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Large-scale human genetics studies are ascertaining increasing proportions of populations as they continue growing in both number and

scale. As a result, the amount of cryptic relatedness within these study cohorts is growing rapidly and has significant implications on

downstream analyses. We demonstrate this growth empirically among the first 92,455 exomes from the DiscovEHR cohort and, via a

custom simulation framework we developed called SimProgeny, show that these measures are in line with expectations given the

underlying population and ascertainment approach. For example, within DiscovEHR we identified �66,000 close (first- and second-

degree) relationships, involving 55.6% of study participants. Our simulation results project that >70% of the cohort will be involved

in these close relationships, given that DiscovEHR scales to 250,000 recruited individuals. We reconstructed 12,574 pedigrees by using

these relationships (including 2,192 nuclear families) and leveraged them for multiple applications. The pedigrees substantially

improved the phasing accuracy of 20,947 rare, deleterious compound heterozygous mutations. Reconstructed nuclear families were

critical for identifying 3,415 de novo mutations in �1,783 genes. Finally, we demonstrate the segregation of known and suspected

disease-causing mutations, including a tandem duplication that occurs in LDLR and causes familial hypercholesterolemia, through

reconstructed pedigrees. In summary, this work highlights the prevalence of cryptic relatedness expected among large healthcare

population-genomic studies and demonstrates several analyses that are uniquely enabled by large amounts of cryptic relatedness.
Introduction

The number and scale of large human sequencing projects,

including DiscovEHR,1 UK Biobank,2 the US government’s

All ofUs (part of thePrecisionMedicine Initiative),3 TOPMed

(Web Resources), ExAC/gnomAD,4 and many others, is

rapidlygrowing.Manyof these studies are collecting samples

from integrated healthcare populations that have accompa-

nying phenotype-rich electronic health records (EHRs) with

a goal of combining the EHRs and genomic sequence data to

catalyze translational discoveries and precision medicine.1

These large-scale healthcare population-based genomic

(HPG) studies are recruiting participants through healthcare

systems where volunteers donate DNA and provide medi-

cally relevantmetrics recorded in their EHRs. Amajor differ-

ence between the HPG study design and the design of tradi-

tional population-based studies is ascertainment, both in

how participants are recruited and in the proportion of the

population in a geographical area that participates

(Figure 1A). Traditionally, the high expense of large-scale ge-

netic studies and the limited resources of individual investi-

gators have generated study populations exhibiting shallow

ascertainment of individuals from a variety of geographical

areas. To improve statisticalpower, researcherscombine sam-

ples from many different collection centers into larger co-

horts, and these cohorts are often merged into much larger
1Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY 1059

singer Health System, Danville, PA 17822, USA
4Twitter: @JGReid

*Correspondence: jeffrey.reid@regeneron.com

https://doi.org/10.1016/j.ajhg.2018.03.012.

874 The American Journal of Human Genetics 102, 874–889, May 3,

� 2018 American Society of Human Genetics.
consortiums consisting of tens to hundreds of thousands

of individuals. Although the total number of individuals

sampled is often high, these studies typically only sample a

relatively small portion of individuals in any given

geographic area. In contrast, planned and on-going HPG

studies are sampling tens to hundreds of thousands of

participants from individual healthcare systems.1

The difference in these two ascertainment approaches re-

sults indifferentpatternsof genetic relatedness among indi-

viduals in these cohorts. Relatedness is a continuum that

manifests itselfwithin a cohort in a variety ofways, depend-

ing on the population and how individuals are sampled

from it. Because traditional population-based studies have

generally collected samples from multiple geographical

areas, they most commonly exhibit the broadest ‘‘class’’ of

relatedness: population structure. Population structure (often

referred to as ‘‘substructure’’ or ‘‘stratification’’) within a ge-

netic study results when the allele frequencies of different

ancestral groups, or ‘‘genetic demes,’’ are more similar

within than between demes. Genetic demes arise as a result

of more-recent genetic isolation, drift, and migration pat-

terns. Ascertainment of individuals within genetic demes

can generate distant cryptic relatedness,5,6 the second ‘‘class’’

of relatedness,7 defined here as third- to ninth-degree rela-

tives. These distant relatives are unlikely to be identifiable

from the EHR but are important because usually one or
1, USA; 2Rochester Institute of Technology, Rochester, NY 14623, USA; 3Gei-
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more large segments of their genomes are identical by

descent, depending on their degree of relatedness and the

recombination and segregation of alleles.8 Distant cryptic

relatedness is usually limited in study cohorts built from

small samplingsof largepopulations, but the level of cryptic

relatedness increases substantially as the effective popula-

tion sizedecreases and the sample size increases. Finally, un-

less designed to collect families, traditional population-

based studies typically have very little family structure: the

third ‘‘class’’ of relatedness, consisting of first- and second-

degree relationships2,4,9–11 (Figures 1B and 1C).

Incontrast, theHPGstudydesignenriches for family struc-

ture in several ways. First, HPG studies heavily sample from

specific healthcare system regions, and the number of pairs

of related individuals ascertained increases combinatorially

as more individuals are sampled from a single region

(Figure1A). Second, familieswho live in the samegeographic

areamost likely receivemedical care fromthe samedoctors at

the samehealthcare systembecauseof referrals, shared insur-

ance coverage, and convenience. Third, families who have

visited a healthcare system formany years withmultiple en-

counters will have extensive medical records, making them

more likely to be included in a study than transient residents

withbriefmedical records and fewer encounters. Both family

structure and distant cryptic relatedness are more pro-

nounced in populations with low migration rates.5

Conversely, confounding population substructure can be

less of a factor in HPG studies if the sampled healthcare sys-

tem’s population is a single homogeneous genetic deme.1 As

a result, we expect to see more family structure in HPG

studies compared to random ascertainment of a population.

In this article,we focuson family structure and its prevalence

in an HPG study by using both simulated and real data.

The increase in family structure within HPG studies has

significant implications for the choice and execution of

downstream analyses and must be considered thought-

fully.12–18 Some tools (e.g., principal component [PC] anal-

ysis) assume all individuals are unrelated, some (e.g., linear

mixed models) effectively handle estimates of pairwise

relationships, and others (e.g., linkage and TDT analyses)

can directly leverage pedigree structures. The following

description of some common analysis tools and their use

cases is based on the varying levels of family structure

within large population-based datasets (Figure 1D).

Removal of family structure (i.e., selectively excluding

samples to eliminate relationships) is a viable option if a

dataset has few closely related samples4,9–11 and if the

size of the unrelated subset is acceptable for the statistical

analysis being performed. A number of methods exist to

compute the maximally sized unrelated set of individ-

uals.19,20 However, this strategy reduces the sample size

and power while discarding potentially valuable relation-

ship information. In practice, the degree of information

loss is unacceptable for many analyses if the dataset has

even a moderate level of family structure.

