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Fig. S1. Quality controls of the proteomic dataset, Related to Fig. 1. A. Analysis of lable-

free quantitative intensities reveals a strong separation between podocytes (green) and non-

podocytes (red) quantitative proteome profiles. B. Multi scatter plots of LFQ intensities 

indicate a clear separation between podocytes (green) and non-podocytes (red) and a high 

correlation between biological replicates. Pearson’s correlation coefficients are annotated. C. 

Principal component analysis of protein expression values of samples in this study.  
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Fig. S2. Transcriptome quality controls and overexpressed gene sets, Related to Fig. 
2. A. PCA analysis of published podocyte mRNA-Seq studies (see Table S3 for details, H_P 

is our study). B. Contribution to principal components. C. Histogramm and density plot of tpm 

values from our podocyte mRNA-Seq study. D. Comparison of tpm values of podocyte, 

mesangial cell and endothelial cell marker genes. Our Podocyte RNA-Seq study as well as 

the studies of Kann et al.(6) and Fu et al. (8) proofed to be podocyte specific with only 

minimal expression of mesangial and endothelial marker genes (H_NP is our RNA-Seq study 

on non-podocyte glomerular cells, H_P is our study on podocytes, see Table S3 for details of 

further studies). E-I. Overrepresented Genesets in podocyte compared to non-podocyte 

glomerular cells transcriptomes. Related to Fig. 2. E. GO molecular function. F. GO cellular 

component. G. GO biological process. H. KEGG-pathway. I. Interpro domains 
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Fig. S3: Glomerular staining of podocyte-enriched proteins in the human protein atlas. 
Related to Fig. 3. Proteins significantly enriched in podocytes were mapped on the human 

protein atlas (https://www.proteinatlas.org/). The figure shows proteins with “medium” protein 

staining in the resource. Corresponding mouse gene symbols are annotated. 
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Fig. S4. Glomerular staining of podocyte-enriched proteins in the human protein atlas, 
podocyte-specific interaction network and comparison between cultured and native 
podocytes, Related to Fig. 3 and 4. A: Proteins significantly enriched in podocytes were 

mapped on the human protein atlas (https://www.proteinatlas.org/). The figure shows 

proteins with “strong” protein staining in the resource. Gene symbols are annotated. B. 

Podocyte-enriched interaction network. Podocyte-enriched proteins (n=541) were analyzed 

with the Netbox software for common interactors (p-value threshold p<0.05). Nodes 

represent proteins, whereas edges represent interactions. Proteins in the initial dataset of 

podocyte-specific proteins are depicted in blue, whereas proteins determined as “linker” 

proteins (not in the initial datasets) are depicted in magenta. The node size is proportional to 

the number of interactions. Src is a major node in the podocyte-specific interaction network. 

C-D. Comparison of cultured and native podocyte proteome. Overlap between this dataset 

and samples from cultured mouse podocytes (33°C, undifferentiated and 37°C, 

differentiated, samples previously published  [Rinschen et al. AJP cell 2016, 

DOI:10.1152/ajpcell.00121.2016]) were compared. D. Intensities of the common proteins 

between the podocyte proteome and the previously acquired podocyte proteome were 

normalized and clustered using hierarchical clustering. 8 major clusters were defined. 
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Fig. S5. Response of cultured podocytes to mechanical cues, Related to Fig. 4. A. 

Cultured mouse podocytes were seeded on plastic dishes (collagen coated) or on collagen 

coated “soft” matrix with defined elastic modulus (soft matrix, 12kPa). A proteomic profile of 

both groups was generated and hierarchical clustering of protein expression values was 

performed. B. Volcanoplot of protein quantification from podocytes on soft matrices as 

compared to podocytes on plastic dishes demonstrating significantly changed proteins. 

Proteins beyond the curved lines are significant based on FDR 0.05, s0= 0.1 C. Cultured 

human podocytes were seeded on  plastic dishes (collagen coated) or on collagen coated 

“soft” matrix with defined elastic modulus (soft matrix, 12kPa). A proteomic profile was 

generated and hierarchical clustering of protein expression values was performed. D. 

