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Data analysis 
 
Analysis of non-exponential decays 

Here we present some practical hints that can be useful for the analysis of the experimental (in 

general case non-exponential) relaxation decays. As described in the main text, the simplest fitting 

function for such decays is a sum of two exponentials: 

 

0 1 1( ) exp( ) (1 ) exp( )a bA t A p R t p R tρ ρ = ⋅ ⋅ − ⋅ + − ⋅ − ⋅  ,   (S1) 

 

where A0, p, R1ρa and R1ρb are the fitting parameters. The parameters p, R1ρa and R1ρb themselves 

have no physical meaning, however out of them the mean relaxation rate can be easily calculated: 

 

1 1 1(1 )a bR p R p Rρ ρ ρ= ⋅ + − ⋅ .     (S2) 

 

In practice it more convenient to express R1ρb as a function of R1ρa and 1R ρ  using Eq. (S2) 

( )1 1 1 /(1 )b aR R p R pρ ρ ρ= − ⋅ −      (S3) 

 



and then insert this expression in Eq. (S1): 

( )( )0 1 1 1( ) exp( ) (1 ) exp /(1 )a aA t A p R t p t R p R pρ ρ ρ
 = ⋅ ⋅ − ⋅ + − ⋅ − ⋅ − ⋅ −
 

.  (S4) 

 

This form of the fitting function has the fitting parameters A0, p, R1ρa and 1R ρ . Thus, 1R ρ  can be 

obtained from the fitting directly without additional calculation using Eq. (2). It is also important 

that the fitting uncertainty for 1R ρ  in this case can also be obtained from the fitting software 

directly without additional calculations. One should be aware of the fact that the fitting uncertainties 

of p, R1ρa and R1ρb are usually rather high. However, the uncertainty of 1R ρ  is much smaller since 

the parameters p, R1ρa and R1ρb  are highly inter-correlated. This is illustrated in Fig. 10 of the main 

paper. Few other hints are as follows: 

 

- if the relaxation decay is too curved and double-exponent (or a phenomenological distribution of 

the relaxation times) fitting function is not sufficient for a good fitting, then the fitting range of 

the decay can be shortened, i.e. one should fit not the whole decay, but its initial part, where 

good fitting is achievable. Alternatively, the number of components in the fitting function can be 

increased, this is, however, a more complex and less definite approach; 

- one should avoid the very small relative amplitude (around few percent) of the fast component 

while using the double-exponential fitting function. In most cases such a small amplitude means 

that a computer tries to fit the experimental noise at the very beginning of the decay. This can be 

achieved by limiting the allowed values of the relative amplitude during the fitting. For the same 

reason it is not advisable to use excessive number of components in the fitting function since the 

fitting software again would try to fit noise at the beginning of the relaxation decay assuming a 

relaxation component with a very large (sometimes even negative) relaxation rate. This may 

significantly distort the result; 

- if the signal-to-noise ratio is not sufficient or if the length of a decay is not long enough so that the 

multi-exponential shape of the decay is not seen, then fitting the decay using single- and double-

exponential (or distribution)  fitting function provides practically the same mean relaxation rate 

and the same fitting error. In this case, applying more complex fitting function of course does not 

make sense. 

 

Finally, we note that  in general, the fitting uncertainty of the mean relaxation rate constant obtained 

using double-exponential (or distribution) fitting function is appreciably larger than the uncertainty 



obtained using the single-exponential fit. This however cannot be an argument for using the simplest 

fitting function except the case considered in the preceding paragraph. 

 

 

Relaxation rate constants 

The experimentally measured 15N relaxation rate constant R1ρ is a sum of two terms, 

 

    1 1 1
NH CSAR R Rρ ρ ρ= + ,     (S5) 

 

where 1
NHR ρ  and 1

CSAR ρ  are the rate constants corresponding to the heteronuclear dipolar and chemical 

shift anisotropy relaxation mechanisms, respectively. The two rate constants can be expressed as a 

function of the motional spectral density function as follows: 
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where ωSL/2π and ωMAS/2π are the spin-lock and MAS frequencies, ωN/2π and ωH/2π are the 15N and 
1H resonance frequencies, 2

NHK  is the square of the powder-averaged 15N-1H dipolar interaction and 

δ is the CSA interaction strength, i.e. the difference between the parallel and perpendicular 

components of the axially symmetric CSA tensor. In the analysis, we assumed for 2
NHK  and δ  the 

standard values for protein backbone nitrogens of 5.2·109 s-2 and 160 ppm, respectively.  

