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A Comprehensive cis-eQTL Analysis Revealed
Target Genes in Breast Cancer Susceptibility Loci
Identified in Genome-wide Association Studies

Xingyi Guo,1,7,* Weiqiang Lin,2,3,7 Jiandong Bao,1,4 Qiuyin Cai,1 Xiao Pan,2,3 Mengqiu Bai,2,3

Yuan Yuan,2,3 Jiajun Shi,1 Yaqiong Sun,1 Mi-Ryung Han,1 Jing Wang,5 Qi Liu,5 Wanqing Wen,1

Bingshan Li,6 Jirong Long,1 Jianghua Chen,2 and Wei Zheng1

Genome-wide association studies (GWASs) have identified more than 150 common genetic loci for breast cancer risk. However, the

target genes and underlying mechanisms remain largely unknown.We conducted a cis-expression quantitative trait loci (cis-eQTL) anal-

ysis using normal or tumor breast transcriptome data from the Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC), The Cancer Genome Atlas (TCGA), and the Genotype-Tissue Expression (GTEx) project. We identified a total of 101 genes

for 51 lead variants after combing the results of a meta-analysis of METABRIC and TCGA, and the results from GTEx at a Benjamini-

Hochberg (BH)-adjusted p < 0.05. Using luciferase reporter assays in both estrogen-receptor positive (ERþ) and negative (ER�) cell lines,
we showed that alternative alleles of potential functional single-nucleotide polymorphisms (SNPs), rs11552449 (DCLRE1B), rs7257932

(SSBP4), rs3747479 (MRPS30), rs2236007 (PAX9), and rs73134739 (ATG10), could significantly change promoter activities of their target

genes compared to reference alleles. Furthermore, we performed in vitro assays in breast cancer cell lines, and our results indicated that

DCLRE1B, MRPS30, and ATG10 played a vital role in breast tumorigenesis via certain disruption of cell behaviors. Our findings revealed

potential target genes for associations of genetic susceptibility risk loci and provided underlying mechanisms for a better understanding

of the pathogenesis of breast cancer.
Introduction

To date, genome-wide association studies (GWASs) have

identified more than 150 genetic susceptibility loci associ-

ated with breast cancer risk.1–17 Approximately 90% of

the single-nucleotide polymorphisms (SNPs) or variants

initially identified by GWASs in these risk loci are located

in intergenic, or non-coding, regions, and they are either

not in linkage disequilibrium (LD) or have weak LD with

coding variants. For the large majority of these risk vari-

ants, the mechanisms and biological relevance for their

associations with breast cancer remain unclear. It is

believed that most of these risk variants confer breast can-

cer pathogenesis by regulating the expression of genes,

especially nearby genes.18–22 A recent study has shown

that approximately 80% of the heritability of disease risk

for 11 common diseases can be explained by variants in

DNase I hypersensitivity sites, indicating that these vari-

ants, including the GWAS-identified risk variants, may

play a regulatory role in gene expression.23

Large genomics data consortia, including the Molecular

Taxonomy of Breast Cancer International Consortium

(METABRIC), The Cancer Genome Atlas (TCGA), and the

Genotype-Tissue Expression (GETx) project, have gener-

ated massive quantities of high-dimensional genomic

data, including both matched genetic and transcriptome
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profiles from thousands of samples of breast cancer tumor

tissue and normal tissue. These data provide an unprece-

dented opportunity for expression quantitative trait loci

(eQTL) analysis, which evaluates the association of a

variant genotype with gene expression levels measured in

cells or tissues from individual subjects. Li et al. conducted

a cis-eQTL analysis focused on 15 breast cancer index vari-

ants to identify potential nearby regulatory transcription

factor (TF) targets.24 They subsequently expanded their

cis-eQTL analysis to include risk loci for multiple cancer

types using a subset of TCGA data.25 Recently, the GTEx

project systematically identified thousands of eQTL target

genes by evaluating the association between transcriptome

variation and genome-wide variants across 43 types of

normal tissues, including normal breast tissue from hun-

dreds of individuals.26,27 In another work, Castro and col-

leagues reported 36 TF regulons, described as a set of highly

co-expressed genes regulated by potential TFs associated

with breast cancer index variants, using variant and tran-

scriptome data in breast tumor tissues from METABRIC.28

Most recently, Michailidou and colleagues reported 65

new breast cancer risk loci. They performed eQTL analysis

using 458 tumor tissues from TCGA and 138 normal tissue

samples from METABRIC.16 In addition to this large-scale

analysis of index variants, over the past several years,

we and other groups have conducted fine-mapping and
Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School