Volcanoplot of protein quantification from podocytes on soft matrices as compared to 

podocytes on plastic dishes. E. GO-terms significantly overrepresented in proteins 

decreased on soft matrix. (FDR<0.05, Fishers exact test). F. Protein complexes significantly 

decreased on soft matrix. Protein complex enrichment analysis was performed using the 

COMPLEAT software for statistical overrepresentation in the dataset (p<0.05, corrected for 

multiple testing Bonferroni). G. GO-terms significantly overrepresented in proteins increased 

on soft matrix. (FDR<0.05, Fishers exact test). H. Protein complexes significantly decreased 

on soft matrix. Protein complex enrichment analysis was performed using the COMPLEAT 

software for statistical overrepresentation in the dataset (p<0.05, corrected for multiple 

testing). 
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Fig. S6. Analysis of podocyte protein incorporation by pulsed in vivo stable isotope 
labeling, Related to Fig. 5. A. Scatter plot of  heavy/light ratios and lg transformed iBAQ 

values demonstrating very weak negative correlation (R<-0.1). B. Scatter plot demonstrating 

H/L ratios in podocytes and whole kidney lysates. C. 2D enrichment analysis of Fig. S9B. 

Labeled dots determine significantly altered uniprot keyword terms (FDR < 0.05) D. Analysis 

of the effect of podocyte-specific ATG5 pKO on podocyte proteome as determined by pulsed 

stable isotope labeling in vivo. Scatterplot indicating H/L ratios in sorted podocytes of control 

and podocyte-specific ATG5 pKO mice after 2 weeks of feeding with stable isotope 

containing diet. E. 2D enrichment of Panel A (FDR<0.05). Labeled dots determine 

significantly altered uniprot keywords (FDR<0.05). 
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Fig. S7. Whole exome sequencing identifies recessive mutations in the genes FARP1 
in a family with nephrotic syndrome, Related to Fig. 6. A. Exon structure of FARP1 

cDNA. Positions of start codon, stop codons, and mutated nucleotides are indicated. B. 

Domain structure of the proteins FARP1. Arrows indicate the positions of the mutated amino 

acid residues in families F1138 (FARP1). C. Evolutionary conservation amongst orthologous 

proteins of FARP1 (left). The mutated amino acid residue in family F1138 is indicated with 

arrowheads and a yellow box. D. Histology of renal biopsy of index patient showing focal 

segmental glomerulosclerosis. E. Electron microscopy of renal biopsy of index patient 

showing partial podocyte effacement. F. Analysis of proteinuria phenotype in zebrafish 

larvae. Morpholinos were injected into fertilized zebrafish eggs at one- to four-cell–stage. The 

transgenic zebrafish produce a vitamin D-binding protein GFP fusion protein with a size of 

78kD. This protein accumulates in the circulation and is quantified 96 hpf and 120 hpf (hours 

past fertilization) by measuring the fluorescence level over the retina. Reduced fluorescence 

indicates a disturbed glomerular filtration barrier. Asterisks indicate significance in ANOVA vs 

control). Each dot corresponds to an individual larva, and total n numbers are depicted in 

brackets.  G. Assessment of phenotype severity 120 hpf. The phenotype (degree of edema) 

was scored from P1 to P4 (with P1-2, P2 and P3 as intermediate scores, based on the 

amount of edema present in the yolk sac or the presence of pericardial effusion).    

 

 



Supplemental Experimental Procedures  
 

Glomerular isolation 

We essentially used the same method as described previously(Boerries et al., 2013). Briefly, 

kidneys were dissected together with the abdominal aorta and transferred into dishes filled with 37°C 

prewarmed Hank’s buffered salt solution (HBSS). Each kidney was perfused slowly through the renal 

artery with 2 ml 37°C bead solution and 0,5 ml bead solution plus enzymatic digestion buffer 

[containing: collagenase 300 U/ml (Worthington, Collagenase Type II, USA), 1 mg/ml pronase E 

(Sigma P6911, Germany) DNase I 50 U/ml (Applichem A3778, Germany)]. Kidneys were minced into 

1 mm³ pieces using a scalpel. After addition of 3 ml digestion buffer they were incubated at 37°C for 

15 min on a rotator (100 rpm). The solution was pipetted up and down with a cut 1000 µl pipette tip 

every 5 min. After incubation all steps were performed at 4 °C or on ice. The digested kidneys were 

gently pressed twice through a 100 µm cellstrainer and the flow through was washed extensively with 

HBSS. After spin down, the supernatant was discarded and the pellet resuspended in 2 ml HBSS. 

