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A Saturation Mutagenesis Approach to Understanding
PTEN Lipid Phosphatase Activity
and Genotype-Phenotype Relationships

Taylor L. Mighell,1,2 Sara Evans-Dutson,2 and Brian J. O’Roak2,3,*

Phosphatase and tensin homolog (PTEN) is a tumor suppressor frequentlymutated in diverse cancers. Germline PTENmutations are also

associated with a range of clinical outcomes, including PTEN hamartoma tumor syndrome (PHTS) and autism spectrum disorder (ASD).

To empower new insights into PTEN function and clinically relevant genotype-phenotype relationships, we systematically evaluated the

effect of PTENmutations on lipid phosphatase activity in vivo. Using amassively parallel approach that leverages an artificial humanized

yeast model, we derived high-confidence estimates of functional impact for 7,244 single amino acid PTEN variants (86% of possible). We

identified 2,273 mutations with reduced cellular lipid phosphatase activity, which includes 1,789 missense mutations. These data reca-

pitulated known functional findings but also uncovered new insights into PTEN protein structure, biochemistry, and mutation toler-

ance. Several residues in the catalytic pocket showed surprising mutational tolerance. We identified that the solvent exposure of

wild-type residues is a critical determinant of mutational tolerance. Further, we created a comprehensive functional map by leveraging

correlations between amino acid substitutions to impute functional scores for all variants, including those not present in the assay.

Variant functional scores can reliably discriminate likely pathogenic from benign alleles. Further, 32% of ClinVar unclassified missense

variants are phosphatase deficient in our assay, supporting their reclassification. ASD-associated mutations generally had less severe

fitness scores relative to PHTS-associated mutations (p ¼ 7.16 3 10�5) and a higher fraction of hypomorphic mutations, arguing for

continued genotype-phenotype studies in larger clinical datasets that can further leverage these rich functional data.
Introduction

Recent large-scale exome-sequencing studies have high-

lighted the abundance of protein-coding variation in the

human population.1 It remains challenging to predict

variant pathogenicity and clinical outcomes, especially

for genes with pleiotropic effects. With most rare variants

private to a single family or individual, using traditional

approaches to establish pathogenicity such as variant

segregation within a pedigree or identification in indepen-

dent patients is infeasible. Even for well-studied genes,

hundreds of variants are currently defined as variants of

uncertain significance (VUS). Moreover, purely computa-

tional approaches still suffer from high false positive

rates2 and subjective interpretations that limit the clinical

utility of these predictions.

To address these challenges for genes of clinical impor-

tance, one proposed approach is to prospectively measure

the functional effects of all possible mutations, allowing

these empirical data to be integrated into the clinical

assessment of novel rare variants.3,4 Historically, these

types of functional assays have been conducted in a serial

nature, which limits scalability and often only within a

portion of the protein of interest. While there are some

notable examples of whole-gene brute force saturation

mutagenesis, e.g., TP535 (MIM: 191170), new more scal-

able experimental paradigms are being developed that

allow the functional dissection of the effects of thousands
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of genetic mutations in parallel.6 These approaches

leverage recent advances in DNA synthesis and sequencing

technologies and have proven particularly valuable in un-

derstanding the effects of mutations in cancer-associated

genes.7,8

With these issues in mind, we have developed a satura-

tion mutagenesis approach to comprehensively assess the

effect of nonsynonymousmutations on the lipid phospha-

tase activity of phosphatase and tensin homolog (PTEN

[MIM: 601728]). PTEN antagonizes the phosphoinositide

3-kinase (PI3K) signaling pathway through its lipid phos-

phatase activity toward the signaling lipid phosphatidyli-

nositol (3,4,5)-trisphosphate (PIP3).
9,10 In mice, loss of

this activity increases tumor susceptibility in a dose-

dependent manner.11 This observation led to a continuum

model for PTEN’s role in cancer development, with the

level of phenotypic severity tightly coupled to the level

of lipid phosphatase activity.12

Germline PTEN mutations are associated with a range of

clinical outcomes, including autism spectrum disorder

(ASD [MIM: 605309])13–15 and tumor predisposition phe-

notypes collectively known as PTEN hamartoma tumor

syndrome (PHTS).16–18 Germline mutation carriers often

share the common feature of increased head size or macro-

cephaly.19 However, there is substantial variability in the

neurological and tumor phenotypes present in these indi-

viduals. PHTS is an umbrella term that encompasses Cow-

den syndrome (MIM: 158350), Bannayan-Riley-Ruvalcaba
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syndrome (MIM: 153480), and PTEN-related Proteus sy3n-

drome (MIM: 176920).20 PHTS-affected individuals typi-

cally present with macrocephaly and hamartomatous

polyps and have an extremely high life-time risk of

cancer.20 PTEN mutations have been identified in macro-

cephaly cohorts of individuals with formal ASD diag-

noses or developmental delay (DD)/intellectual disability

(ID)13,21,22 as well as idiopathic ASD.14,23,24

It is currently impossible to predict the phenotypic

outcome of a given PTEN mutation. Even predicting

whether a PTEN mutation will have a pathogenic effect is

still challenging. This is exemplified by the fact that a ma-

jority of missense variants (131/241, 54%) in ClinVar are

considered VUS and seven additional variants have incon-

sistent pathogenicity reported across laboratories. Recent

evidence from functional assays on a limited number of

mutations and using diverse models, including humanized

yeast,25 cultured human cells,26 and in vivo mouse neu-

rons,27 suggest that mutations identified in individuals

with ASD or DD without obvious PHTS features tend to

have hypomorphic lipid phosphatase activity, while

PHTS-associated mutations more frequently show com-

plete loss of lipid phosphatase activity. Further supporting

this hypomorphic hypothesis, the distributions of muta-

tion types are consistent with ASD-associated mutations

being generally less severe, with reported missense muta-

tions three to four times as common in ASD compared

with PHTS.26,28 These findings, as well as the established

genotype-phenotype relationships for PTEN in cancer,

led us to hypothesize that, at the population level, ASD-

associated PTEN variants are hypomorphic compared to

PHTS-associated PTEN variants.