Several methods that directly leverage the pairwise rela-

tionships have been developed. For example, researchers
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can explicitly model the relationships by using estimates

of pairwise relationships (e.g., mixed models15,21–23 and

pedigree-free QTL linkage analysis24). Additionally, if a

pedigree structure is needed for an analysis or visualization,

close pairwise relationships can be used for reconstructing

pedigree structures directly from the genetic data with tools

such as PRIMUS25 and CLAPPER.26 Although estimated

relationships and pedigrees are extremely useful, we echo

Ko and Nielson’s26 caution regarding the use of estimated

relationships and pedigrees with significant statistical

uncertainty in analyses that are sensitive to inaccuracies

in estimated relationships and pedigree structures. For

example, first-degree and second-degree relationships are

much more accurately estimated than more distant rela-

tionships. Furthermore, pedigrees where all individuals

are connected by highly accurate first-degree relationships

are much more likely to be correct than pedigrees con-

nected only by more distant relationships.25

In this manuscript, we demonstrate the value of identi-

fying family structure in a large clinical cohort as part of

the DiscovEHR study. This cohort of 92,455 exomes origi-

nated from a collaborative, ongoing study by the Regen-

eron Genetics Center (RGC) and the Geisinger Health

System (GHS) initiated in 2014.1 DiscovEHR is a dense

sample of participants from a single healthcare system

that serves a largely rural population with low migration

rates in central Pennsylvania. We identify a tremendous

amount of family structure within the DiscovEHR cohort,

and our simulations project that 70%–80% of the individ-

uals in our sequenced cohort will have a first- or second-

degree relative as we continue sequencing up to 250K

individuals. This has significant implications on down-

stream analyses but also affords us the opportunity to

leverage the rich family structure through reconstructing

pedigrees, phasing compound heterozygous mutation

(CHM), and detecting de novo mutations (DNM).
Subjects and Methods

Individuals and Samples
We sequenced the exomes of 93,368 de-identified GHS partici-

pants who had given consent to be part of the MyCode Commu-

nity Health Initiative.27 As part of this initiative, individuals

agreed to provide blood and DNA samples for broad, future

research, including genomic analyses as part of the Regeneron-

GHS DiscovEHR collaboration1 and linking to data in the GHS

EHR under a protocol approved by the Geisinger Institutional

Review Board. The intended use of the data is for research into

discovering gene-phenotype associations, and the data have not

been used for re-identifying individuals or their family members.

All analyses performed within this manuscript were done in

concordance with the participants’ consent and IRB approval.

Each participant has their exome linked to a corresponding de-

identified EHR. A more detailed description of the first 50,726

sequenced individuals has been previously published.1,27

The DiscovEHR study did not specifically target families as study

participants but was implicitly enriched for adults who interact

frequently with the healthcare system because of chronic health
rican Journal of Human Genetics 102, 874–889, May 3, 2018 875
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Figure 1. Ascertaining a High Proportion of the Population in a Geographical Area Increases Family Structure and Impacts What
Statistical-Analysis Approaches Should Be Used
(A) Traditional population-based studies (gray boxes) typically sample a small portion of individuals from several populations. HPG
studies (green box) more densely sample individuals from one or more populations. Family-based studies (yellow box) heavily sample
within extended families but do not sample nearly as many individuals as the other two study designs.
(B) The three study designs result in very different proportions of individuals in the cohort with one ormore close relatives in the dataset.
(C) The threeascertainment approaches also result inverydifferent amounts of family structure. Red andblue lines indicatefirst- and second-
degree pairwise relationships, respectively. HPG studies are expected to contain a level of family structure between the other two designs.
(D) For this study, statistical-analysis approaches were binned into four categories on the basis of the level of family structure required to
effectively use the approach. First column: ‘‘linkage’’ refers to traditional linkage analyses using one ormore informative pedigrees; ‘‘pedi-
gree-based analysis’’ refers to statisticalmethods beyond linkage that use pedigree structures within a larger cohort that includes unrelated
individuals; ‘‘IBDmodeling’’ refers to analyses thatmodel thepairwise relationships between individualswithoutusing the entire pedigree
structure; ‘‘analysis of unrelateds’’ refers to analyses that assume all individuals in the cohort are unrelated. The amount of family structure
impacts the approaches that can be used, and the arrows indicate the analysis ranges for which the three study designs are best suited.
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problems (and who might be related to each other) as well as

participants from the Coronary Catheterization Laboratory and

the Bariatric Service from GHS.
Sample Preparation, Sequencing, Variant Calling, and

Sample QC
Sample preparation and sequencing for the first�61K samples have

been previously described,1 and this set of samples is referred to in

this manuscript as the ‘‘VCRome set.’’ The remaining set of �31K

samples was prepared in the same process, except that in place of

the NimbleGen probed capture, we used a slightly modified version

of IDT’s xGen probes; we added supplemental probes to capture

regions of the genome well covered by the NimbleGen VCRome

capture reagent but poorly covered by the standard xGen probes.

Captured fragments were bound to streptavidin-conjugated beads,

and non-specific DNA fragments were removed by a series of strin-

gent washes according to the manufacturer’s (IDT’s) recommended

protocol. We refer to this second set of samples as the ‘‘xGen set.’’

Variant calls were produced with the Genome Analysis Toolkit

(GATK; Web Resources). GATK was used for local realignment of

the aligned, duplicate-marked reads of each sample around putative

indels.We then usedGATK’s HaplotypeCaller to process the INDEL-

realigned, duplicate-marked reads to identify all exonic positions at

which a sample varied from the genome reference in the genomic

variant call format (gVCF). Genotyping was accomplished with

GATK’s GenotypeGVCFs on each sample and a training set of 50

randomly selected samples outputting a single-sample variant call

format (VCF) file identifying both single-nucleotide variants

(SNVs) and indels as compared to the reference. We used the sin-

gle-sample VCF files to create a pseudo-sample that contained all

variable sites from the single-sample VCF files in both sets. We

created independent pVCF files for the VCRome set by joint calling

200 single-sample gVCF files with the pseudo-sample to force a call

or no-call for each sample at all variable sites across the two capture

sets. We combined all 200-sample pVCF files to create the VCRome

pVCF file and then repeated this process to create the xGen pVCF

file. We then combined the VCRome and xGen pVCF files to create

the union pVCF. We aligned sequence reads to GRCh38 and anno-

tated variants by using Ensembl 85 gene definitions. We restricted

the gene definitions to 54,214 transcripts, corresponding to

19,467 genes, that are protein-coding with an annotated start and

stop. After the previously described sample QC process, 92,455

exomes remained for analysis.
Principal Components and Ancestry Estimation
We used PLINKv1.920 tomerge the union datasets with HapMap328

and, on the basis of reference SNP cluster ID, kept only SNPs that

were inbothdatasets.We restricted the analysis tohigh-quality com-

mon SNPs with minor-allele frequency > 10%, genotype missing-

ness < 5%, and a Hardy-Weinberg Equilibrium p value > 0.00001

by applying the following PLINK filters: ‘‘–maf 0.1 –geno 0.05

–snps-only–hwe0.00001.’’WecalculatedPCs for theHapMap3 sam-

ples and thenprojected eachsample inourdataset onto thosePCsby

using PLINK. We used the PCs for the HapMap3 samples to train a

kernel density estimator (KDE) for each of the five ancestral super

classes: African (AFR), admixed American (AMR), east Asian (EAS),

European (EUR), and south Asian (SAS). We used the KDEs to calcu-

late the likelihood that each sample belongs to eachof the super clas-

ses. For eachsample,weassigned theancestral superclass on thebasis

of likelihoods. If a sample has two ancestral groupswith a likelihood

>0.3, thenweassignedAFRoverEUR,AMRoverEUR,AMRoverEAS,
The Ame
SAS over EUR, and AMR over AFR; otherwise ‘‘UNKNOWN’’ (we did

this to provide stringent estimates of the EUR and EAS populations

and inclusive estimates for themore admixed populations in our da-

taset). If zero or more than two ancestral groups had a high enough

likelihood, then the samplewasassigned ‘‘UNKNOWN’’ for ancestry.

Samples with unknown ancestry were excluded from the ancestry-

based identity-by-descent (IBD) calculations.
IBD Estimation
Genome-wide IBD estimates are a metric used for quantifying the

level of relatedness between pairs of individuals.24 We applied the

same Hardy-Weinberg equilibrium, minor-allele frequency, and

variant-level missingness that we applied during the PC analysis.