These tubes were inserted into a magnetic particle concentrator and the separated glomeruli were 

washed twice.  

 

Podocyte Preparation 

Glomeruli were resuspended in 2 ml digestion buffer and incubated for 40 min at 37°C on a 

thermomixer shaking at 1400/min. During this incubation period the glomeruli were sheared with a 27 

G needle at 15 min, and mixed by pipetting twice at 5, 10, 15, 20 and 25 min using a glass pipette. 

Podocytes were loosened at 10, 20, 30 min by vortexing once. After 40 min the solution was vortexed 

three times and the digestion result controlled by fluorescence microscopy. Samples were put on a 

magnetic particle concentrator again to eliminate beads and glomerular structures void of podocytes. 

The supernatant was pooled and the magnetic particles discarded. The cell suspension (2 ml) was 

sieved through a 40 µm pore size filter on top of a 50 ml Falcon tube, rinsed with 10 ml of HBSS. Cells 

were collected by centrifugation at 1500 rpm for 5 min at 4°C, resuspended in 0.5 ml of HBSS 

supplemented with 0.1% BSA plus DAPI (1 µg/ml). To separate GFP-expressing (GFP+) and GFP-

negative (GFP-) cells, glomerular cells were sorted with a Mo-Flo cell sorter (Beckman Coulter) with a 



Laser excitation at 488nm (Power 200 mW) and a sheath pressure of 60 PSI. Cells were kept at 4°C 

before entering the FACS machine and thereafter, while temperature during the sorting procedure 

(approx. 3 min) was 22°C. Only viable (DAPI negative) cells were sorted (laser excitation 380nm, 

power 80 mW). For the deep proteomics analysis on average 3,000,000 podocytes out of four mice 

(male, age 8-12 weeks) were pooled per biological replicate. For the RNASeq analysis the total RNA 

of nearly 12,000,000 podocytes and 19,000,000 non-podocyte glomerular cells (out of 29 mice, male, 

age 8-12 weeks) was used. For details on sample preparation and LC-MS/MS analysis see extended 

methods. 

 

Sample preparation of podocytes for LC-MS/MS 

For proteomic deep mapping, snap-frozen podocytes were dissolved in 8 M urea and 100 mM 

ammonium bicarbonate and lysates were generated. Protein lysates were sonicated (20 pulses, 0.1% 

power, 0.1s sonication cycle) and spun down at 4 degrees (16,000 g, 20min) to clear the debris. 

Supernatants were saved for further analysis. Protein concentration was determined using a 

commercial BCA assay (Thermo). 100 µg of protein were reduced with DTT (10 mM) and alkylated 

with iodoacetamide (40 mM) for 1h at room temperature in the dark, respectively. Podocytes were 

digested using trypsin at a 1:100 w/w ratio over night with shaking. The next day, ~25µg of peptides 

were fractionated using a six-layered SCX resin and fractionation using six different buffers as 

previously described: Six layered tips with SCX resin (Polystyrene-divinylbenzene copolymer modified 

with sulfonic acid) stage tips were conditioned with Acetonitrile (ACN) and washed with 0.2 % formic 

acid. Then, the supernatant was loaded on the in-tip columns and centrifuged until all of the peptide 

suspension passed the membrane. After washing the membrane of the stage tips with 0.2 % formic 

acid, 6 different cationic buffers with increasing concentrations of ammonium acetate were used to 

subsequently elute bound peptides: (SCX 1: 50 mM ammonium acetate (AA), 20% (v/v) ACN, 0.5% 

(v/v) formic acid (FA); SCX 2: 75 mM AA, 20% (v/v) ACN, 0.5% (v/v) FA; SCX 3: 125 mM AA, 20% 

(v/v) ACN, 0.5% (v/v) FA; SCX 4: 200 mM AA, 20% (v/v) ACN, 0.5% (v/v) FA; SCX 5: 300 mM AA, 

20% (v/v) ACN, 0.5% (v/v) FA; Buffer X: 5% (v/v) Ammonium hydroxide, 80% (v/v) ACN). The flow 

through was collected for each of the six buffers separately during centrifugation. In the end, all the 

collected flow-through was dried down in a speedvac for 30 minutes at 30 °C. Subsequently peptides 

were stored at -20 °C until resuspension in 0.1% formic acid and subjection to nLC-MS/MS. 