rst Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou

ol of Medicine, Hangzhou 310029, China; 4College of Life Sciences, Fujian

titative Sciences, Vanderbilt University School of Medicine, Nashville, TN

t University School of Medicine, Nashville, TN 37232, USA

2018

mailto:xingyi.guo@vanderbilt.edu
https://doi.org/10.1016/j.ajhg.2018.03.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2018.03.016&domain=pdf


cis-eQTL analyses to identify target genes in selected loci,

including ESR1 (6q25),29,30 IGFBP5 (2q35),31 FGFR2

(10q26),32–34 CCND1 (11q13),35 MAP3K1 (5q11),36 CASP8

(2q33),37 RCCD1 (15q26),2 TET2 (4q24),38 MYC (8q24),39

PTHLH (12p11),40 STXBP4 (17q22),41 HELQ (4q21),42

NRBF2 (10q21),43 and MRPS30 (5p12).44,45.

While previous studies identified a large number of sus-

ceptibility gene candidates as described above, target genes

for a large proportion of risk loci remain unknown. In addi-

tion, many candidate target genes were identified based on

eQTL analysis at p < 0.05 in only one dataset; some false

positive results can be ruled out only via independent

replication using additional datasets. In particular, eQTL

analysis has not been systematically performed to evaluate

the associations of nearby genes and index variants using

large-scale transcriptome data in tumor tissues from

METABRIC. In the present study, we collected a total of

172 index variants for breast cancer risk at p < 5.0 3

10�8 from previous literature (Table S1). Using GWAS

data from the Breast Cancer Association Consortium

(BCAC), we identified a total of 159 breast cancer lead var-

iants for these index variants, whereas they are not in LD

(R2 < 0.1) (see Material and Methods, Table S1). We con-

ducted a comprehensive cis-eQTL analysis of these variants

to evaluate their associations with expression levels of

nearby genes (1 Mb distance from the lead variant) in

four transcriptome datasets from the METABRIC, TCGA,

and GTEx project. Using luciferase reporter assays, we

experimentally validated that alternative alleles of several

functional SNPs could significantly change the promoter

activities of target genes compared to their reference al-

leles. Using in vitro functional assays in breast cancer cell

lines, our results further indicated that three candidate sus-

ceptibility genes play a vital role in breast tumorigenesis

via certain disruption of cell behaviors. These findings pro-

vide additional insights into the understanding of regula-

tory mechanisms of genetic risk variants and genes for

breast cancer development.
Material and Methods

Data Resources
We collected and characterized 172 index variants for breast can-

cer risk at p < 5.0 3 10�8 from previous literature (Table S1). We

extracted 11,642 variants in strong LD with 172 index variants

(R2 > 0.4). We retained any variants at p < 5.03 10�8 from the as-

sociation results of the BCAC (122,977 breast cancer case subjects

and 105,974 control subjects).16 If variants in the same locus were

in LD (R2 > 0.1), only one variant with the best association was

defined as the lead variant for the downstream analysis. In the

end, we identified a total of 159 lead variants for the downstream

analysis (Table S1).

We downloaded gene expression profiles generated by Illumina

HT12 arrays in a total of 1,981 primary breast tumor tissues from

Synapse (syn1757063) from the METABRIC project. The normal-

ized gene expression and somatic copy alteration data were down-

loaded from the CbioPortal. The normalized gene expression has
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been described in a previous study.46 Genetic variant data, geno-

typed using array-based Affymetrix SNP 6.0 in a total of 1,992 sam-

ples, were downloaded from EBI (EGAD00010000164). A total of

1,895 tumor tissue samples with matched gene expression, so-

matic copy number alterations, and SNP data were included in

our analysis.

For TCGA data, we downloaded RNA-seq V2 data (level 3),

DNA methylation data, and somatic copy number alterations

data from the CbioPortal. We also downloaded level 3 SNP

data, genotyped using the Affymetrix SNP 6.0 array from TCGA’s

data portal. A total of 536 tumor samples with matched gene ex-

pressions, DNA methylations, copy number alterations, and ge-

netic variant data from European descendants were included.

We also downloaded matched whole exome-seq and RNA-seq

data in 494 tumor tissue samples from European descendants

from the TCGA data portal.