Next, we used a two-pronged approach to obtain accurate IBD

estimates from the DiscovEHR cohort exomes. First, we calculated

IBD estimates among individuals within the same ancestral super-

class (e.g., AMR, AFR, EAS, EUR, and SAS) as determined from our

ancestry analysis. We calculated IBD estimates among all individ-

uals by restricting pairs included as second-degree relatives to

those with PI_HAT relatedness coefficients > 0.1875 and using

the ‘‘–genome –min 0.1875’’ PLINK options. This approach allows

for more accurate relationship estimates because all samples share

similar ancestral alleles, but it is unable to predict relationships

between individuals with different ancestral backgrounds, e.g., a

child of a European father and Asian mother.

Second, in order to detect the first-degree relationships between

individuals with different ancestries, we calculated IBD estimates

among all individuals by restricting pairs included as first-degree

relatives to those with PI_HAT relatedness coefficients >0.3. We

then grouped individuals into first-degree family networks

where network nodes are individuals and edges are first-degree

relationships. We ran each first-degree family network through

the prePRIMUS pipeline,25 which matches the ancestries of the

samples to appropriate ancestral minor-allele frequencies to

improve IBD estimation. This process accurately estimates first-

and second-degree relationships among individuals within each

family network (minimum PI_HAT of 0.15).

Finally, we combined the IBD estimates from the two previously

described approaches by adding in any missing relationships from

family-network-derived IBD estimates to the ancestry-based IBD

estimates. This approach resulted in accurate IBD estimates out

to second-degree relationships among all samples of similar

ancestry and first-degree relationships among all samples.

IBD proportions for third-degree relatives are challenging to

accurately estimate from a large exome sequencing dataset with

diverse ancestral backgrounds because the analysis often results

in an excess number of predicted third-degree relationships as a

result of artificially inflated IBD estimates. We calculated IBD esti-

mates out to third-degree relatives (defined by having a PI_HAT

relatedness coefficients > 0.09875 during the ancestry-specific

IBD analysis) to get a sense of how many third-degree relation-

ships we might have in the DiscovEHR cohort, but these were

not used in any of the phasing or pedigree-based analyses. For

the relationship-based analyses reported in this paper, we only

used high-confidence third-degree relationships we identified

within first- and second-degree family networks.

DuringQC, before creating the final set of 92,455 individuals, we

removed all identical pairs of samples (PI_HAT > 0.9) unless GHS

was able to find evidence through a chart review that the two cor-

responding individuals appeared to be different people, share the

same birthdate, and have one or more additional pieces of
rican Journal of Human Genetics 102, 874–889, May 3, 2018 877



information indicating that they were related (e.g., same last name,

shared parent, same address, or listed the other as a relative).
Pedigree Reconstruction
We reconstructed all first-degree family networks identified within

the DiscovEHR cohort with PRIMUSv1.9.0.25 The combined IBD

estimates were provided to PRIMUS along with the genetically

derived sex and EHR reported age.We specified a relatedness cutoff

of PI_HAT> 0.375 to limit the reconstruction to first-degree family

networks and aminimum cutoff of 0.1875 to define second-degree

networks.
Allele-Frequency-Based Phasing
We phased all bi-allelic variants from the VCRome and xGen

exome datasets separately by using EAGLEv2.3.29 In order to par-

allelize our analysis, we divided the genome into overlapping seg-

ments of �40K variants with a minimum overlap of 500 variants

and 250K base pairs. Because our goal was to phase putative com-

pound heterozygousmutations within genes, we took care to have

the segment breakpoints occur in intergenic regions.

We used the UCSC LiftOver program to lift-over EAGLE’s pro-

vided genetic_map_hg19.txt.gz file from hg19 to GRCh38 and

removed all variants involving switched chromosomes or a change

in relative order within a chromosome; such chromosomal changes

resulted in failure of the centimorgan position to be continuously

increasing when we sorted the variants on increasing chromosome

position. In most cases, this QC step removed inversions around

centromeres. In total, only 2,783 of the 3.3 million SNPs were

removed from the genetic map file. We provided the data for each

segment to EAGLE as PLINK-formatted files and ran them on DNA-

nexus with the described genetic map file running with 16 threads.

We did not allow EAGLE to do any additional variant filtering on

the basis of variant missingness, and we specified a genotype error

rate of 0.01. These options were specified with the following EAGLE

command line parameters:

‘‘–geneticMapFile ¼ genetic_map_hg19_withX.txt.GRCh38_

liftover.txt.gz’’

‘‘–maxMissingPerIndiv 1’’

‘‘–genoErrProb 0.01’’

‘‘–numThreads ¼ 16’’
Compound Heterozygous Calling
Our goal was to obtain high-confidence CHM calls of putative loss-

of-function variants (pLoFs) to identify humans with both copies of

genes potentially knocked out or disrupted. We classify variants as

pLoFs if they result in a frameshift, stop-codon gain, stop-codon

loss, start-codon gain, start-codon loss, or splicing-acceptor or

donor-altering variant. We created a second, expanded set of poten-

tially harmful variants that included the pLOFs as well as likely

disruptive missense variants, which are variants predicted to be

deleterious by all five of the following methods: SIFT30 (damaging),

PolyPhen2 HDIV31 (damaging and possibly damaging), PolyPhen2

HVAR (damaging and possibly damaging), LRT32 (deleterious), and

MutationTaster33 (disease-causing automatic and disease-causing).

We identified rare (alternate allele frequency < 1%) potential

compound heterozygousmutations (pCHMs) by testing all possible

combinations of heterozygous pLoFs and/or deleterious missense

variants within a gene of the same person. We excluded all variants

that were out of Hardy-Weinberg equilibrium (p value < 10�15

calculated with PLINKv1.9), that exceeded 10%missingness within

the individuals’ capture-specific dataset (i.e., VCRome or xGen sets),
878 The American Journal of Human Genetics 102, 874–889, May 3,
or that had another variant within 10 bp in the same individual.We

also excluded SNPs with quality by depth (QD) < 3, alternate allele

balance (AB)< 15%, or read depth< 7, andwe excluded indels with

QD < 5, AB < 20%, or read depth < 10. After filtering, we had

57,355 high-quality pCHMs, distributed among 36,739 individuals,

that could knockout or disrupt normal function of both copies of a

person’s gene if the pCHMs were phased in trans.

The next step was to phase the pCHMs. We used a combination

of population allele-frequency-based phasing with EAGLE and

pedigree- and relationship-based phasing to determine whether

the pCHMs were in cis or trans. Figure 2 diagrams the pCHM

phasing workflow we employed to obtain the most accurate

phasing for each pCHM. Trios and relationships with individuals

in both the VCRome and xGen datasets were used only if both var-

iants in the pCHM were on both the VCRome and our modified

xGen capture designs. Trio and relationship phasing proved to

be more accurate than EAGLE phasing (Table S1), so we preferen-

tially used the pedigree and relationship data for phasing. Table S2

describes the logic we used to determine the phase of the pCHMs

for the different types of familial relationships. For all remaining

pCHMs, we used the EAGLE-phased data described above. We

excluded any EAGLE-phased pCHM where one or both of the

variants were singletons because EAGLE’ s phasing accuracy with

singletons was not significantly different from random guessing

(Table S3). We found that if the two variants in the pCHM have

the same minor-allele count (MAC) less than 100, then they are

in cis (22 out of 22 occurrences in children of trios) in our dataset.

