Supporting Information

The HLTF HIRAN domain positions the DNA translocase motor to drive efficient DNA fork regression

Diana A. Chavez, Briana H. Greer, and Brandt F. Eichman

- Table S1. Oligodeoxynucleotides used in this study
- Fig S1. Details of the HIRAN-UvsW chimera.
- Fig S2. DNase footprinting data.
- Fig S3. ATPase and fork regression activities of Δ HIRAN.
- Fig S4. Effects of RPA on fork remodeling activities.

Table S1. Oligodeoxynucleotides used in this study					
Substrate	Name	Length	Sequence (5'-3') ^a		
EMSA & footprinting					
	ov_F	30	³² P-TTTTTTTTTTTTTTCCGCTACGCATGTCC-FAM		
	ov_0	15	GGACATGCGTAGCGG		
* FAM	ov_1	16	GGACATGCGTAGCGGT		
	ov_2	17	GGACATGCGTAGCGGTT		
	ov_3	18	GGACATGCGTAGCGGTTT		
1FAM 24	1_F	55	GCATCCGACTCAGTTCGCTCGAGCTAGCCCTGATATCGATGGATCTAGAGCTA CC-FAM		
	1	55	GCATCCGACTCAGTTCGCTCGAGCTAGCCCTGATATCGATGGATCTAGAGCTA CC		
	2	55	GGCGAAGGGATCCGTAGGCACAGTTCCCCTAGCTCGAGCGAACTGAGTCGGAT GC		
OR	2_F	55	GGCGAAGGGATCCGTAGGCACAGTTCCCCTAGCTCGAGCGAACTGAGTCGGAT GC-FAM		
1	3	28	GGTAGCTCTAGATCCATCGATATCAGGG		
4	3_TT	28	GGTAGCTCTAGATCCATCGATATCAG TT		
2	3_PO4	28	GGTAGCTCTAGATCCATCGATATCAGTT-PO4		
	3gap_TT	19	GGTAGCTCTAGATCCAT TT		
	4	28	GGGAACTGTGCCTACGGATCCCTTCGCC		
Fork regression					
8			³² P-		
	А	122	CGTGACTTGATGTTAACCCTAACCCTAAGATATCGCGT <u>TA</u> TCAGAGTGTGAGG		
sB			ATACATGTAGGCAATTGCCACGTGTCTATCAGCTGAAGTTGTTCGCGACGTGC		
A*			GATCGTCGCTGCGACG		
D	В	82	CGTCGCAGCGACGATCGCACGTCGCGAACAACTTCAGCTGATAGACACGTGGC		
OR					
A*	С	82			
	D	122	AATTGCCTACATGTATCCTCACACTCTGAATACGCGATATCTTAGGGTTAGGG		
			TTAACATCAAGTCACG		
	sB	52	CGTCGCAGCGACGATCGCACGTCGCGAACAACTTCAGCTGATAGACACGTGG		
	sC	52	CCACGTGTCTATCAGCTGAAGTTGTTCGCGACGTGCGATCGTCGCTGCGACG		
			³² P-		
48* 52 53	48	60	ACGCTGCCGAATTCTACCAGTGCCTTGCT <u>A</u> GGACATCTTTGCCCACCTGCAGG		
			TTCACCC		
	50	30	GGGTGAACCTGCAGGTGGGCAAAGATGTCC		
	50-GG	30	GGGTGAACCTGCAGGTGGGCAAAGATGT <u>GG</u>		
	52	60	GGGTGAACCTGCAGGTGGGCAAAGATGTCCCAGCAAGGCACTGGTAGAATTCG GCAGCGTC		
	53	30	GGACATCTTTGCCCACCTGCAGGTTCACCC		

Fork restoration						
R1 R2 OR R1 R2 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4	R3	R1	62	(³² P-)TAGGCAATTGCCACGTGTCTATCAGCTGAAGTACAAGCGCTGCACCCTAGGT CCGACGCTGC		
	R4 OR	R2	62	(³² P-)CGTCGCAGCCTGGATCCCACGTCGCGAACAACTTCAGCTGATAGACACGTGG CAATTGCCTA		
	R5	R3	62	GCAGCGTCGGACCTAGGGTGCAGCGCTTGT <u>TG</u> TTCAG <u>G</u> TGATA <u>C</u> ACACG <u>C</u> GGC AAATGCCTA		
	1	R4	30	TGTTCGCGACGTGGGATCCAGGCTGCGACG		
	R6	R5	30	GCAGCGTCGGACCTAGGGTGCAGCGCTTGT		
		R6	62	TAGGCATTTGCCGCGTGTGTATCACCTGAACATGTTCGCGACGTGGGATCCAG GCTGCGACG		
ATPase assays						
40 lea F20.40 lag	lead	40	40	CTCAGGACTCAGTTCGTCAGCCCTTGACAGCGATGGAAGC		
		Lead	20	GCTTCCATCGCTGTCAAGGG		
		Lag	20	GGGAACTGTCGCTACCTTCG		
	</td <td>F20.40</td> <td>40</td> <td>CGAAGGTAGCGACAGTTCCCCTGACGAACTGAGTCCTGAG</td>	F20.40	40	CGAAGGTAGCGACAGTTCCCCTGACGAACTGAGTCCTGAG		
^a Underlined nucleotides form mismatched base pairs ^b Sequences for the <i>ABCD</i> -type fork regression and fork restoration substrates were taken from Bétous <i>et</i>						