To systematically test this hypothesis and improve our

ability to interpret the functional effects of any PTEN mu-

tation, we modified a previously validated humanized

yeast model for massively parallel functional testing of

the effects of PTEN mutations on lipid phosphatase activ-

ity in vivo.25,29 Given that yeast do not signal through

PIP3-dependent pathways,30 this model system challenges

PTEN protein variants to act on their preferred substrate in

a cellular environment, but removes the confounding

signaling and regulatory milieu present in mammalian

cells. Accordingly, the model is more sensitive than

in vitro assays in which PTEN dephosphorylates a water-

soluble substrate.31 The utility of the yeast model for

measuring lipid phosphatase activity has been demon-

strated through validation of mutation effects on down-

stream Akt1 activation in mammalian cells, exhibiting

complete concordance for the variants tested.31

With this system, we analyzed the functional effect of

86% of all possible single amino acid alterations. Over-

laying these data onto PTEN secondary and tertiary struc-

tures recapitulated many known or predicted structure-

function and biochemical relationships but also revealed

surprising patterns of mutational tolerance. We discovered

that several residues within the catalytic pocket are surpris-

ingly tolerant to mutation and identified residues that are
944 The American Journal of Human Genetics 102, 943–955, May 3,
critical for membrane interaction. Moreover, we demon-

strate that these functional fitness scores have clinical util-

ity by showing that they can outperform in silico-based

approaches in characterizing likely pathogenic and benign

variants. Finally, we provide compelling support for the ex-

istence of germline PTEN genotype-phenotype relation-

ships that should be further explored in larger longitudinal

clinical cohorts.
Material and Methods

PTEN Saturation Mutagenesis
We obtained wild-type PTEN sequence from GenBank

(NM_000314.6). All protein variants are reported relative to the

corresponding 403 amino acid protein (GenPept: NP_000305).

Our mutagenesis approach was similar to the mutagenesis by inte-

grated tiles (MITE) approach.32 We designed a series of DNA ‘‘tiles’’

that were complementary to wild-type PTEN except for one codon

(Figure S1A). At this single codon, each molecule bore a substitu-

tion to the yeast-optimized codon for each non-wild-type amino

acid, the yeast-preferred stop codon, or an in-frame, single codon

deletion. Additionally, each set of ‘‘tiles’’ contained unique DNA

adapters on either end to allow PCR retrieval of individual tiles

from the pool (using primers with prefix: PTEN_sliceprimer,

Table S1). These DNA tiles were synthesized as 130-mers (prefix:

PTENTile) as part of a 12,000-feature oligo pool by CustomArray.

For each tile, we designed inverse PCR primers that linearized

the pYES2-PTEN wild-type sequence, excluding the portion en-

coded by the corresponding tile. Following amplification, the

tile PCR products were incorporated into the appropriate linear

pYES2-PTEN by SLiCE-mediated recombination.33 SLiCE reactions

were 10 mL and consisted of 100 ng of linearized vector with 15 ng

of tile DNA, along with 13 SLiCE buffer and 13 SLiCE extract.

SLiCE extract and buffer were prepared as described previously.34

Reactions were incubated for 60 min at 37�C, then diluted 1:10

in water, and 2.5 mL used to electroporate 50 mL of NEB 10-beta

electrocompetent E. coli. Transformation reactions were plated

on LB agar plates with 100 mg/mL carbenecillin (GoldBio) and

grown overnight at 37�C. Colonies were collected and plasmids

isolated with the QIAprep Spin Miniprep Kit (QIAGEN).
Yeast Selection Experiments
Plasmid libraries were normalized and pooled into four mega-

pools, each representing saturation mutagenesis for one quadrant

(quadrants 1–3 ¼ 100 codons, quadrant 4 ¼ 103 codons). 1 mg of

each mega-pool was transformed into the S. cerevisiae strain

YPH-499, which already contained YCpLG-p110a-CAAX, using

the Li-Ac/SS carrier DNA/PEG method.35 More than 50,000

colony forming units were generated per reaction. Colonies

for each quadrant were pooled and grown overnight in SC-

glucose –leu –ura (synthetic complete medium lacking leucine

and uracil, using glucose as carbon source), pelleted and frozen

down in 15% glycerol at �80�C.
Selection experiments began with overnight outgrowth

of frozen stocks in SC-raffinose –leu –ura (raffinose neither

induces nor represses GAL1/10 promoter). Following outgrowth,

25 or 30 million cells (replicate A or B) were pelleted for each

quadrant as the ‘‘input’’ sample and frozen at �20�C. Then,

25 or 30 million cells were seeded into three cultures of 50 mL

SC-galactose –leu –ura. Cultures were incubated at 30�C with
2018



185 rpm shaking. After 24 and 36 hr of growth, cell concentrations

were measured with a TC-20 Automated Cell Counter and

20 million cells (for each replicate) were passaged into fresh me-

dium. At 48 hr, samples of 20 million cells were spun down with

13,000 3 g for 30 s, medium withdrawn, and frozen at �20�C.
Library Prep and Sequencing
Plasmid DNA was isolated from pelleted cells (input and 48 hr)

with Zymoprep Yeast Plasmid Miniprep II kit (Zymo Research).

Stage-one PCR was performed in 25 mL reactions using: 5 ng of

plasmid DNA, primers pYES2-PTEN_Q[1-4][F/R]_S1 (containing

partial Illumina TruSeq adaptors) at 0.5 mM, 13 KAPAHiFi Hotstart

Readymix (KHF), and 13 SYBR Green. Reactions were monitored

by qPCR with cycling conditions: [95�C 3 min (98�C 20 s, 55�C
30 s, 72�C 15 s, plate read, 72�C 8 s) 3 28–36 cycles]. Reactions

were removed during or immediately following exponential phase

of amplification. Stage-two PCR was then performed in 25 mL reac-

tions using: 1 mL of uncleaned stage-one product, custom Illumina

dual index TruSeq primers (prefixes: S2, i7) at 0.5 mM, 13 KHF, and

13 SYBR Green (Table S1). Reactions were monitored by qPCR

with cycling conditions: [95�C 3 min (98�C 20 s, 55�C 15 s,

72�C 15 s, plate read, 72�C 8 s) 3 6 cycles]. Reaction products

were checked on a 1.5% agarose gel, purified using NucleoSpin

PCR Clean-up (Machery-Nagel), and concentrations were

measured using a Nanodrop 1000 Spectrophotometer. Samples

were normalized and combined into a common pool that was

sequenced across multiple runs using paired-end 300 base-pair

reads on the Illumina MiSeq platform (v.3 reagent kit).
Sequencing Data Analysis
Paired-end reads were merged with PEAR36 and common priming

sequences were trimmed from the 50 and 30 ends using cutadapt.37

For each quadrant, a purely wild-type sample was sequenced in or-

der to identify sequencing error profiles. Counts of error reads were

normalized to wild-type counts, and then this normalized amount

of reads were removed from all experimental samples.7 Sequence

variants were identified and counted with custom python scripts.