We used the trio-phased pCHMs as the truth set to evaluate the

overall phasing accuracy of EAGLE. EAGLE achieved a 91.1% accu-

racy when phasing rare pCHMs in the children in our recon-

structed trios. However, having the parental haplotypes in the

phasing dataset improved EAGLE’s accuracy of phasing the chil-

dren’s pCHMs in comparison to not including parents in the

cohort. Given that children of trios are a very small portion of

the overall dataset, the 91.1% accuracy is an overestimate of the

phasing accuracy for the overall dataset because most samples

do not have first-degree relatives in the dataset. To obtain a good

measure of accuracy for the EAGLE pCHM phasing across the

entire cohort, we reran EAGLE on the entire dataset as before

but excluded all first-degree relatives of one child in each nuclear

family before phasing. We then compared the EAGLE-phased

pCHMs to the trio-phased pCHMs to estimate EAGLE’s overall

phasing accuracy, which we found to be 89.1% (Table S1).

Finally, if there were more than one pCHM within the same

gene of an individual, then only the pCHM with the most delete-

rious profile was retained (Table S4). Using the approach outlined

above, we were able to phase > 99% of all pCHMs and identify

20,947 rare CHMs that are predicted to alter function.

Compound Heterozygous Mutation Validation
We evaluated phasing accuracy by comparing phasing predictions

to phasing done with trios and with Illumina reads. We performed

Sanger validation on a subset of the incorrectly phased pCHMs to

see whether the variants were false positive calls.

First, we evaluated the phasing accuracy of the pCHMs by using

the trio phased pCHMs as truth. Given that the phasing approach

for each familial relationship is performed independently from the

trio phasing, we can get a good measure of phasing accuracy of

each of the relationship classes as long as the pCHM carrier is a

child in a trio. Table S1 shows that the accuracy of family-based

phasing was 99.6% (1060/1064 pCHMs) for rare pCHMs. EAGLE

phasing was less accurate, at 89.1% (766/860 pCHMs; Table S1).
2018
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Figure 2. Decision Cascade for Determining the Phase of Potential Compound Heterozygous Mutations (pCHMs) among the 92K
DiscovEHR Participants
25.1% of pCHMs and 33.8% of the CHMs (trans) were phased with trio or relationship data.
We evaluated EAGLE’s pCHM-phasing accuracy in different ranges

of minor-allele frequency, and we found that EAGLE consistently

attains an accuracy greater than 90% with a MAC greater than 9

and an accuracy around 77% for a MAC between 2 and 9 (Table

S3). EAGLE phasing performed poorly with singletons.

Second, we attempted to validate 200 pCHMswith short (�75 bp)

Illumina reads by looking at the read stacks in the Integrative Geno-

micsViewer34 to seewhether the twovariantsoccuron thesameread

or independently. We were able to decisively phase 190 (115 cis and

79 trans; 126 EAGLE-phased and 74 pedigree- or relationship-

phased) selected pCHMs by using short reads. The remaining ten

showed read evidence of both cis and trans phasing, most likely

because one or both of the variants were false positive calls. Visual

validation showed an overall accuracy of 95.8% and 89.9% for pedi-

gree and relationship phasing and EAGLE phasing, respectively

(Table S5). Although the Illumina read-based validation results are

in line with the trio validation results, we do note that the Illumina

read-based validation accuracy results are lower than the accuracy of

phasing with trios. The difference is most likely due to the enrich-

ment for false-positive pCHMs in small problematic exon regions

prone to sequencing and variant calling errors.
DNM Detection
We merged the results from two different approaches for detect-

ing DNMs. The first method is TrioDeNovo,35 which reads likeli-

hoods at each of the child’s variable sites in the child’s and

parents’ genotype. One inputs these likelihoods into a Bayesian

framework to calculate a posterior likelihood that a child’s variant

is a DNM. The second program is DeNovoCheck (Web Resources),

which is described in the supplemental methods of de Ligt et al.36

DeNovoCheck takes in a set of candidate DNMs. A variant was

considered a candidate DNM if GATK called it a variant in the
The Ame
child but not in either parent. It then verifies the variant’s pres-

ence in the child and absence in both of the parents by examining

the BAM files. We filtered these potential DNMs and evaluated a

confidence level for each DNM in the union set by using a variety

of QC metrics. Figure S1 illustrates this DNM-calling process,

shows the variant filters we applied, and provides the criteria

we used to classify each DNM as either low confidence, moderate

confidence, or high confidence. We excluded all low-confidence

and non-exonic DNMs from the summary results of this paper,

but we considered them when doing visual validation to estimate

the false-negative rate of excluding them. We also excluded the

DNM calls for one extreme outlying participant who had an order

of magnitude more DNMs called than any other participant.

Pedigree Estimation Based on Distant Relationships
Although we cannot know the true family history of the de-

identified individuals in our cohort, we have used PRIMUS31

reconstructed pedigrees, ERSA distant-relationship estimates, and

PADRE37 to connect the pedigrees to identify the best pedigree rep-

resentation of the mutation carriers of a tandem duplication in

LDLR.38 We used HumanOmniExpress array data (available for

25 out of the 37 carriers) to estimate themore distant relationships

with the process described by Staples et. al.37 and used PADRE to

connect the PRIMUS reconstructed pedigrees.

SimProgeny
We developed a forward simulation framework (SimProgeny) to

simulate a wide variety of populations, including a population

served by a healthcare system like GHS. SimProgeny also simu-

lates sample ascertainment used by HPG studies (Figure S2).

SimProgeny can simulate populations of millions of people

dispersed across one or more sub-populations on the basis of
rican Journal of Human Genetics 102, 874–889, May 3, 2018 879



user-specified population parameters (Table S6). Progressing year

to year, the simulation creates couplings, births, separations, mi-

grations, deaths, and movement between sub-populations on the

basis of specified parameters. This process generates realistic pedi-

gree structures and populations that represent a wide variety of

HPG studies. The default values have been tuned so that the

simulated population models the DiscovEHR cohort, but one

can easily customize these parameters to model different popula-

tions by modifying the configuration file included with the

SimProgeny code (available in the Web Resources).

In addition to modeling populations, SimProgeny simulates two

ascertainment approaches to model selecting individuals from a

population for a genetic study: random ascertainment and clustered

sampling. Random ascertainment gives each individual in the pop-

ulation an equal chance of being ascertained without replacement.

Clustered sampling is a way to enrich for close relatives by selecting

an individual at random along with a number of their first- and sec-

ond-degree relatives. One determines the number of first-degree rel-

atives by sampling a value from a Poisson distribution with a user-

specified first-degree ascertainment lambda (default is 0.2). The

number of second-degree relatives is determined in the same way,

and the default second-degree ascertainment lambda is 0.03.

Simulation of the Underlying DiscovEHR Population and

Its Ascertainment
Our DiscovEHR simulations contained individual populations

with starting sizes of 200K, 300K, 350K, 400K, 475K, 500K, and

550K. We tuned the SimProgeny parameters (Table S6) with publi-

cally available country-, state-, and county-level data as well as our

own understanding of how individuals were ascertained through

GHS consenting and sample collection. Sources for the selected pa-

rameters are available in Document S3. We reduced the immigra-

tionandemigration rates fromthe state-wide Pennsylvania average

given that GHS primarily serves rural areas that tend to have lower

migration rates thanmoreurban areas. Simulationswere runwith a

burn-in period of 120 years and then progressed for 101 years.

Simulated populations grew by �15%, which is similar to the

growthof the Pennsylvania population since themid-20th century.