We extracted cis-eQTL results for lead variants and nearby genes

based on 251 normal breast tissues from the most recent GTEx

database (v.7). We excluded results of long non-coding RNAs

and ribosomal genes from our analysis. In total, we analyzed the

association results for 147 variants (140 lead variants and 7 surro-

gate variants in strong LD, R2 > 0.8) and their nearby genes from

the GTEx project. In addition, we also extracted significant

cis-eQTL results for 72 lead variants and nearby genes at p <

0.05 based on 138 normal breast tissues from METABRIC from

previous literature.16
Genotype Quality Control (QC)
We used the R package CRLMM to call the variant genotype

for each probe from the original image array-based data in

METABRIC.47 Only those probes of high quality, with intensity

greater than 3,000 at a 95% calling rate, were included. From

this METABRIC data and the level 3 TCGA data, genotype data

of the nearby 1 Mb region for the 159 lead variants were extracted

and then imputed with the 1000 Genomes Project data usingMin-

imac.48 Only common variants (minor allele frequency > 0.05)

with high imputation quality (R2 > 0.3) were included. We used

a surrogate variant in strong LD (R2 > 0.8) instead of the lead

variant if the lead variant failed to meet these criteria. In total,

we included 147 variants (144 lead variants and three surrogate

variants) from METABRIC and 155 variants (154 lead variants

and one surrogate variant) from TCGA.
cis-eQTL Analysis
We used linear regression analysis to evaluate association between

lead variants and expression levels of nearby genes (1 Mb distance

to the lead variant). For the METABRIC and TCGA datasets, the

normalized gene expression values were analyzed. To make the

data conform better to the linear model for the eQTL analysis,

we further transformed the gene expression levels across samples

using an inverse normalizing transformation method. A full linear

regression analysis was then performed to detect eQTLs, while ad-

justing for methylation and copy number alterations. For the

METABRIC data, only copy number alterations were adjusted

due to the lack of DNA methylation data in the tumor tissue sam-

ples. BH-adjusted p values were applied to determine final eQTL

target genes.
Identification of Target Genes for Lead Variants
To increase the statistical power, we conducted a meta-analysis of

eQTL results from tumor tissues fromMETABRIC and TCGA using
rican Journal of Human Genetics 102, 890–903, May 3, 2018 891



Figure 1. A Workflow of Study Design
(A) A flow chart to illustrate the identification of target genes for GWAS lead variants based on cis-eQTL analysis using data from the
METABRIC, TCGA, and GTEx datasets. The number in the dashed box indicates the total number of eQTL target genes that are identified
by METABRIC, TCGA, GTEx, and meta-analysis at p < 0.05. The number in the highlighted blue and red box refers to the total of eQTL
target genes that are identified using BH-adjusted p < 0.05 from a meta-analysis of tumor tissue results from METABRC and TCGA and
normal tissues in GTEx, respectively. The number in the yellow box indicates the total number of genes after combing the results of the
meta-analysis and the result in GTEx.
(B) The comparisons of the identified eQTL target genes with consistent associations across datasets (meta-analysis, GTEx, and normal
tissues in METABRIC). From left to right, the number of the identified eQTL targets with consistent associations across the results from
themeta-analysis and GTEx (BH-adjusted p< 0.05 for both) and normal tissue in METABRIC (unadjusted p< 0.05); from themeta-anal-
ysis (BH-adjusted p < 0.05), and GTEx and normal tissue in METABRIC (unadjusted p < 0.05 for both); from the meta-analysis (unad-
justed p < 0.05), and GTEx (BH-adjusted p < 0.05) and normal tissue in METABRIC (unadjusted p < 0.05).
the fixed-effects model.49 BH-adjusted p values were applied to

determine eQTL target genes. In GTEx, we identified target genes

using the same cutoff. In addition, we removed the target genes

that had inconsistent associations in any other datasets at a less

conservative unadjusted p < 0.05 (Figure 1). In the end, we iden-

tified final target genes for lead variants after combing the results

from both meta-analysis and eQTL analysis of GTEx (Figure 1).