These raw variant counts files were analyzed with Enrich2

v.1.2.038 to calculate scores and standard errors for each variant.

If the 95% confidence interval (based on the standard error) of

the fitness score was %1, the variant was considered high-confi-

dence. If the 95% confidence interval was >1 but the measure-

ments from each biological replicate were concordant (both lower

or both higher than the 95% bound of the synonymous distribu-

tion), the variant was also considered high-confidence.
Mutation Collation
We considered any PTEN missense or nonsense (excluding

frameshifting insertions or deletions [indels]) mutation in the

gnomAD database1 (accessed 11/19/17) to be benign, with the

exception of two variants that are considered pathogenic in

ClinVar (p.Lys289Glu and p.Arg173His).We considered single-res-

idue missense mutations from ClinVar (accessed 09/30/17) that

were considered either pathogenic or likely pathogenic, were sub-

mitted with criteria, and had no conflicting reports to be patho-

genic. We collected ASD-associated variants from SFARI Gene39

(accessed 10/09/17) and the literature. We collected PHTS-associ-

ated mutations from the literature. A mutation was considered

ASD/DD associated if the report did not include symptoms of

PHTS and the mutation had not been reported in another individ-

ual with PHTS. If an individual had ASD/DD and PHTS features, or
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was observed in multiple individuals representing both presenta-

tions, we considered it PHTS. We used Mann-Whitney U test to

compare fitness scores (including high and low confidence)

ASD/DD and PHTS variants. For any clinical mutation that was a

frameshifting indel, the fitness score of the nonsense mutation

from the corresponding position was used.
Protein Positional Features and Modeling
Conservation values were acquired from Consurf DB40 with

default settings. Relative solvent exposure was calculated with

GETAREA web tool.41 A position was considered exposed if its

ratio of side-chain surface area to random-coil surface area ex-

ceeded 50, intermediate if the ratio was between 20 and 50, and

buried if its ratio was less than 20. Secondary structure assign-

ments were enumerated with STRIDE.42 Pymol was used

to generate representations based on known partial crystal

structure (PDB: 1D5R). Clustering was performed on the 326

positions with all 19 missense mutations measured (including

high and low confidence). Clustering was performed with

scipy.cluster.hierarchy.linkage, method ¼ ‘‘ward.’’
Mutation Effect Predictors
We obtained Provean and SIFT predictions from Provean Pro-

tein (v.1.1.3) with default settings. For Provean, we considered

‘‘deleterious’’ predictions as pathogenic and ‘‘neutral’’ predictions

as benign. For SIFT, we considered ‘‘damaging’’ predictions as

pathogenic and ‘‘tolerated’’ predictions as benign. We obtained

PolyPhen-2 predictions from the PolyPhen-2 batch query

web server. For PolyPhen-2, ‘‘probably damaging’’ or ‘‘possibly

damaging’’ predictions were considered pathogenic, whereas

‘‘benign’’ predictions were considered benign.
Results

Establishing a Massively Parallel Functional Assay for

PTEN Lipid Phosphatase Activity

We leveraged an artificial humanized yeast model in order

to assess the relative phosphatase activity of PTEN vari-

ants.25,29 In this system, the human PI3K catalytic subunit

p110a (encoded by PIK3CA [MIM: 171834]) is expressed in

Saccharomyces cerevisiae and artificially directed to the

membrane by a C-terminal prenylation box motif.29 At

the membrane, p110a is able to catalyze the conversion

of the essential pool of phosphatidylinositol (4,5)-bisphos-

phate (PIP2) to PIP3, which potently inhibits growth

through cytoskeletal disruption.29 Upon induction of

gene expression, cells proliferate at a rate that is propor-

tional to the ability of the PTEN variant to convert PIP3
to PIP2.

31 Co-expression of wild-type PTEN, but not cata-

lytically dead mutants, e.g., p.Cys124Ser, catalyzes the

reverse reaction, restoring the PIP2 pool and allowing the

yeast to grow and survive (Figure 1A). Moreover, growth

rate provides a quantitative surrogate of lipid phosphatase

activity with partial loss-of-function mutations showing

intermediate growth phenotypes.25

We made several modifications to this system that al-

lowed for massively parallel testing of preprogrammedmu-

tations. First, to allow for parallel testing, rather than serial
rican Journal of Human Genetics 102, 943–955, May 3, 2018 945
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Figure 1. A Framework for Massively
Parallel Functional Testing of PTEN
Mutations
(A) Humanized yeast model for evaluating
the effect of PTEN mutations on lipid
phosphatase activity. Exogenous expres-
sion of the catalytic subunit of human
PI3K with a membrane-targeting prenyla-
tion box motif (p110a-CAAX) in yeast is
toxic. However, co-expression of human
PTEN wild-type, but not catalytically
dead PTEN p.Cys124Ser, can rescue
growth. Both genes are under the control
of a galactose inducible promoter (GAL).
(B and C) Modifications to allow massively
parallel variant assessment.
(B) We generated a comprehensive PTEN
allelic series, introduced these variants
into yeast en masse, and subjected them
to p110a-CAAX-mediated selection in
liquid culture. We performed two biolog-
ical replicates, each consisting of three
technical replicates.
(C) We collected input and selected time
points and subjected these to deep
sequencing. We used read counts to calcu-
late fitness scores and used these scores to
highlight structure-function insights as
well as genotype-phenotype relationships.
plating of single mutations, we modified the assay to sup-

port complex populations of PTEN-bearing yeast in liquid

culture and sequencing as a readout of growth (Figures 1B,

1C, and S1). We then introduced the yeast-preferred codon

for each non-wild-type amino acid, stop codon, and

single residue deletion at all PTEN codons en masse, utiliz-

ing a homologous recombination-based mutagenesis

approach (Material and Methods, Figures 1B and S2A,

Table S1).32,33 To allow direct sequencing of eachmutagen-

ized region, mutational space was separated into �300

base-pair quadrants (Figure S2A).