We performed both random and clustered ascertainment. For

both ascertainment approaches, we shuffled the ascertainment

order of the first 5% of the population (specified with the

ordered_sampling_proportion parameter) to model the random

sequencing order of the individuals in GHS biobank at the begin-

ning of our collaboration. Although the selection of this parameter

has no effect on random ascertainment and a negligible effect on

the accumulation of pairwise relationships in clustered ascertain-

ment, it does affect the proportion of individuals with one or

more relatives in the clustered sampling dataset by creating an in-

flection point at 5% population ascertainment in the simulation

results plots (Figures S3B and S3D). This inflection point would

be less pronounced if we were to model the freeze process of the

real data or model a smoother transition between sequencing sam-

ples from the biobank and newly ascertained individuals. Notably,

the inflection point is more pronounced when values of lambda

from the Poisson distribution are higher.
Results

Relationship Estimation and Relatedness in DiscovEHR

In the current dataset of 92,455 individuals, we identified 43

monozygotic twins, 16,476 parent-child relationships,
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10,479 full-sibling relationships, and �39,000 second-de-

gree relationships (Figure 3A). Next, we treated individuals

as nodes and relationships as edges to generate undirected

graphs. Using only first-degree relationships, we identified

12,594 connected components, which we refer to as first-

degree family networks. Figure 3B shows the distribution in

size of the first-degree family networks, which range from 2

to 25 sequenced individuals. Similarly, we found 10,173 sec-

ond-degree family networks, the largest containing 19,968

individuals (�22% of the overall dataset; Figure 3C). We

were able to identify �5,300 third-degree relationships

within the second-degree family networks. Using a lower

IBD cutoff (PI_HAT > 0.09875) for the IBD estimations

within ancestral groupswithout considerationof second-de-

gree family networks, we found well over 100,000 third-de-

gree relationships within the DiscovEHR cohort. Given

that 95.9% of DiscovEHR individuals are of European

ancestry (Table S7), it is not surprising that the vast majority

(98.6%) of the pairwise relationships found were between

two individuals of European ancestry (Table S8). Nonethe-

less, we identified many relationships between people of

the same, non-European ancestry and between individuals

withdifferent ancestries; for example, therewere several trios

having one European parent, one East Asian parent, and a

child whose ancestry was unassigned to a super-population

because of the ad-mixed nature of his or her genome.

Importantly, we show both empirically (Figure 4A) and

through simulation (Figure 5) that the rate of accumu-

lating relatives far exceeds the rate of ascertaining samples.

This is expected, given that there are combinatorially

increasing numbers of possible pairwise relationships

within the dataset as the size increases and that the likeli-

hood that a previously unrelated individual in the dataset

becomes involved in a newly identified relationship also

increases. Currently, 39% of individuals in the DiscovEHR

cohort have at least one first-degree relative in the dataset,

and 56% of the participants have one or more first- or

second-degree relatives in the dataset (Figure 4B).

Simulations with SimProgeny and Relatedness

Projections

Prior to the launch of the DiscovEHR collaboration, it was

unclear howmuch relatedness we should expect to see and

how the amount of relatedness would compare to those

seen in previous population-based genomic studies. How-

ever, it became clear early on that the cohort contained

far more family structure than typically seen in popula-

tion-based studies, and projections estimated that the pro-

portion of the cohort involved in close relationships would

eventually involve the majority of our dataset. Given the

impact of this relatedness on downstream analyses, we

set out to determine whether this amount of relatedness

is expected, whether it is unique to our dataset, and how

much it would grow as the sequenced cohort expands.

To answer these questions, we developed a flexible simu-

lation framework (SimProgeny) to model a wide variety of

study populations and sampling approaches in order to
2018



Figure 3. First 92K Sequenced Individuals from the DiscovEHR Cohort Contain an Extensive Amount of Relatedness
(A) A plot of IBD0 versus IBD1 shows pairwise relationships segregating into different familial relationship classes. The IBD sharing
distributions of second- and third-degree relationships overlap with each other, so a hard cutoff halfway between the two expected
means was selected. Third-degree relationships are challenging to accurately estimate because of the technical limitations
of exome data as well as the widening and overlapping variation around the expected mean IBD proportions of more distant rela-
tionship classes (e.g., fourth degree and fifth degree). We provided a lower-bound estimate of the number of third-degree
relationships.
(B) The distribution of size of first-degree family networks ranges between 2 and 34 sequenced individuals, and the vast majority are
smaller family networks.
(C) The largest reconsturcted first-degree family network consisting of 34 sequenced individuals; more than 99.98% of the first-degree
family networks’ pedigree structures were reconstructed from the genetic data.
(D) The largest second-degree family network, consisting of 19,968 individuals (�22% of the dataset), shows 4,062 first-degree family
networks (represented as red boxes that are proportionally sized to the number of individuals in the network, including the network cor-
responding to the pedigree shown in [C]), and 5,584 additional individuals (black nodes) connected by 11,430 second-degree relation-
ships (blue edges).
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Figure 4. Accumulation of Relatedness within the DiscovEHR Cohort at Consecutive Data Freezes
(A) The number of pairwise relationships has grown rapidly.
(B) The proportion of individuals with a first- or second-degree relative identified in the cohort.
estimate the amount of relatedness researchers should

expect to find for a given set of populations and sampling

parameters. Although we apply this framework to the

DiscovEHR cohort, it is flexible enough that it also can

be applied to modeling shallower ascertainment of more

transient populations.

We used SimProgeny to simulate the DiscovEHR popula-

tion and the ascertainment of the first 92,455 participants.

As expected, the simulations show that DiscovEHR partici-

pants were not randomly sampled from the population, but

rather that the dataset is enriched for close relatives

(Figure S4). Therefore, we used a clustered ascertainment

approach (see Material and Methods) that more accurately

models ascertainment from a healthcare system study pop-

ulation and the subsequent enrichment of close relatives

observed in the real data (Figure 5). These simulation

results suggest that the effective population size for the first

60K participants was �475K individuals, and a Poisson dis-

tribution with lambda of 0.2 most closely matches the

enrichment of first-degree relatives. However, the departure

of the real data line (Figure 4, faint red line) from the�475K

simulation line (solid green line) at 90K ascertained samples

suggests that the DiscovEHR cohort’s effective population

size might have increased after ascertainment of the first

60K samples. These estimates are consistent with our

knowledge that the majority of the first 30K–60K Discov-

EHR participants reside in the counties surrounding the

GHS headquarters in Danville and that the participant

base subsequently expanded to more heavily include

pockets of individuals from north-central and northeast ru-

ral Pennsylvania (Figure S5). Most notably, ascertainment

was not evenly distributed across the entire GHS catchment

area (containing >2.5 million individuals).

After identifying simulation parameters that reasonably

fit the real data, we used SimProgeny to obtain a projection

of the amount of first-degree relationships we should
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expect as DiscovEHR expands to our goal of 250K partici-

pants. If we continued to ascertain participants in the

same way, we would expect to obtain �150K first-degree

relationships (Figure 5C) involving �60% of DiscovEHR

participants (Figure 5D).We then expanded our simulation

analysis to include second-degree relationships, and the

simulation results suggested that with 250K participants

we should expect well over 200K combined first- and

second-degree relationships involving over 70% of the

individuals in DiscovEHR (Figure S3).

These projections of relatedness in DiscovEHR assume

that we continue ascertaining participants in the same

way we did for the first 60K–90K participants. However, if

DiscovEHR expands ascertainment of participants to addi-

tional GHS clinics and hospitals in other regions, then these

relatedness estimates are likely to drop because expanding

the participant base increases the size of the effective sam-

pling population and taps into new genetic demes or distant

branches of the same demes. The relatedness will depend on

the proportion of the total population we ascertain and the

underlying regional population demographics, both of

which can be simulated with SimProgeny.