BIoinformatic analysis of deep proteomic data 

For details on sample preparation and mass spectrometry analysis see extended methods. 

Raw files were analyzed using MaxQuant v 1.5.1.2 (Cox and Mann, 2008) and data was searched 

against a uniprot reference proteome for mouse or human downloaded at February 2014. MaxQuant 

options were default with match between runs enabled. The MaxQuant LFQ algorithm was enabled 

(Cox et al., 2014). Bioinformatic analysis was performed using Perseus v 1.5 (Cox and Mann, 2012). 

Briefly, reverse and contaminant hits were filtered out and proteins only identified by a site (site only) 

were removed. LFQ intensities were logarithmized, and a podocyte specific proteins were analyzed 

using a two-tailed t-test after imputation of missing values as described previously (Kohli et al., 2014). 

Correction for multiple testing was performed using an approach similar to SAM as initally published 

by Tusher et al. (Tusher et al., 2001). The parameters are detailed in the figure legends. Network 

analysis of podocyte-enriched proteins was performed using the netbox algorithm (Cerami et al., 2010) 

and default settings (p=0.05, maximal linker 2), using updated protein-protein interaction databases 

(3/2015) as input. The annotation of GO Terms was performed in Perseus 1.5.5.3 and a Fisher’s exact 

test with correction for multiple testing (FDR<0.05) was utilized. The annotation of protein domains 

(both INTERPRO and PFAM domains) was performed in Perseus 1.5.5.3 and a Fisher’s exact test 

with correction for multiple testing (FDR < 0.02) was performed. Enrichment was plotted vs –log (p 

value). mRNA seq raw values were matched on proteins using ENSEMBL identifiers, and 2D GO 

enrichment (FDR < 0.05) was performed. Multiple datasets were merged using ENSEMBL identifiers, 

and z-scored using perseus. The R package Rt-SNE was used for clustering. The raw data of the 

deep proteomic study is publically available via PRIDE (http://www.ebi.ac.uk/pride). PXD004040. 

Username: reviewer71610@ebi.ac.uk. Password: abpVHKL5. PXD005801. Username: 

reviewer36299@ebi.ac.uk. Password: QkntlstG. 

 

RNA preparation and RNA sequencing 

For RNA-Seq experiments isolated cells (Podocytes and Non-Podocytes glomerular cells) of 

29 Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J Tg(NPHS2-cre)295Lbh male mice at the age of 10 weeks 

were pooled. Under RNase-free conditions RNA was extracted with the chloroform/phenol method and 

DNase digested at the end of the preparation process. 15,5 µg non-podocyte and 19,2 µg podocyte 

http://www.ebi.ac.uk/pride
mailto:reviewer71610@ebi.ac.uk


RNA were obtained. RNA quality control was performed as required by the RNASeq protocol. The 

Illumina (Illumina, San Diego, CA, USA) TruSeq stranded total RNA sample preparation LS protocol 

was used for directional, polyA+ library preparation. Sequencing was performed on a full flowcell of the 

HiSeq2500 sequencing machine using 100 cycles (Illumina, San Diego, CA, USA), with a depth of 

approximately 300M paired reads (600M total reads) and therefore approximately 150M paired reads 

per sample. Quality check was performed using FastQC 0.11.4 (Babraham Bioinformatics - FastQC A 

Quality Control tool for High Throughput Sequence Data.). 

 

Analysis of mRNAseq data. 

Pooled RNA of native mouse podocytes and non-podocytes glomerular cells was sequenced 

in two technical replicates. All RNA-Seq experiments were quantified using Salmon Beta 0.5.1 ((Patro 

et al., 2017)). RNA-Seq raw for quantification of published studies were downloaded from the 

European Nucleotide Archive (Toribio et al., 2017)  please see Supplemental Table 3 for information 

about individual experiments ( (Brunskill et al., 2014; Fu et al., 2016; Kann et al., 2015; Lin et al., 

2014; Pervouchine et al., 2015) ). 