We transformed two independent yeast populations

with our mutagenesis library. Sequencing of naive yeast

libraries indicated that 95% of all intended mutations

were present (Figures 1B and S2A). No position had less

than 33% mutational coverage. Mutation dropout was

largely confined to a single oligo pool in the C2 domain

of the protein, which repeatedly performed poorly. We

then performed selection experiments on these two

independent yeast populations, each with three selection

replicates (Figure 1B). We calculated natural log-scaled

and wild-type normalized fitness scores for each variant,

along with standard error-based confidence intervals

(Material and Methods, Figure S2B).38 Score estimates

were generated for 8,012 (95% of intended) PTEN nonsy-

nonymous mutations and between mutational libraries

fitness scores were highly correlated (Pearson’s r ¼ 0.76,

Tables 1 and S2, Figures S3A and S3B). The distribution

of fitness effects illustrates two major populations corre-

sponding to likely damaging and wild-type-like muta-

tions (Figure S3A). Based on low standard error or repli-

cate concordance, scores for 7,244 mutations (86% of
946 The American Journal of Human Genetics 102, 943–955, May 3,
intended) were classified as high confidence (Material

and Methods, Tables 1 and S2, Figure S3C). Mutations

were classified as wild-type-like if their cumulative fitness

score was within the 95th percentile (two-tailed) of

observed synonymous mutations (Figure S3D). We identi-

fied 2,273 likely damaging mutations (31%) and 4,872

wild-type like mutations (67%) (Table 1). We also

observed 99 mutations that performed better than wild-

type (1%), which was within what was expected due

to chance based on the total number of wild-type-

like variants. Among the likely damaging missense

mutations, 1,249/1,789 (70%) fell within the observed

distribution for programmed premature truncations

(excluding C-terminal tail), with the remainder having

intermediate phenotypes in this assay.

High-Resolution Mutation Data Reveal Structure-

Function Insights

Using the high-confidence data, we first analyzed struc-

ture-function relationships, including known or predicted

functional domains. Our complete sequence functionmap

recapitulates many known features of PTEN biochemistry.

For example, early truncating mutations are uniformly

damaging through the phosphatase and C2 domain, but

are tolerated in the regulatory tail (Figure 2A).31 Overlaying

the median fitness score of each position onto the partial

crystal structure of PTEN (including residues 7–285 and

310–353) reveals strong intolerance of positions in the

phosphatase domain, especially those positions near the

catalytic pocket (Figure 2B). The median fitness scores are

also correlated with evolutionary conservation (Spearman,

r ¼ 0.58, Figure S3E). When compared to positions in
2018



Table 1. Summary of PTEN Mutagenesis and High-Confidence Effect Classifications

Mut. Type

Mutagenesis Summarya HC Classificationsb

Designed Created HC Total < WTc Trunc.-liked Hypo.e WT-likef >WTg

Missense 7,657 7,260 (0.95) 6,564 (0.86) 1,789 (0.27) 1,249 (0.19) 540 (0.08) 4,679 (0.71) 96 (0.015)

A.A. del 403 377 (0.94) 340 (0.84) 193 (0.57) 168 (0.49) 25 (0.07) 144 (0.42) 3 (0.007)

Trunc. 403 375 (0.93) 340 (0.84) 291 (0.86) 284 (0.84) 7 (0.02) 49 (0.14)h 0 (–)

Total 8,463 8,012 (0.95) 7,244 (0.86) 2,273 (0.31) 1,701 (0.23) 572 (0.08) 4,872 (0.67) 99 (0.014)

Abbreviations: A.A. del, single amino acid deletion; HC, high-confidence; Hypo., hypomorphic; Mut., mutation; Trunc., truncation; WT, wild-type.aNumbers in
parentheses represent the fraction of designed variants.
bNumbers in parentheses represent the fraction of high-confidence variants.
cTotal < WT: less than wild-type; variants with scores less than or equal to �1.11, the lower 95th percentile (two-tailed) for synonymous variants.
dTrunc.-like: truncation-like; subset of less than wild-type variants with scores less than or equal to �2.13, the upper 95th percentile (two-tailed) of nonsense
mutations at positions 1-349.
eHypo: hypomorphic; subset of less than wild-type variants with scores between �2.13 and �1.11, the upper truncation and lower synonymous 95th percentiles
(two-tailed).
fWT-like: wild-type like; variants with scores between �1.11 and 0.89, the 95th percentile (two-tailed) of synonymous variants.
g>WT: greater than wild-type; variants with scores exceeding 0.89, the upper 95th percentile (two-tailed) of synonymous variants.
h48 of these truncating mutations fall within regulatory tail, positions 352–403.
alpha helices and beta strands, unstructured positions are

very tolerant to mutation (Figure S3F).

The catalytic pocket of PTEN is composed of theWPD, P,

and TI loops (Figure 2C). This motif has sequence homol-

ogy to dual specificity protein phosphatases, especially

within the signature motif (123-HisCysXXGlyXXArg-

130).43 Arg130 is a hot spot for somatic cancer-associated

mutations with multiple different missense and trunca-

tions frequently reported.44 We observed that this critical

position was intolerant to all mutations (Figure 2E).

Compared to other phosphatases, PTEN also has unique

sequence features in order to accommodate the highly

acidic and bulky PIP3 substrate. Residues His93, Lys125,

and Lys128 impart a basic character on the pocket,43 the

importance of which is demonstrated by the mutational

intolerance at these positions (Figures 2D and 2E). Asp92

is a critical residue for PTEN catalysis, but its exact role re-

mains uncertain.25,45 We find that the only substitution

with wild-type-like activity is asparagine. Additionally,

the PTEN catalytic pocket is larger compared to other

dual specificity phosphatases.43 The Cowden-associated

p.Gly129Glu variant has been shown to abolish lipid phos-

phatase while preserving protein phosphatase activity.46

Our data show that Gly129 is intolerant to all mutations

except to alanine and serine, the two next smallest amino

acids (Figure 2E). Unexpectedly, despite their presence in

the catalytic pocket, several residues in the WPD and TI

loops are highly tolerant to mutations (Figures 2D–2F),

highlighting the power of functional data to delineate

truly functional from non-functional alterations within

highly conserved protein domains.

PTEN associates with the plasma membrane through

multiple domains. A PIP2 binding motif in the phospha-

tase domain (residues 6–15) is rich in positively charged

amino acids and allosterically promotes catalysis upon

PIP2 binding.
47,48 An additional positively charged residue,

Arg47, contributes to this interaction.49 Our data suggest

that Arg15, Lys13, and Arg47 are the most critical of the
The Ame
positively charged residues in this motif (Figure S4A).50

Additionally, an intramolecular regulatory interaction be-

tween the C-terminal tail and the phosphatase domain is

controlled by phosphorylation at four sites in the tail,

in mammalian cells.51 We find that individual phospho-

mimetic substitutions at these sites are insufficient to

decrease activity in our assay (Figure S4B).

Protein Positions Cluster into Stereotyped Patterns of

Mutational Sensitivity

In order to identify patterns of mutational sensitivity

among PTEN positions and amino acid substitutions,

we performed hierarchical clustering with all positions

at which we measured effects of all missense substitutions

(including high and low confidence, n ¼ 326, Figure 3A).