Pathway Enrichment Analysis
For the identified target genes, we examined their functional

enrichment in the gene function category and biological path-

ways using the Ingenuity Pathway Analysis (IPA) tool. The most

significant gene function categories and biological pathways

were presented.
892 The American Journal of Human Genetics 102, 890–903, May 3,
Functional Annotation

Functional annotation was performed using data from the Ency-

clopedia of DNA Elements (ENCODE) or the Roadmap Epigenom-

ics Mapping Consortium (ROADMAP). We evaluated variants for

potential functional significance using chromHMM annotation

across nine ENCODE cell lines: HMEC, GM12878, H1-hESC,

K562, HepG2, HSMM, HUVEC, NHEK, and NHLF.20 For each

variant, we investigated whether or not it was mapped to func-

tional regions (i.e., promoter or enhancer) using chromatin states

annotation from the UCSC Genome Browser. The epigenetic

signals of histone markers H3K4Me1, H3K4Me3, and H3K27Ac

were also examined through layered histone tracks on all available

ENCODE cell lines from the UCSC Genome Browser. DNase I hy-

persensitive sites were investigated in all available ENCODE cell
2018



lines and TF ChIP-seq datasets were also analyzed in a breast can-

cer cell line, MCF-7. Two publicly available tools, RegulomeDB50

and HaploReg v.3,51 were also used to evaluate the functional sig-

nificance of each variant. The best candidate variant (searching

from variants in LD with lead variants at R2 > 0.2) was prioritized

and selected for functional assay, following the order of functional

significance: TF binding, DNase Footprint, DNase peak, histone

modification peak, and TF motif.

Chromatin-Chromatin Interaction Data Analysis
Experimentally derived chromatin interactions generated by 3C,

4C, 5C, Hi-C, and ChIA-PET were collected via 4DGenome.52

Hi-C data for MCF7 and MCF10A were obtained from published

studies (GEO: GSE63525 and GSE66733).53,54 ChIA-PET data for

MCF7 (GEO: GSE39495) were downloaded from the ENCODE proj-

ect.We directly extracted significant interactions processed by orig-

inal studies. For raw interaction data available from the studies, we

also processed and normalized the data by considering chromatin

accessibility, nucleosome occupancy, alignability, and restriction

site density. Significant interactions were identified using a ratio

of observed to expected interactions more than the cutoff value,

whichwas defined based on the background distribution.55 In addi-

tion, HDF5 interface rhdf5 (see Web Resources) was also used for

processing the Hi-C data from the ENCODE project.

To analyze chromatin-chromatin interactions between the

regions for functional variants in strong LD (R2 > 0.8) with lead

variants and promoter regions of the identified candidate suscep-

tibility genes, we examined5250 bp nearby regions of functional

variants and 52 kb nearby regions of the gene transcription start

site (TSS) (Figure S3).

Cell Culture and Transfection
Both estrogen-receptor-positive (ERþ) MCF-7 and -negative (ER�)
SK-BR3 cell lines were obtained fromATCC and cultured in Dulbec-

co’s Modified Eagle Medium (DMEM) (GIBCO 12430), supple-

mented with 10% fetal bovine serum (GIBCO 10099) and 1% peni-

cillin/streptomycin (GIBCO 15140). Cells were maintained in a

37�C incubator with 5% CO2. Where appropriate, cells were plated

into 6-well plates and transfected with 2 mg of pGL3-Basic/pGL3-

Promoter vector constructions, along with 0.2 mg of pGL-TK

plasmid using X-tremeGENE HP DNA Transfection Reagent (Roche

06365752001), according to the manufacturer’s instructions.

Plasmid Construction and Dual-Luciferase Reporter

Assay
Luciferase reporter constructions for DCLRE1B,MRP30, and SSBP4

were generated by a polymerase chain reaction (PCR) using

custom-designed primers, from which the genomic DNA were ex-

tracted from 293T cells (Table S2). The PCR products of these

genes (at least 2 kb) were double-digested by the enzymes KpnI

and HindIII (DCLRE1B), XhoI and HindIII (MRP30), and KpnI

and HindIII (SSBP4) and then inserted into the pGL3-Basic vector.

For the construction of the PAX9 and ATG10 expression vectors,

the enhancer element containing the candidate functional

SNP was introduced into the pGL3-Promoter vector by BamHI

and Sall to construct PGL3-Promoter-PAX9 and PGL3-Promoter-

ATG10. The promoter fragments of both genes were further subcl-

oned into PGL3-Promoter-PAX9 and PGL3-Promoter-ATG10 by

NheI and NcoI, and KpnI and NcoI, respectively (Table S2). All

constructed target fragments were confirmed by sequencing. The

minor allele of the individual SNP in the enhancer or promoter re-
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gion for each gene construction was introduced into the plasmid