In general, analysis of transcriptomic data was performed using the R statistical software 

package (R Core Team (2016). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.) as well as 

specific packages provided by Bioconductor (Huber et al., 2015) Graphical Plotting (Principal 

component, Scree plot, heat plot, histogram) was done with the help of the ggplot2 package ( ggplot2 - 

Elegant Graphics for Data Analysis | Hadley Wickham | Springer.).  Differential expression analysis 

was performed using sleuth version 0.28.0 using a wald test (Pimentel et al., 2017).  For Reactome 

(Croft et al., 2014; Milacic et al., 2012) analysis ReactomePA (Yu and He, 2016) and clusterProfiler 

package (Yu et al., 2012) Bioconductor package was used on significantly regulated transcripts (q < 

0.001 & b > 1.5) (accessed 9/2016). Raw data were deposed at  EBI Array Express with experiment 

accession number E-MTAB-5457 (Username: Reviewer_E-MTAB-5457, Password: KC158Tch). 

Podocyte specificity was calculated as a ratio of tpm(Podocyte)/sum tpm (all other tissues). RNAseq 

datasets from other tissues were derived from the mouse RNA Profiling datasets by the ENCODE 

https://www.r-project.org/


project, using the datasets SRR453077-SRR453175; SRR567478- SRR567503, all processed in an 

identical fashion.  

 

Drosophila experiments 

D. melanogaster stocks were cultured on standard cornmeal molasses agar food and 

maintained at 25°C. RNAi-Based Nephrocyte Functional Screen Procedure: Virgins from MHC-ANF-

RFP, HandGFP, and Dot-Gal4 transgenic lines (Gift from Zhe Han, University of Michigan, Ann Arbor, 

USA) were crossed to UAS-CG9093-RNAi (VDRC TID 9696/GD) males at 25°C; 2 days after crossing, 

flies were transferred to small collection cages with grape juice agar plates to collect the embryos for 

24 hours at 25°C. Collected embryos were aged for 48 hours at 29° C and then subjected to 

examination of the RFP accumulation in pericardial nephrocytes using a confocal microscope. The 

RFP mean fluorescence intensity of GFP positive areas was measured to quantify the uptake 

efficiency. The result was verified using a second RNAi (VDRC 101473/KK). For transmission electron 

microscopy Virgins of prospero-Gal4 (gift from Barry Denholm, University of Edinburgh, Edinburgh, 

UK) were crossed to UAS-CG9093-RNAi (VDRC TID 9696/GD)  for a garland cell-specific knockdown 

of Tsp26A. Drosophila garland cells were freshly prepared and immerse fixed for three days at 4°C 

using 4% paraformaldehyde plus 1% glutaraldehyde (Sigma Aldrich, Germany; in 0.1M PB buffer, pH 

7.4) as a fixative. The samples were contrasted using 1% osmiumtetroxide (Roth, Germany; 30 min at 

RT) and 1% uranylacetate (30 min at RT in 70% ethanol), dehydrated stepwise and finally embedded 

in epoxy resin (Durcopan, SimgaAldrich, Germany). Ultrathin sections were cut using a Leica Ultracut 

6. Section imaging and analysis was performed using a Philipps CM10 TEM. 

 

Sample preparation for proteomic analysis of cell culture experiments. 

Cells were harvested by scraping in 8M urea and 100mM Ammonium bicarbonate on ice with 

1x protease/phosphatase inhibitor. Then, proteins were reduced (5 mM DTT at room temperature for 

1h), and alkylated (10mM IAA at room temperature for 1h in the dark). The proteins (~50 µg as 

determined by a BCA assay [Thermo]) were digested using a 1:100 trypsin/protein ratio over night at 

room temperature. The next day, peptide solution was acidified and subjected to Stage tip cleanup as 



above described (Rappsilber et al., 2003) and mass spectrometry analysis on a Q Exactive plus 

machine as previously described (2.5 h gradient). For details on bioinformatics analysis, please see 

supplementary methods.  