We found that positions clustered into two major clades,

corresponding to positions broadly tolerant/intolerant to

proline or highly sensitive positions. We identified sol-

vent exposure as a highly discriminatory feature between

sensitive and tolerant clades, with 80/88 (91%) positions

in the sensitive clade being in buried positions, while

only 44/170 (26%) are buried in the tolerant clade

(Figure 3A). The tolerant clade splits into two major

groups with a sub-clade broadly tolerant to all substitu-

tions (beige) and a second sub-clade where positions are

sensitive either to proline alone or to proline and hydro-

phobic residues (purple). The proline-sensitive positions

generally are part of secondary structures that are not

buried in the hydrophobic core (Figure 3A). The sensitive

clade positions split into three groups (green shaded sub-

clades), which differ in their tolerance to charged, polar,

or hydrophobic residues. The dark green clade represents

the most constrained positions and includes positions

92, 123, 124, and 130, all of which are in the catalytic

pocket and critical for catalysis. Overlaying the sub-clade

assignment of each position onto the crystal structure

highlights the intolerance of mutations within the

hydrophobic core of the phosphatase domain. Many of
rican Journal of Human Genetics 102, 943–955, May 3, 2018 947



Figure 2. High-Resolution Map of the Functional Effects of PTEN Mutations
(A) Heatmap schematic showing high-confidence fitness scores for 7,244 PTEN missense, nonsense, or in-frame deletion mutations
(86% of possible). Columns are each protein position and amino acids are listed in rows ordered according to biophysical characteristics.
Variants with fitness scores within the 95th percentile (two-sided) of synonymous wild-type like mutations are colored gray. Variants
with fitness scores lower than the synonymous distribution are colored blue while variants with higher fitness scores are colored red.
The major protein domains, as well as the secondary structure features, are indicated in the track below the heatmap (a-helices as yellow
rectangles and b-strands as green pentagons).
(B) Ribbon diagram of PTEN crystal structure with residues colored by average fitness score. Darker purple corresponds tomore damaging
scores.
(C) Ribbon diagram highlighting the crystal structure of the PTEN catalytic pocket, composed of the WPD (orange), P (green), and
TI-loops (salmon).
(D–F) The fitness scores of mutations at the residues composing the three catalytic pocket loops. Beneath each position is the Consurf
grade (Material and Methods), which represents the relative evolutionary conservation, with nine being the most conserved and one
being the least conserved.
the solvent-exposed positions in the C2 domain are

tolerant to mutation (Figure 3B).

Clustering by amino acid substitutions recapitulated

known functional relationships with proline correlated

poorly with other substitutions (Figure 3A). We sought to

leverage these patterns of correlation to predict the fitness

scores of mutations that were not present in our mutagen-

esis library or that were low confidence.52 We developed

a heuristic for using only the most closely correlated

observed substitutions53 at the site of interest to compute

an ‘‘informed position average’’ (Figure S5A).We combined

this with several other prediction-based, evolutionary, and

biophysical features to train and test a random forest

regression algorithm on our high-confidence measure-

ments (Material and Methods, Figures S5B and S5C,

Table S6).52 We used 10-fold cross validation to confirm
948 The American Journal of Human Genetics 102, 943–955, May 3,
that this approach can predict unseen data with high con-

fidence (Pearson’s r ¼ 0.80, Figure S5E). We further per-

formed a downsampling analysis to assess the expected

accuracy of imputing scores at different levels of satura-

tion, finding that reductions of 10%–20% (65.8%–74%

of saturation) achieve similar performance (Figure S5F).

Finally, we generated imputations for all variants that

were absent from our library or measured with low confi-

dence (Figure S6 and Table S2).

Fitness Scores Discriminate between Likely Pathogenic

and Benign Alleles

To determine whether our empirically determined fit-

ness scores were informative for discriminating between

germline likely pathogenic and benign alleles, we collected

germline missense mutations reported as pathogenic or
2018



Figure 3. Hierarchical Clustering Reveals Patterns of Mutational Tolerance among Protein Positions and Amino Acid Substitutions
(A) Hierarchical clustering of the 326 sites with all missensemutations measured. Clustering was performed by positions and amino acid
substitutions (positions are columns and amino acid substitutions are rows). Overlaid on this heatmap is a top track showing the solvent
exposure of each position in the crystal structure, with solvent-exposed positions colored green, intermediate positions orange, and
buried positions brown. We identified two major clades, which partitioned into five sub-clades with prevailing characteristics indicated
and represented in the bottom track. We further divided the purple clade to reflect major differences in mutational tolerance.
(B) Ribbon diagram of PTEN crystal structure with residues colored according to clade assignment.
likely pathogenic from ClinVar54 and rare variants from

gnomAD,1 excluding p.Arg173His and p.Lys289Glu that

are reported pathogenic in ClinVar (Material andMethods,

Tables S3 and S4). Fitness scores alone discriminated path-

ogenic from benign germline alleles (Figure 4A). We found

that the F0.5 score, which weights predictive value (PPV)

over sensitivity, reaches its maximum at a cutoff based

on the synonymous distribution (%�1, �95th percentile,

PPV ¼ 0.93, sensitivity 0.83) and outperforms several

in silico mutation effect prediction algorithms (Figures 4C

and S7). PPV was maximized (0.98) at a more conservative

cutoff based on the 95th percentile of the truncation distri-

bution but with reduced sensitivity (0.60) (Figures 4A

and 4C). Given the high PPV of our scores, we evaluated

distribution of fitness scores among ClinVar missense

VUS (Figure 4B). We found that 21/127 (17%) VUS with

high-confidence data met the strict truncation-based

cutoff and 41/127 (32%) met the synonymous cutoff,

suggesting that fitness scores could be used to reclassify a

major fraction of VUS.

PTEN mutations are extremely frequent in somatic can-

cer. We extracted nonsynonymous mutations from The

Cancer Genome Atlas (TCGA) and observed a multimodal

and wide distribution of fitness scores (Figures 4D and 4E,

Table S5). This is likely due to the presence of both driver

and passengermutations in these data. Similar to the germ-

line analysis, to test whether fitness scores could discrimi-

nate somatic mutations that are likely pathogenic, we

evaluated mutations from Onco-KB, a precision oncology

database with expert annotation of somatic mutations

(Table S5).55We found thatfitness scoresofPTENmutations

considered ‘‘oncogenic’’ or ‘‘likelyoncogenic’’were substan-

tially more negative than those considered ‘‘likely neutral’’

(Figures 4D and 4E). Of the missense likely oncogenic, 86/
The Ame
124 (69%) and 56/124 (45%) were below the synonymous

and truncation thresholds, respectively. In contrast, of the

eight variants considered likely neutral (all missense),

only one (p.Ala121Val) had a fitness score marginally

below the synonymous cutoff (fitness score, �1.3). Taken

together, thesefindings emphasize the abilityof empirically

determined fitness scores to discriminate between patho-

genic and benign human alleles, in both the germline and

somatic setting.