using site-directed mutagenesis. For the DCLRE1B and MRPS30

expression vectors, the initiation codon ATG in the promoter re-

gions of both genes were also mutated to TTG by the same proced-

ure. We sequenced all constructed fragments to confirm variant

incorporation. The dual-luciferase reporter assay was performed

with the Dual-Luciferase Reporter Assay Kit (Promega E1910)

following the manufacturer’s instructions. Briefly, both ERþ

MCF-7 and ER� SK-BR3 cells transfected with luciferase reporter

plasmids and pGL-TK transfection control plasmid were collected

24 hr post-transfection and lysed in a 13 Passive Lysis Buffer at

room temperature for 25 min; then, 20 mL of the cell lysate were

transferred into each well of a 96-well plate. 100 mL of LAR II

were dispensed into each well, and firefly luciferase activity was

measured; then 100 mL of Stop & Glo Reagent were dispensed

into each well to measure the Renilla luciferase activity. We

normalized firefly luciferase activity to Renilla luciferase activity

to correct the potential effects of transfection efficiency or cell

lysate preparation. All reporter assays were performed in triplicate

and repeated in three independent experiments.

Gene Knockdown and Overexpression Experiments
SK-BR3 and MCF-7 cells were transfected with DCREL1B and

MRPS30, respectively, using specifically designed small interfering

RNA (siRNAs) (purchased from the Shanghai Genepharma com-

pany), which used a lipofectamine RNAiMAX transfection reagent

(Invitrogen). We performed quantitative real-time PCR (RT-PCR)

to verify siRNA knockdown efficiencies 1.5 days after transfection.

The ATG10 overexpression and control vectors which carry puro-

mycin selectionmarker were purchased from Youbio biotechology

company. The MDA-MB-231 cells were transfected with these two

plasmids using lipofectamine 3000 reagent (Invitrogen) and were

further selected at a specific concentration of puromycin. After

several weeks of growth selection, colonies were transferred to sin-

gle-well plates. The expanded colonies confirmed by qRT-PCR

assay were used for downstream experiments.

Quantitative RT-PCR Experiment
Quantitative RT-PCR experiments were performed as described

previously.56 In brief, total mRNA were extracted using RNA plus

reagent (TaKaRa Cat No. 9109), according to the manual, and

cDNA was synthesized using a PrimeScript RT reagent kit with

gDNA eraser (TaKaRa Cat No. RR047A). The quantitative RT-PCR

primers used are listed in Table S3. All the PCR amplifications

were performed in triplicate and repeated in three independent ex-

periments. The relative expression levels of mRNAs were normal-

ized to the expression levels of GAPDH.

Cell Proliferation, Cell Cycle, and Colony Formation

Assays
To investigate whether knockdown or overexpression affects cell

proliferation ability, siRNA transfected, overexpression stable cell

lines, and control cell lines were seeded into 6-well plates in trip-

licate. The cell proliferations of these cells was measured by a

Cell Counting kit-8 (CCK8) assay at different time points during

the day, according to manufacturer’s instructions. For cell cycle

analysis assays, the control and knockdown cells were first treated

with different concentrations ofMMC (0, 0.1, and 0.4 mM) for 4 hr,

and detached with trypsin and fixed using 70% ethanol. Cell cycle

analysis was used to determine the cell stage of each individual cell

by a PI flow cytometry assay with a cell cycle analysis kit (from the
rican Journal of Human Genetics 102, 890–903, May 3, 2018 893



Beyotime Institute of Biotechnology) according to the manufac-

turer’s instructions. The cells were trypsinized and plated into

6-well plates at a density of 200, 400, 800, or 1,000 cells per well

according to cell types. 10–15 days later, these wells were washed

with PBS three times and fixed with 4% paraformaldehyde for

30 min at room temperature, and stained with Coomassie Blue

(Beyotime Biotechnology, Cat No. P0017B). Clones containing

at least 50 cells were counted as one colony.
Allele-Specific Expression (ASE) Analysis using TCGA

Data
We performed an ASE analysis for two targets, SSBP4 (rs7258465)

and ZNF404 (rs1685191), which were selected based on the rela-

tive LD (R2 > 0.2) between exonic SNPs and lead SNPs, as well as

top eQTL association signals. To measure ASE for each of both

genes, we first determined an exonic SNP for each, located in a

coding region of the target gene and in LD with the lead SNP,

based on the European population in the 1000 Genomes project.