al (2013) Cell Reports, 3: 1958-69.

Fig S1. Details of the HIRAN-UvsW chimera. **A**. Crystal structures of HLTF HIRAN domain (PDB ID 4S0N) and UvsW (PDB ID 2OCA). Substrate recognition domain (SRD) and ATPase motor are colored blue and gold, respectively, and DNA is colored orange. The orange cylinder behind UvsW denotes the predicted position of duplex DNA bound to the motor domain based on other superfamily 2 helicase structures. To make the chimera, the UvsW SRD was replaced by HIRAN at the location indicated by the magenta scissors. The C-terminus of the HIRAN domain contains a 13-residue random coil after the last secondary structure element. **B**. Amino acid sequences of the structures shown in panel A. Splice points are marked by the magenta scissors. Random coil sequences around the splice points are underlined.

Fig S2. DNase footprinting data. A,B. Representative gels for wild-type and Δ HIRAN HLTF binding to gapped (A) and non-gapped (B) forks. Either the leading template (left sides of gels) or the lagging template (right sides) strand was labeled with fluorescein, indicated by the yellow circle in the DNA schematics. DNA concentration was held fixed at 100 nM. Lanes represent increasing concentrations of HLTF. Only 0 and 200 nM HLTF lanes were used in quantification shown in Fig. 4. Molecular weight markers are in the outermost lanes and are labeled as the number of nucleotides. Black bars and red triangles on the DNA schematics represent nuclease protected and sensitive regions, respectively. C. Differences in DNase footprinting by HLTF and SMARCAL1 (ref: Bétous et al (2013) Cell Reports, 3: 1958-69).

Fig S3. ATPase and fork regression activities of ΔHIRAN. A. Left, representative ATPase activities of HLTF, ΔHIRAN, or D557A/E558A mutants of each (HLTF^{DEAA}, ΔHIRAN^{DEAA}) in the presence of fork DNA. Shown is the phosphorimage of TLC plates containing ³²P-γATP substrate and inorganic ³²P product. Right, quantification of data (average ± S.D.) from three independent measurements. The ΔHIRAN^{DEAA} preparation shows a contaminating ATPase activity not stimulated by DNA. **B**. Left, representative native gel of time-dependent regression by HLTF and ΔHIRAN of a fork containing 2 mismatched base-pairs at the 3'-end of the nascent leading strand. Right, quantification of data (average ± S.D.) from three independent measurements. Regression of the fully base-paired fork is shown in grey for comparison. **C,D**. Representative native gels of time-dependent fork regression by HLTF and ΔHIRAN using forks in which the leading or lagging nascent strands have been shortened (C) or removed (D). Endpoints of reactions containing ATPase-dead HLTF^{DEAA} or ΔHIRAN^{DEAA} proteins, or of a mock reaction with no protein are shown as negative controls. Quantification of data is shown in Fig. 5C and 5D. The 40% weaker DNA signal in the Δ HIRAN^{DEAA} lanes are the result of a contaminating nuclease activity in that protein preparation. **E**. Rates of fork regression (min⁻¹) derived from exponential fits to the data shown in Fig. 5 and Fig. S2B-D. Values are average ± S.D., n=3.

Fig S4. Effects of RPA on fork remodeling activities. **A**,**B**. Fork regression (A) and restoration (B) by HLTF. Fork substrates contain 30-nucleotide ssDNA regions on either the template (A) or nascent strands (B) that are bound by RPA. Experimental details are as specified in Experimental Procedures, except DNA was pre-incubated with 3 nM RPA for 30 min prior to addition of HLTF. Representative native gels show ratios of substrates and products over time. The samples lanes labeled "(-)" were not treated with proteinase K prior to loading to verify RPA was bound to the substrates under the experimental conditions. The plots show average data from three experiments (mean \pm S.D.). **C**. Comparison of effects of RPA on fork reversal and restoration of HLTF, SMARCAL1, and ZRANB3. Preferences for either leading or lagging gap substrates are specified. Data for SMARCAL1 and HLTF are summarized from data reported in Bétous *et al* (2013) *Cell Rep*, 3: 1958-69.