 

Note that Eqs. (S6) and (S7) are valid only for the on-resonance spin-lock experiment; if the spin-

lock pulse is applied with a non-negligible resonance offset, then general formulae should be used, 

see details in (Kurbanov et al. 2011; Krushelnitsky et al. 2014). Eq. (S6) corresponds to the case of 

heteronuclear dipolar relaxation mechanism, homonuclear relaxation under MAS should be analyzed 

using equations described in (Rovo et al. 2017).  

 



The corresponding formulae for R1 are: 
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NH NH
N H N N H

KR J J J= +ω ω ω ω ω    (S8) 
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15

CSA
N NR J= δω ω .     (S9) 

 

The above treatment neglects the effects of dipolar-CSA cross-correlated relaxation (CCR), which 

would lead to differential relaxation of the different 15N double components. Experimentally the 

effects of cross-correlated relaxation have been suppressed by applying a proton π-pulse in the 

middle of the 15N-spin-lock pulse, as mentioned in the experimental section of the main text, and, 

thus, we can safely neglect the CCR effects.  

 

Spectral density function 

As explained in the main text, the spectral density function was presented as a sum of two terms 

corresponding to the fast and slow motions, the former with a distribution of the correlation times: 

 

2 2 2
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f f f S
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J S d S S
∞ ττ

ω = − ρ τ τ β τ + −
+ ωτ + ωτ∫ .  (S10) 

In the analysis, we used two kinds of phenomenological distribution functions. The first is the 

modified Fuoss-Kirkwood distribution function (Schneider 1991). Assuming this type of 

distribution, the whole distribution integral over the τ-dependent Lorentzian spectral density in Eq. 

(S10) reads: 
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J
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ωτ α + β απ
ω = ⋅ ⋅ ⋅ α + β ω  + ωτ

.   (S11) 

Here, τf  is the mid-distribution correlation time, α and β are the distribution width parameters 

(0<α<1, 0<β<1) that regulate the slow (long correlation times) and fast (short correlation times) 

wings of the distribution function, respectively. If α=β=1, the distribution is infinitely narrow (i.e., a 

δ-function), if α=β=0, the distribution is infinitely wide. The case α=β corresponds to the well-

known Fuoss-Kirkwood distribution function, and if α≠β, then the distribution becomes non-

symmetric. In our analysis we always assume non-symmetric distribution, α was fixed at 1 and β 

was a variable fitting parameter. We did so since this distribution has very slowly decaying wings, 

and if α<1, the part of the fast motion distribution will always overlap the slow (rocking motion). 

This would lead to the incorrect order parameter of the slow motion obtained from the fitting. The 



non-symmetric shape of the correlation time distribution for the fast motion is of course unphysical 

and it may provide biased information on the fast motion parameters. This is however not critical for 

the present study since we are not interested in precise and correct fast-motion parameters, we just 

need to take it into account formally, to obtain correct values of the rocking motion parameters. 

 

The second type of the distribution function we tested is the log-normal distribution,  
2
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π
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where β is also a distribution width parameter (0<β<∞); the larger β, the wider the distribution. In 

this case, the integral in Eq.(S10) was calculated numerically during the fitting procedure. The 

temperature dependence of the correlation times was assumed to be Arrhenian, see Eq.(3) of the 

main paper. 

 

Fitting results 

The whole set of relaxation data for each sample can be described by a following set of fitting 

parameters: 
2

,f SS  - order parameters of the fast and slow motions; 

20
,f Sτ  - correlation times of the fast and slow motions at 20 ºC; 

,f SE  - activation energies of the fast and slow motions; 

β - distribution width parameter for the fast motion (two different distributions, see above). 

 

The data fitting was performed using a Monte-Carlo algorithm aiming to minimize the root-mean-

square deviation   
2

exp

1 exp
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 
∑ ,    (9) 

where N is the number of experimental points (including all R1ρ and R1 rate constants), exp
iR and i

simR  

are the experimental and simulated R1ρ or R1 relaxation rate constants, respectively, according to the 

formalism described above. From the Monte-Carlo trajectories (each trajectory includes from 105 to 

106 accepted steps), the mean values as well as rmsd values for each fitting parameter were 

determined. Tables 1 and 2 below present the fitting results assuming the modified Fuoss-Kirkwood 

(Tab. S1) and log-normal (Tab. S2) distributions for the fast motion. 