Finally, we evaluated potential genotype-phenotype

relationships for germline PTEN mutations. We first

compared the fitness scores of PTEN mutations associated

with various clinical presentations acquired from multiple

sources (Material and Methods, Figure 4D, Table S5). We

found that, as a population, fitness scores of nonsynony-

mous mutations exclusively reported in ASD/DD-affected

cohorts were less severe than PHTS-associated mutations

(Mann-Whitney U-test, two-sided, p ¼ 7.16 3 10�5).

Comparing only the missense, we found that this signifi-

cant difference persists (Mann-Whitney U-test, two-sided,

p ¼ 2.89 3 10�4), indicating that the mutation type alone

does not drive these differences (Figure 4E). We found

12/29 (41%) and 21/105 (20%) of the ASD and PHTS

missense mutation fell within the hypomorphic activity

range, respectively. Overall, these data provide strong

support for the hypothesis that ASD/DD-associated

mutations often retain hypomorphic PTEN phosphatase

activity.
Discussion

Massively multiplexed functional assays represent a prom-

ising approach to understanding the effect of mutations
rican Journal of Human Genetics 102, 943–955, May 3, 2018 949
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Figure 4. Fitness Scores Discriminate between Likely Patho-
genic and Benign Variants and Support Genotype-Phenotype
Relationships
(A) Fitness scores for missense variants considered pathogenic
or likely pathogenic in ClinVar (orange) and putatively benign
variants from gnomAD (green). Dashed curves represent trunca-
tion (left) and synonymous (right) distributions. Dashed lines
at �2.15 and �1 represent the approximate 95% two-tailed distri-
bution of truncations (before regulatory tail) and synonymous
mutations, respectively.
(B) Fitness scores of ClinVar VUS (purple), with truncation and
synonymous distributions and 95% limits.
(C) To test the ability of fitness scores to discriminate likely
pathogenic from likely benign missense mutations, we calculated
positive predictive value (PPV), sensitivity, and F0.5 scores for our
fitness scores (‘‘<Trunc’’ represents the threshold at �2.15,
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on protein function, which can provide immediate in-

sights into structure-function relationships and clinical

interpretation. Modifying a humanized yeast assay that

uses growth to read out relative phosphatase activity, we

were able to assess the functional effects of human PTEN

mutations on a massive scale. Our approach yielded

high-confidence measurements of 86% of the possible

single-residue nonsynonymous mutations. A limited

number of human proteins have been subjected to full-

length massively multiplexed functional assessment

and very few have been assayed at the depth we

achieved.7,8,52,56–60 Similar approaches could be used

with this model to the study of various aspects of the

PI3K/Akt pathway at scale, including mutations in

PIK3CA/B31 (p110a/b [PIK3CB (MIM: 602925)]), PIK3R161

(p85a [MIM: 171833]), and AKT162 (MIM: 164730), as

well as drug screening for PIK3CA inhibitors.63

Several features of the data support the validity of these

function estimates and their relevance to human health.

We observed high correlation between biological replicates

and recapitulated known features of PTEN function. For

example, there were no pathogenic mutations within our

curated clinical dataset in the C-terminal tail. The set of

early terminating mutations confirm that the minimal cat-

alytic unit includes the phosphatase and C2 domains, but

not the C-terminal tail.31 Likewise, we found that position

Cys124, which takes part directly in phosphatase catalysis,

and position Arg130, which is a hotspot for cancer muta-

tions, are completely mutation intolerant. Additionally,

we found that mutations are not well tolerated within

the loops forming the catalytic pocket or residues medi-

ating interactions with PIP2. Finally, we found that proline

was the most damaging substitution, consistent with a

recent meta-analysis of massively multiplexed experi-

ments53 and decades of biochemistry.64

While the humanized yeast system faithfully reports on

intrinsic lipid phosphatase activity, mutations that func-

tionally disrupt protein-protein interactions, subcellular

localization, post-translational modifications, or function

through a dominant-negative mechanism65 in mamma-

lian cells will not be captured. We observed 99 variants

with greater than wild-type like activity, none of which

were present in curated pathogenic datasets. While it is
‘‘<Syn’’ represents the threshold at �1). In these tests, a true pos-
itive represented a ClinVar pathogenic allele having a fitness score
less than or equal to the threshold.We compared the performance
of the fitness scores at these two thresholds with in silico patho-
genicity predictors for missense mutations using their default
thresholds (Material and Methods).
(D) Fitness scores of all curatedmutations associated with the indi-
cated phenotype (Material and Methods).
(E) Fitness scores of only curated missense mutations associated
with the indicated phenotype (programmed truncations also
shown for clarity). Abbreviations: ASD/DD, autism spectrum
disorder/developmental delay; PHTS, PTEN hamartoma tumor
syndrome; TCGA, The Cancer Genome Atlas; Onco-O, OncoKB
mutations considered ‘‘oncogenic’’ or ‘‘likely oncogenic;’’ Onco-N,
OncoKB mutations considered ‘‘likely neutral.’’
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possible that some of these variants increased PTEN activ-

ity, the number of variants of this class does not exceed

what we would expect under the null assumption of

wild-type-like activity. PTEN has relatively low thermosta-

bility66 and protein destabilization is a known mechanism

for PTEN loss-of-function.26,67 A concurrent functional

screen assaying protein stability found �1/4th of muta-

tions alter steady-state stability.59 Six mutations that desta-

bilized PTEN in breast cancer cell lines also decreased

steady-state abundance in this yeast model,31 suggesting

that mutations affecting thermostability will be detected

in our screen. However, our sensitivity to detect destabiliz-

ing mutations is unknown, as is whether mutations specif-

ically altering the rate of proteasome-mediated degrada-

tion68 will be reported on. We believe that independently

assaying these important factors at similar scale would pro-

vide useful complementary insights into PTEN function.

We discovered that approximately half of all positions in

PTEN were broadly tolerant to substitutions, suggesting

that they are not required for lipid phosphatase activity.