Although SimProgeny is designed to reasonably model a

real population, it has its limitations. For example, the Pois-

son distribution accuratelymodels the clustered sampling of

first-degree relationships we observe in our real data, but

compared to DiscovEHR, it underestimates the clustering

of second-degree relationships. Thus, there are bound to be

nuances that cannot be easilymodeledwith a fixed distribu-

tion, and there are likely to be other confounding aspects to

how participants were ascertained in the real dataset.

Regardless, our simulation results demonstrate a clear

enrichment of relatedness in the DiscovEHR HPG study

and provide key insights into the tremendous amount of

relatedness we expect to see as we continue to ascertain

additional participants, if we assume future ascertainment
2018



Figure 5. Simulated Population and Ascertainment Fit to the Accumulation of First-Degree Relatedness in the DiscovEHR Cohort
The real data were calculated at periodic ‘‘freezes’’ indicated by punctuation points connected by the faint red line. Most simulation
parameters were set on the basis of information about the real population demographics and the DiscovEHR ascertainment approach.
However, two parameters were unknown and selected on the basis of their fit to the real data: (1) the effective population size fromwhich
samples were ascertained and (2) the increased chance that someone is ascertained given that a first-degree relative was previously as-
certained, which we call ‘‘clustered ascertainment.’’ All panels show the same three simulated population sizes spanning the estimated
effective population size.We simulated clustered ascertainment by randomly ascertaining an individual along with a Poisson-distributed
random number of first-degree relatives (distributions’ lambdas are indicated in the legends).
(A) The accumulation of pairs of first-degree relatives as additional samples are ascertained.
(B) The proportion of the ascertained participants that have one or more first-degree relatives that have also been ascertained.
(C) Simulated ascertainment projections with upper and lower bounds of the number of first-degree relationships we expect with our
current DiscovEHR ascertainment approach as we scale to our goal of 250K participants.
(D) Simulated projections with upper and lower bounds of the proportion of the ascertained participants that have one or more first-
degree relatives that have also been ascertained.
is reasonably well modeled by SimProgeny. These observa-

tions can also be extrapolated to other large HPG studies,

and the flexibility built into the model provides the ability

to tune themodel to a wide variety of different populations

and ascertainment approaches.

Leveraging Relatedness Instead of Treating It like a

Nuisance

We reconstructed pedigree structures for 12,574 first-

degree family networks in the DiscovEHR dataset by using
The Ame
the pedigree reconstruction tool PRIMUS, and we found

that 98.9% of these pedigrees reconstructed unambiguously

to a single pedigree structure when we considered IBD esti-

mates and reported participant ages. These pedigrees include

2,192 nuclear families (1,841 trios, 297 quartets, 50 quintets,

3 sextets, and 1 septet). Table S9 shows a breakdown of the

triosbyancestry. Figure3Cshowsthe largestfirst-degreepedi-

gree,whichcontains34sequenced individuals.Wehaveused

these relationships and pedigrees in several ways, and we

highlight three main applications in this section.
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Compound Heterozygous Mutations

A major goal of human genetics is to better understand the

function of every gene in the human genome. LoFs are a

powerful tool that we can use to gain insight into gene func-

tionbyanalyzing thephenotypiceffectswhenbothcopiesof

an individual’s gene are knockedout ordisrupted (KOs). Rare

(MAF < 1%) homozygous LoFs have been highlighted in

recent large-scale sequencing studies and have been critical

in identifying many gene-phenotype interactions.1,4,39,40

Although rare CHMs of two heterozygous LoFs are function-

ally equivalent to rare homozygous KOs, they aremore diffi-

cult to identify (particularlywith short-read sequencing) and

are rarely interrogated in large sequencing studies.1,4,39

We performed a survey of rare CHMs in the DiscovEHR

cohort. First, we identified 57,355 high-quality pCHMs

consisting of pairs of rare heterozygous variants that are

either putative LoFs (pLoF; i.e., nonsense, frameshift, or

splice-site mutations) or missense variants with strong ev-

idence of being deleterious (see Material and Methods).

Second, we phased the pCHMs by using a combination

of allele-frequency-based phasing with EAGLE and pedi-

gree-based phasing with the reconstructed pedigrees and

relationship data (Figure 2). Trio validation indicated that

EAGLE phased the pCHMs with an average of 89.1%

accuracy (Table S1). However, because we had extensive

pedigree and relationship data within this cohort, we

were able to use them to phase 25.2% of the pCHMs and

33.8% of the trans CHMs with highly accurate trio and

relationship phasing data (R98.0%; Table S1), reducing

inaccurate phasing of trans CHMs by approximately a

third. The phased pCHMs spanned the entire frequency

range from singletons to 1% MAF (Table S10).

After processing, 40.3% of the pCHMs were phased in

trans, yielding a high-confidence set of 20,947 rare, delete-

rious CHMs distributed among 17,533 of the 92K individ-

uals (mean ¼ 0.23 per person; max ¼ 10 per person;

Figure 6A). The median genomic distance between

pCHM variants in cis (5,955 bp) was a little more than

half the median distance between the pCHMs in trans

(11,600 bp; Figure S6). Nearly a third of the CHMs involved

at least one pLoF, and 8.9% of the CHMs consisted of two

pLoF variants (Table S11). More than 4,216 of the 19,467

targeted genes contain one or more CHM carriers (Table

S12), and 2,468 have more than one carrier (Figure 6B).

ExAC pLI scores indicate that the ten genes with more

than 125 CHM carriers are likely to be among the most

LoF tolerant in the genome4 (Table S13), so it is no surprise

that these genes would contain a higher number of CHMs.

In order to get a more robust set of genes where both

copies of the gene are knocked out or disrupted in the

same individual and to demonstrate the added value of

CHMs, we combined the CHMs with the 6,560 rare

(MAF < 1%) homozygous pLoFs found among the 92K

DiscovEHR participants. pLoF-pLoF CHMs increased the

number of genes that were knocked out in R1 and R20

individuals by 15% and 61%, respectively (Table S12).

The benefit of including CHMs in a KO analysis is even
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more significant when we consider missense variants

that are predicted to disrupt protein function. We found

a combined 20,364 rare homozygous pLOFs and delete-

rious missense variants among the 92K participants.

Carriers of homozygous pLoF or predicted deleterious

missense variants provided a large number of genes that

are predicted to be completely knocked out or disrupted.

However, the inclusion of carriers of CHMs provided

26% more genes that are knocked out or disrupted in

R1 individuals and 397% more genes knocked out or dis-

rupted in R20 individuals (Table S12).

DNMs

DNMs are more likely to produce extreme phenotypes in

humans than are other types of rare variations because

DNMs occur sporadically and lack purifying selection.

Many recent sequencing studies have shown that DNMs

are a major driver in human genetic disease,36,41,42 demon-

strating that DNMs are a valuable tool for better under-

standing gene function.

We used the nuclear families reconstructed from the 92K

DiscovEHR participants to confidently call 3,415 moder-

ate- and high-confidence exonic DNMs distributed among

1,783 of the 2,602 available children in trios (mean¼ 1.31;

max ¼ 48; Figure 6C). PolyPhen2 predicts 29.1% (n ¼ 995)

of the DNMs as ‘‘probably damaging’’ and an additional

9.2% (n ¼ 316) as possibly damaging. The DNMs are

distributed across 2,802 genes (Figure 6D), and TTN

receives the most (nine). The most common types of

DNM are nonsynonymous SNVs (58.5%), followed by syn-

onymous SNVs (24.3%). Table 1 provides a complete

breakdown of DNM types and shows that our proportions

of DNMs falling into the different functional classes gener-

ally match those found in a recent study of DNMs in

children with development disorders.41 We also observed

an increase in the number of exonic DNMs with respect

to bothmaternal (0.011 DNMs/year, p¼ 7.3x10�4; Poisson

regression; Figure S7) and paternal (0.010 DNMs/year;

p ¼ 5.6x10�4) age at birth, consistent with other re-

ports.41,43–45 Notably, maternal and paternal age at birth

are highly correlated in our dataset (r ¼ 0.79; Figure S8);

thus, the rates are not additive, and no significant differ-

ence identified either as a driving factor.