We then extracted mapped reads for each exonic SNP using both

whole exome-seq and RNA-seq data in 494 tumor tissue samples

from European descendants in TCGA data portal. The total num-

ber of exome-seq and RNA-seq mapped reads were computed for

reference and alternative alleles of the exonic SNPs using samtools

and bcftools tools.57We analyzed only samples containing hetero-

zygous alleles of a exonic SNP: (1) at least 20 genomic DNA reads

mapped to the surrogate SNP position, and (2) the ratio of mapped

reads for reference and alternative alleles ranging from 0.2 to 0.8.

The measurement of ASE difference for each exonic SNP in each

sample was calculated using the differential expression ratio be-

tween reference and alternative allele. The significance of the

ASE difference for overall samples was generated by a binominal

test for the distribution of the ASE difference at p ¼ 0.5.
Allele-Specific Expression Analysis using the Sequenom

Technique
We performed experimental validation of ASE difference on two

exonic SNPs, rs10405636 (SSBP4) and rs12977303 (ZNF404), using

SequenomMassARRAY in breast tumor adjacent and normal tissue

samples in a cohort of 235 breast cancer patients, which were

recruited as part of the Shanghai Breast Cancer Study.58 Total

RNA was extracted from tissue specimens by homogenization in

TRIzol solution (Invitrogen), phase separation, precipitation, and

washing, following the manufacturer’s instructions. The quality

and quantity of RNA was measured by spectrophotometric anal-

ysis. RNA was reverse-transcribed using a High Capacity cDNA

Archive Kit (Applied Biosystems).29 To measure the ASE of

each exonic SNP, we computed the ratio between reference and

alternative allele abundance in cDNA in each of the adjacent

normal breast tissues using the Sequenom allelotype genotyping

approach. To filter samples possibly containing homozygous al-

leles of the exonic SNP, we included only those samples with ratios

between 0.2 and 0.8. The significance of the ASE difference for

overall samples was generated by a binominal test for evaluating

the distribution of the ASE difference at p ¼ 0.5.
Results

Identification of eQTL Target Genes in GWAS Risk Loci

To identify potential target genes for the 159 lead vari-

ants, we evaluated associations between lead variants
894 The American Journal of Human Genetics 102, 890–903, May 3,
and expression levels of nearby genes (51 Mb distance)

using four large-scale genetic and transcriptome datasets,

including breast cancer tumor (n ¼ 1,895) and normal

tissue samples (n ¼ 138) from METABRIC, tumor tissue

samples from TCGA (n¼ 536), and normal tissue samples

from the GTEx project (n ¼ 251). The cis-eQTL analysis

revealed hundreds of target genes detected at an unad-

justed p < 0.05 significance threshold: 222 target genes

for 98 lead variants and 161 target genes for 72 lead

variants in tumor and normal tissue samples, respec-

tively, from METABRIC, 216 target genes for 87 lead var-

iants from TCGA, and 250 target genes for 95 lead vari-

ants from the GTEx project (Table S4). We further

performed ameta-analysis of eQTL results of tumor tissue

samples from both TCGA and METABRIC (see Material

and Methods). We identified a total of 63 genes for 39

lead variants using a Benjamini-Hochberg (BH)-adjusted

p < 0.05, after removing three genes with inconsistent

associations in other datasets at p < 0.05 (Figure 1A). In

GTEx, we identified a total of 58 target genes for 33

lead variants using the same criteria, after removing

four genes with inconsistent associations (Figure 1A).

In the end, we identified 101 target genes for 51 lead var-

iants after we merged the results from both meta-analysis

and eQTL analysis of GTEx (Figure 1A; Table S4). Of these

101 genes, consistent associations for a total of 44 genes

(43.6%) were detected in at least one other dataset at p <

0.05 (Figure 1B). In particular, consistent associations

for 20 genes (APOBEC3A, APOBEC3B, ARL17A, ATG10,

ATP6AP1L, BBS2, BTN3A2, CTSW, FAM114A1, HAPLN4,

L3MBTL3, LRRC37A, LRRC37A2, LRRC37A4P, MRPS30,

OR2A7, PPM1K, SSBP4, SURF1, and ZNF404) were de-

tected in both meta-analysis and GTEx (Figure 1B). We

also confirmed a total of 41 previously reported genes

and SNPs with consistent associations, including

ZNF155, OR2A7,59 MRPS30,44,45 FGF10,44 DCLRE1B,11

and others16 (Table S4).