While there is a degree of correlation between the median

fitness score and the evolutionary conservation of each po-

sition, we identified positions within the highly conserved

catalytic pocket and elsewhere in the protein that are

highly tolerant to specific mutations. This is in apparent

contradiction with PTEN’s high evolutionary conservation

(99.75% identity between human and mouse28) and

constraint in humans.1 This suggests that many PTEN

positions are potentially under selection due to phospha-

tase-independent functions.

Our high-resolution mutation data empowered unique

insights into PTEN biochemistry and structure. The substi-

tution p.Gly129Glu is a well-known Cowden-associated

variant that disrupts lipid phosphatase activity while

maintaining protein phosphatase activity.46 We found

that substitutions to alanine and serine are tolerated at

this position, while mutations to bulkier residues are

damaging. This suggests that there is a size limit for the

amino acid that occupies this position. Asp92 matches

the position of aspartic acid in the WPD loop of PTP1B,

which acts as a general acid in the catalytic mecha-

nism.45 Asp92 is a critical residue in the PTEN catalytic

pocket, but its role in the reaction mechanism remains un-

certain.25,45,69 Our data support previous findings that all

mutations except p.Asp92Asn are strongly damaging.25

However, the p.Asp92Asn variant has been reported in

an individual with ASD, indicating that it still may have

a clinical effect.70 Similar to our findings, Rodrı́guez-Escu-

dero and colleagues found in the yeast assay p.Asp92Asn

had growth rescue similar to wild-type, but partial activity

relative to wild-type using an indirect fluorescence indica-

tor of PIP3 levels or an in vitro phosphatase assay.25 Com-

bined, these data are consistent with the p.Asp92Asn

variant retaining partial activity. We propose that

p.Asp92Asn could be showing wild-type-like activity

in our assay through asparagine deamidation, which is

a spontaneous, intramolecular reaction that can result
The Ame
in the conversion of asparagine to aspartic acid.71 In

biochemical systems and mammalian cells, this sponta-

neous conversion may not be sufficient to fully rescue

PTEN activity.

Similar to previous studies,5,72 we used hierarchical clus-

tering to look for patterns among the positions and amino

acid substitutions.We found that PTEN positions fall into a

few stereotyped patterns of mutational tolerance and that

a critical determinant of mutational tolerance is the rela-

tive solvent exposure of the position. These findings are

consistent with a recent meta-analysis of similar experi-

ments.73 We leveraged the correlation among amino acid

substitutions, along with several other features, to generate

a random forest regression model that could accurately

predict the fitness scores of unseen mutations and create

a comprehensive functional map encompassing the effects

of all possible single nonsynonymous mutations. To guide

future studies of similar proteins, we performed a down-

sampling analysis of the training data and found that for

similar accuracy, �70% mutation saturation would likely

be sufficient. Moreover, proline substitutions predict

poorly and should be directly assayed.

A critical hurdle for the application of massively multi-

plexed functional assays is bridging the gapbetweenmolec-

ular phenotype and human phenotype.74 We found that

fitness scores are able to discriminate between likely patho-

genic and benign human alleles in both the germline and

somatic condition. On this basis, we expect that these

scores will be of tremendous clinical value for reclassifying

VUS4 and also for predicting the effects of private alleles

that remain to be identified. A major question related to

PTEN genetics is whether genotype-phenotype relation-

ships can explain the heterogeneity in clinical presentation

for carriers of germline mutations. Our comprehensive da-

taset provides strong evidence that the mutations associ-

ated with ASD/DD are hypomorphic for lipid phosphatase

activity and are significantly more active than the muta-

tions that lead toPHTS.This suggests thatdistinctbiological

mechanisms underlie the differential presentations, and

understanding these differenceswill be critical for the even-

tual treatment of these disorders. While it is possible that

these different mechanisms are the direct result of lipid

phosphatase activity at the plasmamembrane, ASD-associ-

ated mutations may specifically disrupt another of PTEN’s

cellular functions.75,76 Supporting this idea, some ASD-

associated mutations are excluded from the nucleus and

lead to neuronal hypertrophy, but this phenotype can be

rescued by artificial direction to the nucleus.77

While massively parallel functional data are a significant

advance for understanding function-specific mutation ef-

fects, further untangling complex genotype-phenotype

relationships will require similar advances in clinical ge-

netics databases with standardized descriptors of clinical

presentations and symptoms.28 Our study was limited by

both the number of publicly available mutations and asso-

ciated clinical information. Since there are no coding vari-

ants considered benign in ClinVar, we used PTEN variants
rican Journal of Human Genetics 102, 943–955, May 3, 2018 951



in the gnomAD database as a proxy for likely benign muta-

tions. While these mutations are on average wild-type-like,

we recognize that this is an imperfect approach and it is

possible that some of the variants in gnomAD are patho-

genic. We excluded variants that were only in ClinVar

from our genotype-phenotype analysis because of their

ambiguous annotation and lack of clinical data. For

example, 17% of the pathogenic/likely pathogenic muta-

tion submissions had no indicating condition provided

and 36% of all missense entries use the ambiguous term

‘‘hereditary cancer-predisposing syndrome.’’ Requiring

submitters to provide more information in a consistent

way will maximize the utility of massively multiplexed

functional data. Finally, it is still unclear whether individ-

uals ascertained for neurological phenotypes as children

will have a higher risk to develop PHTS-like or cancer

presentations later in life.78 Moving forward, large-scale

sequencing efforts that permit longitudinal assessment as

well as patient re-contact will be instrumental. A new

initiative, SPARK, aims to partner with 50,000 individuals

with ASD and their families to create the largest genetically

characterized ASD cohort to date.79 It is likely that hun-

dreds of new PTEN mutation carriers will be identified in

SPARK and would be available for re-contact and detailed

prospective study.

We demonstrate that comprehensively assaying the mo-

lecular phenotypes of thousands of mutations to a human

protein can yield clinically relevant insights, even for pro-

teins with pleiotropic effects. Future efforts that combine

multiple functional modalities and rich clinical datasets

may allow for the precision needed to fully realize person-

alized genomic medicine.
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Figure S1. Optimization of humanized yeast assay for liquid culture induction and selection.  
We performed a pilot experiment with ~400 variants (single tile) to determine when effect size was maximized 
under induction conditions. We sequenced the input library (pre-induction) and p110α and PTEN induced 
populations at indicated time points. At each time point, five million yeast cells were passaged to fresh 
induction medium and the remainder used for DNA extraction. Displayed are the relative read counts of each 
variant, plotted in the same order as input. Effect size reaches a plateau at 48 hours, which we then used as 
the selected time points for the rest of the experiments in this study. 
  