 

Bioinformatic analysis of cell culture experiments 

Raw data was processed with MaxQuant and intensities were logarithmized, contaminants 

were removed and raw data was normalized by substraction of the mean. Data were uploaded in 

perseus and hierarchical clustering (based on Euclidean distance) was performed. Imputation was 

performed for at least 4/6 valid values. COMPLEAT (Vinayagam et al., 2013) algorithm was utilized to 

determine regulated protein complexes in human podocytes. The log2 ratio of LFQ (con/12kPA) was 

utilized as software input with default settings (accessed 12/2016). GO terms and uniprot keywords 

were annotated in perseus (v. 1.5.5.3) (Tyanova et al., 2016) and category enrichment was performed 

by a Fisher's exact test (FDR controlled with FDR <0.05). Data was extracted from the human protein 

atlas in February 2015 and converted into mouse gene symbols using NCBI homologene groups 

(release 3/2015), which were then matched on the dataset. 

 

Pulsed in vivo stable isotope labeling 

Stable isotope labeling of animals was performed as previously described by Krueger et al. 

(Krüger et al., 2008) Lys(0)-SILAC-Mouse control (12C6-lysine) and Lys(6)-SILAC-Mouse SILAC (13C6-

lysine, 97 %) mouse diet was purchased from Silantes, Martinsried, Germany. Mice in SILAC feeding 

experiments were kept isolated in single individual cages with metal grids. Initially Mice were fed 3 g 

daily of Lys(0)-SILAC-Mouse control diet for 3 weeks. Afterwards they were switched to 3 g daily 

Lys(6)-SILAC-Mouse SILAC diet for 1, 2 or 3 weeks according to the experimental protocol and 

sacrificed afterwards for glomerular isolation. Please see Supplemental table 14+15 for additional 

details of mice used for this study. The data presented are the average of at least 2 biological 

replicates for podocytes (for three different timepoints) and kidney tissue.  

 

 



Sample preparation and proteomics of in vivo stable isotope labeled tissue  

SILAC mice and kidneys were perfused and podocytes were isolated exactly as described 

above. Then, snap-frozen podocytes were lysed in SDS and fractionated using 1D Gel electrophoresis 

and processed as previously described in gel-with 6-10 gel pieces/protein (Boerries et al., 2013). The 

digestion was performed with LysC (w/w ratio of 1:10). Analysis of pulsed SILAC labeled podocytes 

was performed using an LTQ Orbitrap XL mass spectrometer coupled to a nLC as previously 

described (Boerries et al., 2013). 

 

Bioinformatic analysis of dynamic proteomic data  

Proteomics data were searched with MaxQuant v 1.4.1.2 against an UNIPROT mus musculus 

database downloaded on March 2016. Multiplicity was set to 2 (with Lysine + 6 Da), and the maximal 

number of labeled amino acids was 4. The protease was LysC/P, with three maximal missed 

cleavages. Minimum peptide length was 7, variable modifications were methionine oxidation and 

protein N-terminal acetylation. Carbamidomethylcysteine was set as fixed modification. 

MatchBetweenRun option was not enabled. The non-normalized ratios were used for further 

procedures. The resulting ratios were merged using Perseus und filtered for reverse, contaminant and 

“site only” proteins Then, the resulting matrix was filtered so only valid ratios were obtained. 2D GO 

enrichment analyses were applied as described above. H/L ratios were normalized using the following 

term depicting the “number of heavy amino acids”, using the iBAQ obtained from Fig. 1 and using the 

amino acid copy numbers obtained from uniprot for the leading majority protein. The following formula 

was used to correct ratios: 

𝑛(ℎ𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟 ∗ 𝑛(𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∗ 𝑛(𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐)

=  
𝐻
𝐿�

𝐻
𝐿� + 1

∗ 𝑛 (𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∗ 𝑖𝑖𝑖𝑖 

 

In situ hybridization 

Mouse isolated podocyte RNA served to clone fragments of 5′-UTR and coding sequence of 

mouse Farp1 using the One-Step PCR Kit (Qiagen, Heidenheim, Germany). PCR fragments were 



inserted into a modified pBluescript (KS-) vector (Invitrogen, Carlsbad, CA) using NotI and MluI 

restriction sites. pBluescript Vector was linearized and digoxigenin-(DIG)-labeled antisense riboprobes 

were generated using T7-RNA-polymerase (Roche, Mannheim, Germany). For paraffin section ISH, 

slides were progressively rehydrated. After prehybridization (20 min), hybridization with DIG-UTP 

probes took place overnight in standard hybridization buffer (SSC pH 4.5; containing deionized 50% 

formamide, 1% SDS, heparine 50µg/ml and yeast RNA 50µg/ml) at 60 °C. Specimens were then 

incubated with alkaline phosphatase-conjugated anti-DIG Fab fragments (Roche, Mannheim, 