An enrichment analysis in diseases and disorders using

Ingenuity Pathway Analysis (IPA) revealed that these genes

were the most significantly enriched in the cancer func-

tion category (p ¼ 4.4 3 10�3); a total of eight genes,

including WNT3, CASP8, ESR1, AKT1, POLR2L, FGF10,

IGFBP5, and MUTYH, are well known to be involved in

carcinogenesis and have been characterized accordingly

by IPA. A functional enrichment analysis using IPA re-

vealed that the top five significantly enriched networks

were cell signaling, post-translational modification, pro-

tein synthesis, cell death and survival, and carbohydrate

metabolism (p ¼ 4.3 3 10�3).

Chromatin-Chromatin Interaction Analysis of Target

Genes and Functional Variants

For the 51 lead variants identified as being associated with

the 101 target genes, we performed extensive functional

annotation in order to identify candidate functional vari-

ants (see Material and Methods). We evaluated and anno-

tated the functional potential for a total of 1,184 variants
2018



in strong LDwith the lead variants in the European popula-

tion fromthe1000Genomesproject (R2>0.8).Of1,184var-

iants, 336 and 538 showed evidence of promoter and

enhancer activities, respectively, with the epigenomic sig-

nals either in the ENCODE or the Roadmap project, based

on the annotationof theHaploReg database.51 In particular,

146 and 49 showed evidence of promoter and enhancer ac-

tivities in breast cancer cells, respectively (Table S5).

To directly search for evidence of regulatory variants asso-

ciated with target genes identified from our eQTL analysis,

we examined whether the above functional variants are

located in thepromoter or enhancer regionsof these targets.

We found that a total of 26 target genes are the nearest

genes to the functional variants, which are located in the

promoteror enhancer regions (Table S6). To furtherexamine

whether other target genes could interact with the func-

tional variants via longdistance cis-regulations,weanalyzed

the chromatin interaction data that were generated from

multiple breast cancer and normal cells, including HMEC,

MCF-7, andMCF-10 (see Material andMethods). We found

that the additional 27 genes showed evidence of chromatin

interactions between their promoter regions and functional

variants (Table S6). Together, 53 (52.5%) of 101 target

genes showed evidence of cis-regulation via promoter or

enhancer-promoter interactions (Table S6).

Luciferase Reporter Assays for Functional SNPs and

Target Genes

To further explore the regulatory mechanism of lead vari-

ants associated with their target genes, we focused on

candidate functional variants that are located in the

promoter or enhancer regions of their closest target

genes. We selected the top five candidate functional

SNPs for target genes, including rs11552449 (surrogate

for lead SNP rs7513707; DCLRE1B), rs7257932 (surrogate

for lead SNP rs7258465; SSBP4), rs3747479 (surrogate for

lead SNP rs10941679; MRPS30), rs73134739 (surrogate

for lead SNP rs146817970; ATG10), and rs35712350

(surrogate for lead SNP rs332529; ARRDC3) (see Material

and Methods; Figure 2). Additionally, we selected one

additional candidate functional SNP rs2236007 (PAX9),

because this gene showed marginal association in

meta-analysis with BH-adjusted p < 0.06 and p < 0.01 in

GTEx. We next conducted luciferase reporter assays for

these SNPs in both ERþ MCF-7 and ER� SK-BR3 breast can-

cer cell lines by introducing a fragment of the region con-

taining functional SNPs into the luciferase reporter plas-

mids (see Material and Methods). Our results suggest that

the fragment containing the alternative alleles signifi-

cantly decreased the promoter activity of DCLRE1B and

SSBP4 compared to the reference alleles in both cell lines

(Figures 2A and 2B). For MRPS30 and ATG10, the fragment

containing the alternative alleles significantly increased

the promoter activity compared to the reference alleles in

both cell lines (Figures 2C and 2D). For PAX9, the fragment

containing the alternative allele significantly increased the

promoter activity compared to the reference allele in ERþ
The Ame
MCF-7 cell lines. Although no statistical significance

was observed in ER�, the same trend was observed

(Figure 2E). These observations were all in line with the

eQTL results described in the preceding section (Figures 1

and 2; Table S4). As an example, we observed that the refer-

ence allele C of rs11552449 was consistently associated

with a higher expression level of its target DCLRE1B from

the results of luciferase reporter assays and eQTL analysis

when compared to alternative allele T (Figure 2A; Table

S4). However, when investigating the promoter activities

of ARRDC3, we failed to detect a significant difference be-

tween alternative and reference alleles (Figure S1).

