Ca		Cry1Da		Cry3Bb	
C transporter	BmABCC2_5	S BmABCC3	BmABCC2_R	BmABCC2_	BmABCC3	BmABCC2_R	BmABCC2	S BmABCC3	BmABCC2_{	S BmABCC3	BmABCC2_	S BmABCC3
(1/Ms)	3.24×10^4	6.46×10^{3}	4.54× 10 ⁴	4.36×10^4	4.44× 10 ³	1.77× 10 ⁴	2.34×10^4	7.71×10^{3}	2.52×10^2	1.01×10^{1}	2.83× 10 ³	5.33× 10 ²
(1/s)	5.94×10^{-3}	1.07×10^{-2}	1.08×10^{-2}	7.06× 10 ⁻³	1.41× 10 ⁻⁵	1.15× 10 ⁻²	2.10×10^{-2}	2.81×10^{-2}	1.80×10^{-2}	1.96×10^2	7.95× 10 ⁻²	1.61× 10 ⁻²
(1/s)	5.47×10^{-3}	6.36×10^{-3}	2.19× 10 ⁻³	1.91× 10 ⁻³	9.48× 10 ⁻⁴	1.27× 10 ⁻²	2.23×10^{-3}	7.89×10^{-3}	3.01×10^{-3}	3.66×10^{-3}	7.64× 10 ⁻⁴	2.12× 10 ⁻³
(1/s)	1.30×10^{-5}	1.16×10^{-3}	2.60× 10 ⁻⁶	3.06× 10 ⁻⁶	1.00× 10 ⁻⁵	4.87× 10 ⁻⁴	5.25×10^{-4}	9.52 × 10 ⁻⁴	1.01×10^{-4}	1.00×10^{-3}	1.78× 10 ⁻³	2.80× 10 ⁻⁶

transporters to silkworm ABC ns

toxii	
S S	
s of	
eter	
ram	
Dal	
etic	
Z IN	
S2.	
able	

Table S3. Kinetic parameters of Cry toxins to ABCC3 mutants

Cry toxin	Cry1Aa	Cry1Ab	Cry1Aa	Cry1Ab
Mutants	ECL1 ¹²⁹ EAT ¹³¹	ECL1 ¹²⁹ EAT ¹³¹	ECL3 ³⁶³ YIS ³⁶⁵	ECL3 ³⁶³ YIS ³⁶⁵
ka1 (1/Ms)	4.01×10^4	2.22×10^3	2.16×10^4	6.15×10^3
<i>kd1</i> (1/s)	5.11 × 10 ⁻³	3.04 × 10 ⁻²	1.77 × 10 ⁻²	2.68 × 10 ⁻²
ka2 (1/s)	6.36 × 10 ⁻³	2.18 × 10⁻³	6.46 × 10 ⁻³	7.57 × 10 ⁻⁴
kd2 (1/s)	2.67 × 10 ⁻⁴	4.73 × 10 ⁻⁶	1.37 × 10 ⁻³	1.88×10^{-4}