Germany) at a dilution of 1:3000 for 2 h at room temperature. Alkaline phosphatase was detected 

using chromogenic conversion of BM Purple (Roche). Slides were then progressively dehydrated in 

xylol, counterstained with Eosin and mounted. The following primers were used:  

Farp1(based on NM_028734.5) 

ISH FARP1 449 fp 5'-CGCGGGACGCGTTGGAACGAGGACAGAAACCA -3' 

ISH FARP1 1445 rp 5'- CGCGGGGCGGCCGCTTGTGGCCGCCTTCTTTAAC-3';  

 

Multi-omics candidate gene list, whole exome sequencing, multi gene-panel testing and 

mutation calling. 

To obtain a candidate list of genes we performed clustering analysis of z-normalized relative 

mRNA expression levels, relative protein expression levels, absolute protein expression levels as well 

as tissue specificity of the podocyte mRNA levels. We found that disease-associated genes in slit 

diaphragm and actin-related processes were largely defined by very high z-scores in all four 

parameters, and clustered in close proximity. Ranking individual genes based on their scores in each 

parameter, combined with additional information from the human protein atlas, glomerular disease 

datasets (www.nephromine.org), as well as importance of the respective gene in go-term analysis 

generated a list of 280 candidate gene-protein pairs. To test these in patient cohorts, we performed 

different next-generation sequencing (NGS) based approaches. First, we performed whole exome 

sequencing (WES) using Agilent SureSelect™ human exome capture arrays (Thermo Fisher 

Scientific) with NGS on an Illumina™ platform. Sequence reads were mapped against the human 

reference genome (NCBI build 37/hg19) using CLC Genomics Workbench (version 6.5.1) (CLC bio). 



Mutation calling was performed in line with proposed guidelines by scientists, who had knowledge of 

clinical phenotypes, pedigree structure, and genetic mapping. 430 families with nephrotic syndrome 

were screened for mutations in 280 candidate genes derived from the “multi-omics” approach. 

Families with mutations in genes known to cause nephrotic syndrome, if mutated, were excluded from 

the study. Second, all exons and adjacent intronic boundaries of a different number of genes 

(dependent on the version of our customized multi-gene panel, including FARP1) known or 

hypothesized to cause nephrotic syndrome and related phenotypes were targeted by a custom 

SeqCap EZ choice sequence capture library (NimbleGen, Madison, Wisconsin, USA) and 

subsequently sequenced on an Illumina MiSeq or HiSeq platform (2x150 PE) according to the 

manufacturer´s protocol. A total of 700 patients were analyzed with an average coverage of 120-fold 

(MiSeq) or more than 200-fold (HiSeq), respectively. Bioinformatic analysis was performed as recently 

described. 

 

Zebrafish experiments 

Transgenic zebrafish Tg(l-fabp:DBP-EGFP) were a kind gift from B. Anand-Apte, Cleveland, 

OH (Xie et al., 2010). They were grown and mated at 28.5° C and embryos were kept and handled in 

standard E3 solution as previously described (Hentschel et al., 2007). Morpholino sequence for 

farp1 was 5'UTR: GTGTCTTTAAATGATATTCCGCTGG, for control: 

CCTCTTACCTCAGTTACAATTTATA. They were injected in one- to four-stage embryos using a 

Nanoject II injection device (Drummond Scientific, Broomall, PA). Morpholinos were ordered from 

GeneTools (Philomath, OR). Injections were carried out in injection buffer (100 mM KCl, 0.1% phenol 

red) and at 48 hours post fertilization (hpf) remaining chorions were manually removed. Edema 

assessment and fluorescence based eye assays were performed as previuously described (Hanke et 

al., 2013). The animal protocol was approved by the MDI Biological Laboratory IACUC (#11-02). 
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