We attempted to perform visual validation of 23

high-confidence, 30 moderate-confidence, and 47 low-

confidence DNMs spanning all functional classes. Eight

moderate- and two low-confidence variants could not be

confidently called as true- or false-positive DNMs. Of those

remaining, 23/23 (100%) high-confidence, 19/22 (86%)

moderate-confidence, and 12/43 (28%) low-confidence

DNMs were validated as true positives. Visual validation

also confirmed that the majority (40/49) of potential

DNMs in individuals with >10 DNMs are most likely

false-positive calls.

Variant and Phenotype Segregation in Pedigrees

We have used the reconstructed pedigree data from among

the 92K DiscovEHR participants to distinguish between

rare population variation and familial variants and have
2018
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Figure 6. DiscovEHR Results for Compound Heterozygous Mutations and De Novo Mutations
(A) Distribution of the number of CHMs per individual in the DiscovEHR cohort.
(B) Distribution of the number of CHMs per gene. Names of genes with more than 125 CHMs are listed.
(C) Distribution of 3,415 exonic high- and moderate-confidence DNMs among the children of trios in the DiscovEHR cohort.
(D) The distribution of non-synonymous DNMs across the 2,802 genes with one or more DNM carriers.
leveraged it to identify highly penetrant disease variants

segregating in families. Although this is not intended to

be a survey of all known Mendelian-disease-causing

variation transmitted through these pedigrees, we have

identified a few illustrative examples, including familial

aortic aneurysms (AAT6 [MIM: 611788]; Figure 7A), long

QT syndrome (LQT2 [MIM: 613688]; Figure 7B), thyroid

cancer (MTC [MIM: 155240]; Figure 7C), and familial hy-

percholesterolemia (FH [MIM: 143890]; Figure 8).38 The

FH example is particularly interesting, given that we previ-

ously reported an FH-causing tandem duplication in LDLR

[MIM: 606945].38 We have updated the CNV calls and

found 37 carriers of the FH-causing tandem duplication

among the 92K exomes, and we have reconstructed 30

out of the 37 carriers into a single extended pedigree.

The carriers’ shared ancestral history provides evidence

that they all inherited this duplication event from a
The Ame
common ancestor approximately six generations back.

Although two of the seven remaining carriers are second-

degree relatives to each other, genotyping array data was

not available to confirm that the remaining seven carriers

are also distantly related to the other carriers in Figure 8.
Discussion

Sequencing studies continue to collect and sequence

increasing proportions of human populations and are

uncovering the extremely complex, intertwined nature of

human relatedness. In the first 92K sequenced participants

of the DiscovEHR cohort, we have identified �66K first-

and second-degree relationships, reconstructed 12,574

pedigrees, and uncovered a second-degree family network

of nearly 20,000 participants. The high level of cryptic
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Table 1. Breakdown by Functional Class of Moderate- and High-Confidence Exonic DNMs Found in the DiscovEHR Cohort alongside a
Similar Breakdown for a Recent Developmental Delay Exome Study of 4,293 Trios

Type of DNM Number of DNMs Percent of DNMs Number in DDD Studya Percent in DDD Studya

Nonsynonymous SNV 1,996 58.5% 4,797 57.8%

Synonymous SNV 831 24.3% 1,629 19.6%

Splicing 153 4.5% 671 8.1%

Non-frameshift deletion 78 2.3% 167 2.0%

Non-frameshift insertion 55 1.6% 28 0.3%

Frameshift 187 5.5% 603 7.3%

Stop-gain SNV 112 3.3% 402 4.8%

Stop-loss SNV 3 0.1% 7 0.1%

aThe Deciphering Developmental Disorders Study (DDD).41 The DDD paper also reported 57 DNMs of other classes that were not included in our analysis or in this
table; percentages were adjusted accordingly.
relatedness within this dataset is certainly influenced

by the underlying population structure of several

close communities with relatively low migration rates.

Studies in founder populations have already highlighted

the complexity of relationships (Old Order Amish,46

Hutterites,47 and Ashkenazi Jews48), and recent studies

of non-founder populations are reporting extensive

levels of family structure (UK Biobank,49 NHANES,50 and
C
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Figure 7. Reconstructed Pedigree from DiscovEHR Demonstrates
Segregating variants include variants for (A) aortic aneurysms (ACTA2
2; Ensembl: ENST00000224784), (B) long QT syndrome (KCNH2 [MI
Ensembl: ENST00000262186), and (C) thyroid cancer (RET [MIM
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AncestryDNA6). We observed family structure (first- and

second-degree relationships) involving 55.6% of the Dis-

covEHR participants, and we expect family structure will

involve a large proportion, if not a majority, of individuals

in other large HPG studies.We have demonstrated through

simulations and observations within our own data that we

can obtain a large number of close familial relationships,

nuclear families, and informative pedigrees within HPG
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the Segregation of Known Disease-Causing Variants
[MIM: 102620], c.353G>A [p.Arg118Gln]; GenBank: NM_001613.
M: 152427], c.3278C>T [p.Pro1093Leu]; GenBank: NM_000238.3;
: 164761], c.2671T>G [p.Ser891Ala]; GenBank: NM_020630.4;
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Figure 8. Reconstructed Pedigree Prediction Containing 25/37 Carriers of the FH-Causing Tandem Duplication in LDLR
The pedigree also contains 20 non-carrier, related (first- or second-degree) individuals from the sequenced cohort. Carrier and non-carrier
status was determined from the exome data from each individual. Elevated maximum LDLmeasurements (value under symbols) as well
as increased prevalence of coronary artery disease (CAD, red fill) and pure hypercholesterolemia (ICD 272.0; blue) segregate with dupli-
cation carriers. Five additional carriers (not drawn) were found to be distant relatives (seventh- to ninth-degree relatives) of individuals in
this pedigree.
studies. Although the underlying population structure and

depth of ascertainment will vary between studies, we do

believe that our observations in DiscovEHR will be appli-

cable to other HPG studies, given that families tend to visit

the same healthcare system and have similar genetic and

environmental disease risks. The days of only having a

handful of closely related individuals or samples in large

sequencing cohorts are over, and we can no longer simply

remove closely related pairs of individuals for our associa-

tion studies on the assumption that they are only a small

fraction of the overall cohort. Instead, we need

to continue developing methods that are capable of

leveraging the extensive relatedness of these rich cohorts

and that can scale to accommodate growing population

sizes and phenotype diversity of HPG studies.

In this study, we have demonstrated several ways to

leverage family structure. First, we improved the phasing

accuracy of rare CHMs. Although we did obtain accurate

phasing of CHMs with EAGLE, our pedigree- and relation-

ship-based phasing was far more accurate: this approach

reduced the pCHMphasing error by approximately a third.

We expect that the accuracy of the relationship-based

phasing of pCHMs will be lower for variants with >1%

MAF because phasing using the pairwise relationships as-

sumes that if two variants appear together in two relatives,

then they are in cis and have segregated together from a

common ancestor. There is a higher chance that two inde-

pendently segregating common variants will appear

together in multiple people, which would result in their

being incorrectly phased as cis by the algorithm. Therefore,

common variants might be better phased using population

allele frequencies with programs like EAGLE rather than

phased using pairwise relationships.