 
 



Table S1. Fitting results assuming the modified Fuoss-Kirkwood distribution of the fast-motion 
correlation times. The fitting parameters errors were determined from the MC trajectories and thus 
present only the fitting uncertainty. 
 
 Fitting parameters GB1 SH3 Ubiq. MPD Ubiq. PEG 

Fast 

motion 

2
fS  0.867±0.02 0.2±0.05 0.78±0.03 0.39±0.05 

20
fτ  / ns 74±10 13±2 140±80 47±8 

Ef / kJ/mol 50±10 54±6 11.2±1.5 6±3 

β 0.18±0.06 0.41±0.08 0.38±0.16 0.94±0.08 

Slow 

motion 

2
SS  0.99945±0.00006 0.989±0.003 0.9961±0.0003 0.987±0.002 

20
Sτ  / µs 42±3 47±3 28±2 53±6 

ES / kJ/mol 55±8 107±8 18±3 31.5±10 

RMSD 0.07 0.12 0.07 0.12 

 



 
Table S2. Fitting results assuming the log-normal distribution of the fast-motion correlation times.  
 
 Fitting parameters GB1 SH3 Ubiq. MPD Ubiq. PEG 

Fast 

motion 

2
fS  0.92±0.02 0.34±0.02 0.87±0.01 0.41±0.07 

20
fτ  / ns 6.5±1.5 6±1 10±5 42±2 

Ef / kJ/mol 44±5 41±4 15±2 7±3 

β 1.85±0.2 0.95±0.2 2.5±0.5 0.36±0.25 

Slow 

motion 

2
SS  0.9995±0.00005 0.994±0.0005 0.9969±0.0005 0.988±0.002 

20
Sτ  / µs 40.5±4 46±3 31±5 52±5 

ES / kJ/mol 46±5 95±6 19±4 33±10 

RMSD 0.07 0.12 0.07 0.12 

 
We would like to note that relatively low order parameters of the fast motion, especially for the SH3 
and ubiquitin PEG samples, are not an indication of the high average amplitude of the backbone 
motion. The integral signal also includes side-chain nitrogens that undergo fast motion with a high 
amplitude. The contribution of the side chain nitrogens to the integral signal is specific for a sample 
and the CP conditions. For this reason, 2

fS  contains practically no physically relevant information. 
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Figure S1. R1ρ-decays of MPD-ubiquitin sample at 15 ºC and different spin-lock frequencies 
(indicated in the figure). The decays were arbitrarily normalized for better viewing. The dashed line 
indicates the time point, at which the initial oscillation are vanished. The experimental points at  
shorter delays in respect to this point were not taken into the analysis.  
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Figure S2. R1-decays of MPD-ubiquitin sample measured at three temperatures (indicated in the 
figure). 



 
2D relaxation data for GB1 sample 
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Figure S3. 1H-15N correlation spectrum of the GB1 sample with the numbering of the peaks used in 

Fig. 13 of the main paper. The difference between the pattern of this 2D spectrum and that of the 

GB1 spectra published previously (Zhou et al. 2007;  Lamley et al. 2015) is caused most probably by 

a usage of a mixture of deuterated (80%) and protonated (20%) solvents instead of natural 

abundance ones, resulting in one of possible polymorphs of the GB1 microcrystals  (Schmidt et al. 

2007). The assignment experiments are not feasible since the available to us sample is not 13C-

enriched.  Note that judging from the line resolution in the 2D spectrum and from the fact that GB1 

reveals the smallest relaxation rates R1 and R1ρ out  of all four samples, this protein certainly has a 

well-defined crystal structure and is not somehow degraded. 
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Figure S4. R1ρ relaxation decays for 53 peaks in the 2D spectrum of GB1 sample (Fig. S3) measured 

at spin-lock frequencies 8 kHz (black solid circles) and 17 kHz (red open circles). The numbering of 

the plots corresponds to the numbering of the peaks in Fig. S3. Solid lines are the fitting curves, the 

fitting was performed according to the hints described in the first part of ESM. All x-axes 

correspond to the spin-lock duration in ms. 

 



 
 
Figure S5. Intermolecular H-bonds in the GB1 crystal. The picture was generated using the Protein 
Data Bank file 2QMT. 
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