  



 

 

 
 
Figure S2. Schematic overview of mutagenesis and computational workflow.  
(A) We generated a saturation mutagenesis library by incorporating single-mutation-bearing oligonucleotides 
into an otherwise wild-type backbone. Oligos were synthesized on solid-state arrays (CustomArray) in 31 
individual tiles/pools. Oligo tiles were PCR amplified separately. Long range PCRs of otherwise wild-type 
plasmid with custom primers for each tile were used as template for SliCE mediated homologous 
recombination. We divided the protein coding sequence into 4, ~300 bp fragments/quadrants so that we could 
cover each entire mutation-bearing segment with 2x300 base-pair (bp) paired-end sequencing reads. 
Mutagenized plasmids were transformed into bacteria. Clones from individual mutagenesis tiles were pooled 
by quadrant and transformed into yeast for functional assays.  
(B) Overview of the computational pipeline for processing reads and obtaining fitness scores. Variant 
predictions were considered high-confidence if passing a standard error (SE) filter or showing concordant 
effects between two biologic replicates (Materials and Methods).   
  

Massively parallel solid-state 
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recombination of mutation 
bearing oligonucleotides into 
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space. 
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304 bp PTEN We split the 1212 bp coding 
sequence into 4 quadrants of 
~304 bp. This allows directly 
sequencing mutations with 
2x300 bp reads on Illumina 
Miseq platform. We obtained ~ 
30 million reads across 2 runs. 
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Category Variants Percent 
Pass SE 6861 81.07	

Pass Concordance 383 4.53	
Not Measured 451 5.33	
Pass Neither 768 9.07	

Total 8463	 		

A B Raw fastq 



 

 
 
Figure S3. Overview of PTEN saturation mutagenesis dataset and relative fitness scores.  
(A) Distribution of fitness effects for all high-confidence variants (7,244) derived from two biologic replicates, 
with three technical replicates each.  
(B) Biological replicates show high correlation (Pearson’s r = 0.76).  
(C) Distribution of standard errors for measured variants. High-confidence variants to the left of the dashed line 
have 95% confidence intervals less than or equal to one natural-log fold change.  
(D) The distributions of truncating mutations (excluding those in the regulatory tail) (red, left) and synonymous 
wild-type like mutations (green, right) are shown. Dashed lines indicate the two-tailed 95th percentile limits for 
synonymous and truncating variants.  
(E) The median fitness score of all high-confidence scores at each position is correlated with the evolutionary 
conservation at that position (Spearman ρ = 0.58). Evolutionary conservation for all positions was obtained 
with ConSurf, using following options: “Amino-Acids”, “No known protein structure”, “No MSA”, and default 
homolog search parameters.  
(F) Comparison of median fitness scores for positions in alpha helices, beta strands, or unstructured regions. 
Alpha helix and beta strand assignments obtained through STRIDE for structure PDB: 1D5R. Unstructured 
positions are those absent from the crystal structure (1-13, 282-312, 352-403). 
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Figure S4. Evaluation of mutation effects within the PTEN predicted PIP2 binding motif and tail 
phosphosites.  
(A) Fitness scores highlighting positively charged residues in PIP2 binding domain (Lys6, Arg11, Lys13, Arg14, 
Arg15) as well as Arg47, with neighboring residues. Lys13, Arg15, and Arg47 are the most critical in our assay.   
(B) Fitness scores for C-terminal regulatory tail phosphosites (Ser380, Thr382, Thr383, Ser385) and 
neighboring positions.  
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Figure S5. Development of a random forest algorithm to impute relative fitness scores for missing 
data.  
(A) We used correlation coefficients53 between amino acid substitutions to identify, in aggregate, the number of 
most closely correlated substitutions that maximized accuracy in the prediction of missing data. To generate 
each prediction we identified the n most closely correlated substitutions that were measured with high 
confidence at that positions, and calculated the average weighted by the standard error of each substitution. 
Box plots represent the squared error between measured value (in our assay) and value predicted from the n 
closest substitutions for all high-confidence measurements. We chose to use five for subsequent modeling, 
and define this value as “informed position average”.  
(B) The 100 high-confidence substitutions that were predicted most poorly by the five most closely correlated 
substitutions, which show strong enrichment for proline.  
(C) We collected ~50 evolutionary, predictor-based, and biophysical features describing each substitution (as 
in Weile et al., 2017). Then, we trained a random forest model (Scikit-learn version 0.19.0, 
sklearn.ensemble.RandomForestRegressor, n_estimators=500, criterion= “mse”, max_features=0.33, 
random_state=0, oob_score=True ) and report here the relative increase in impurity upon random permutation 
of each feature, which is a surrogate for feature importance.   
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(D) Then, we trained a model using “informed position average” as the only feature, and iteratively added 
features, in the order of importance calculated in C. Root mean square deviation (RMSD) of predictions made 
by iteratively adding indicated features to the model and performing 10-fold cross validation are shown, and we 
stopped adding features once the decrease in error plateaued. Color of marker indicates the type of feature; 
brown is intrinsic to the dataset, green is structural, purple is predictor, and blue is biophysical.  
(E) We used the 15 features in D to train a final model (options same as in C) and performed 10-fold cross 
validation on the high-confidence variant set. We generated predictions for all high-confidence variants and 
plotted the observed and predicted values for each variant. Pearson’s r = 0.80, options same as above.  
(F) RMSD results from downsampling to indicated map completeness. We downsampled from our high-
confidence dataset and retrained models at each indicated percent map completeness. The maximum value is 
82.3%, which is the percent map completeness that our high-confidence missense dataset represents. 5 
replicates were performed at each point % map completeness. Options same as above, except 
random_state=None.  



 

 
 
Figure S6. A comprehensive functional map of predicted effects of PTEN mutations using imputed 
scores.  
(A) We trained the random forest algorithm on 6,300 missense variants that were measured with low standard 
error (95% confidence interval < 1 fitness score). We omitted single residue deletions and nonsense mutations. 
We then predicted the fitness score of the remaining 1,357 variants. Imputed values are colored according to 
their fitness score. Variants used in the training are white.  
(B) Complete sequence function map with high-confidence measurements in addition to imputed values.	
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Figure S7. Positive predictive value (PPV) and sensitivity (precision and recall) curves for fitness 
scores and mutation effect predictors.  
PPV and sensitivity were calculated at 200 points between the minimum and maximum of the predictor’s 
output. Triangles represent the cutoff values shown in Figure 4C, based on default setting (Provean=-2.5, 
SIFT=0.05, Polyphen-2= 0.15). The two blue triangles correspond to the truncation (left) and synonymous 
(right) thresholds. 
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