Second, pedigree reconstruction using first-degree rela-

tionships within HPG studies provides highly accurate

trios and other informative pedigree structures that can

be leveraged for many use cases. We used the 2,602 recon-

structed trios to find 3,415 DNMs and tracked known dis-

ease-causing mutations through extended pedigrees.

Pedigrees and relationships are also particularly useful for

tracking transmission of rare variants, providing increased
The Ame
confidence in variant calls, and allowing for the use of

more traditional Mendelian genetic analyses. Pedigrees

can be particularly useful when combined with follow-up

chart reviews and the ability to re-contact participants

and their family members.

As mentioned in the introduction, relationships and

pedigrees with significant uncertainty should be used care-

fully in analyses that are sensitive to this uncertainty. The

accuracy of an estimated relationship decreases as the rela-

tionship becomes more distant, and reconstructed pedi-

grees connected by these uncertain relationships should

be used accordingly. First-degree relationships are

extremely accurately estimated. Reconstructed pedigrees

fully connected by first-degree relationships (e.g., nuclear

families) have the highest level of certainty.25 Estimated

pedigrees such as the one depicted in Figure 8 work well

for depicting the transmission of disease-causing muta-

tions in a family, but they are probably not appropriate

for a linkage analysis because of the high level of uncer-

tainty of the third- to ninth-degree relationships. We

recommend validating significantly uncertain relation-

ships and pedigree structures with independent data

before using them in an analysis. If relationship and pedi-

gree validation is not possible, then they can be used for

prioritization of results that are directly validated with

another approach.

We show that cryptic family structure in a large

sequencing dataset can be an opportunity to harness a

valuable, untapped source of genetic insights rather than

a nuisance that must be managed during downstream

analyses. As we enter the era of genome-based precision

medicine, we see a critical need for additional innovative

methods and tools that are capable of effectively mining

the familial structure and distant relatedness contained

within the ever-growing sequencing cohorts.
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Figure S1. DNM calling, filtering, and confidence ranking workflow. GQ = genotype quality; 
MAC is minor allele count in DiscovEHR; DP = read depth at the DNM site; AD = the alternate 
allele depth; AB = alternate allele balance; MQ = mapping quality; QD = quality by depth for 
the DNM site in the joint called DiscovEHR pVCF; Homopolymer indel is an indel with more 
than 4 consecutive base pairs of the same nucleotide. Blacklisted genes include PDE4DIP, 
PRAMEF1, PABPC3, NBPF10, NBPF14, olfactory genes (OR*), MUC genes (MUC*), and HLA 
genes (HLA-*). DNMs were excluded if either parent had a DP < 4, which was effective at 
filtering out potential DNMs in a child whose parent(s) had no or little read coverage at that 
DNM site due to being processed with a different capture (e.g. child captured with VCRome and 
the parent with xGen). 
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Figure S2. Some of the factors that drive the amount of relatedness in an ascertained dataset 
modeled by SimProgeny. 1) The populations structure is determined by several parameters that 
are modeled by SimProgeny. 2) SimProgeny simulates both random and clustered (non-random) 
ascertainment of the simulated populations. 3) SimProgeny simulates the ascertainment of up to 
50% of the simulated population. 

 
 
 



 
Figure S3. Simulated population and ascertainment fit to the accumulation of first- and second-
degree relatedness in the DiscovEHR cohort. The real data was calculated at periodic “freezes” 
indicated with the punctuation points connected by the faint line. Most simulation parameters 
were set based on information about the real population demographics and the DiscovEHR 
ascertainment approach. However, two parameters were unknown and selected based on fit to the 
real data: 1. the effective population size from which samples were ascertained and 2. the 
increased chance that someone is ascertained given a first- or second-degree relative previously 
ascertained, which we call “clustered ascertainment”. All panels show the same three simulated 
population sizes. We simulated clustered ascertainment by randomly ascertaining an individual 
along with a Poisson distributed random number of 1st degree relatives and a separate random 
number of 2nd degree relatives. Both Poisson distributions have a lambda indicated in the figure 
legends. (A) The accumulation of pairs of first- and second-degree relatives as additional samples 
are ascertained. (B) The proportion of the ascertained participants that have one or more first- and 
second-degree relatives that have also been ascertained. (C) Simulated ascertainment projections 
with upper and lower bounds of the number of first- and second-degree relationships we expect 
with our current DiscovEHR ascertainment approach as we scale to our goal of 250K 
participants. (D) Simulated projection with upper and lower bounds of the proportion of the 
ascertained participants that have 1 or more first- or second-degree relatives that have also been 
ascertained. 



 
 

 
 
Figure S4. Comparison of the ascertainment of first-degree relatives among 92K DiscovEHR 
participants compared to random ascertainment of simulated populations. The real data was 
calculated at periodic “freezes” indicated with the punctuation points connected by the faint line. 
We also took the samples and relationships identified in the 92K-person freeze and then shuffled 
the ascertainment order to demonstrate that the first half of the 92K DiscovEHR participants 
were enriched for first-degree relationships relative the second half. We simulated populations of 
various sizes using parameters similar to the real population from which DiscovEHR was 
ascertained. We then perform random ascertainment from each of these populations to see which 
population size most closely fit the real data. The key takeaway is that none of these population 
sizes fit the real data and the random ascertainment approach is a poor fit. A different 
ascertainment approach that enriches for first-degree relatives compared to random 
ascertainment could produce a better fit. (A) Ascertainment of first-degree relative pairs in an 
effective sampling population of size 403K closely fit the shuffled version of the real data, but 
underestimate the # of relative pairs below 92K ascertained participants and dramatically over 
estimates the number of relative pairs above 92K participants. (B). Similarly, a population of 
403K most closely fits the shuffled real data with respect to the number of individuals with one or 
more first-degree relatives, but is a poor fit to the real data.  



 

Figure S5. Heat map showing the concentration of where My Code participants live base on zip 
code. Although the highest concentration is in the areas around Danville (in the middle), there 
are also pockets in State College (west of Danville), Lewistown (southwest), Wilkes-Barre 
(northeast) and Shamokin (southeast), and areas in between. 

 
 

 

	



 
Figure S6. Range of genomic distance between phased pCHM variants showing that both trans 
and cis pCHMs span the same genomic distance range, but on average, cis pCHMs are closer.  

 
 
 
 



 
Figure S7. The expected number of exonic DNMs in the child given paternal (A) and maternal (B) 
age at birth with 95% confidence intervals for each age bin. There is a significant correlation 
between the number of DNMs in the child and both paternal (0.010 DNMs/year; p=5.6x10-4) and 
maternal (0.011 DNMs/year, p=7.3x10-4) age at birth, respectively. Testing for a correlation 
between parent age at conception and # of DNMs in the child. For this analysis, we excluded 16 
samples where proband and parental ages could not be confidently assigned or where more than 
10 DNMs were identified, likely indicating technical artifacts or somatic variation. Maternal and 
paternal age are highly correlated (rho=0.79); when modelled jointly, neither were significant 
due to collinearity (0.0059 maternal DNMs/year, p=0.29; 0.0063 paternal DNMs/year, p=0.21; 
Poisson regression). We then tested parental age difference (paternal-maternal age) alongside 
either maternal or paternal age at birth and, still, both paternal and maternal age were equally 
predictive of number of DNMs (i.e. age difference was not significantly associated with number of 
DNMs given maternal or paternal age). 

 

 



 
Figure S8. Maternal and Paternal age at birth of child are highly correlated (rho = 0.79). For 
this analysis, we excluded 16 samples where proband and parental ages could not be confidently 
assigned or where more than 10 DNMs were identified, likely indicating technical artifacts or 
somatic variation. Maternal and paternal age are highly correlated (rho=0.79) 
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