In Vitro Functional Assays for DCLRE1B, MRPS30, and

ATG10

We performed in vitro functional assays in different breast

cancer cell lines to investigate the biological function of

the identified candidate susceptibility genes, including

candidate tumor suppressors DCLRE1B and ATG10 and

oncogene MRPS30, inferred from GWAS and eQTL results.

Quantitative RT-PCR experiments were conducted to

compare relative expression levels in three breast cancer

cell lines: MCF-7, SK-BR3, and MDA-MB-231. All three

genes exhibited the highest expression levels in MCF-7.

DCLRE1B showed high expression in SK-BR3 cells, and

ATG10 showed the lowest expression levels in MDA-MB-

231 (Figure S2). Based on their relative expression levels

in each cell line, we performed functional assays by knock-

ing down genes in the cell line where the target gene was

highly expressed or by overexpressing the gene in the

cell line where the target gene was low expressed. Specif-

ically, we designed the knockdown experiments for

DCLRE1B in SK-BR3 and MRPS30 in MCF-7 cells via short

interfering RNA (siRNA) and the overexpressed experi-

ments for ATG10 in MDA-MB-23 by constructing a stable

cell line (see Material and Methods).

Using quantitative RT-PCR in the SK-BR3 cells, we veri-

fied the high knockdown efficiency of DCLRE1B with

approximately 80% of silencing endogenous transcripts

(Figure 3A). The knockdown of DCLRE1B significantly

increased breast cancer cell proliferation in the knockdown

cells compared to the control cells (Figure 3B). In partic-

ular, we observed more significant knockdown cells stalled

in G2 phase when they were treated with a higher concen-

tration of mitomycin c (MMC), a reagent which induces

cell cycle G2 arrest, by propidium iodide flow cytometry.

For example, there is an approximate 2-fold increase in

G2 cells for the DCLRE1B knockdown cells when treated

with 0.4 mMmitomycin c (Figures 3C and 3D). Using quan-

titative RT-PCR in the MCF-7 cells, we also verified the

high knockdown efficiency ofMRPS30with approximately

80% of silencing endogenous transcripts (Figure 3E). The

knockdown of MRPS30 can significantly decrease cell

viability in the knockdown cells compared to the control

cells (Figure 3F).

For ATG10, we generated FLAG-ATG10 overexpression

stable MDA-MB-23 cell lines (see Material and Methods).
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Figure 2. Alternative Alleles Affecting Target Genes’ Promoter Activity
Alternative allele of functional SNPs rs11552449 (surrogate for rs7513707) (DCLRE1B), rs7257932 (surrogate for rs7258465) (SSBP4),
rs3747479 (surrogate for rs10941679) (MRPS30), rs73134739 (surrogate for rs146817970) (ATG10), and rs2236007 (PAX9) affecting
promoter activities of target genes. From left to right: rs11552449 (DCLRE1B) (A), rs7257932 (SSBP4) (B), rs3747479 (MRPS30)
(C), - rs73134739 (ATG10) (D) and rs2236007 (PAX9) (E). At the top of each panel: the epigenetic landscape of functional SNPs. From
top to bottom, functional SNP in LDmapped to TFmotif (if exists); LD R2 value between lead SNP (bold) and functional SNP in European
population; RefSeq genes; layered H3K4Me1, H3K4Me3, and H3K27Ac histone modifications; DNase clusters; clustered ChIP-seq bind-
ing sites; annotation using chromatin states on the ENCODE cell lines; ChIA-PET interactions in MCF-7 cell; and TF binding sites. The
signals of different layered histone modifications from the same ENCODE cell line are shown in the same color (the detailed color
scheme for each ENCODE cell line is described in the UCSC Genome Browser). The red in chromatin states refers to active promoter.
For the ChIA-PET track, black lines represent interactions with the promoter region, and gray lines represent chromatin interactions
that do not involve the promoter region. The corresponding location of the variant is indicated by a dashed line. The HaploReg anno-
tation51 for each functional variant is indicated in the top right panel. At the center of each panel (gray shadow box): the allele associated
with higher gene expression is indicated by the upward pointing green (eQTL analysis) or red (luciferase reporter assay) arrow. At the
bottom of each panel: the alternative allele of functional SNPs changing promoter activities using luciferase reporter assays in the
ERþ MCF-7 and ER� SK-BR3 breast cancer cell lines. The fragment containing the reference allele of each SNP was cloned downstream
for luciferase construct and an alternative allele was engineered into it. The alternative and reference alleles are indicated by the red and
white lines, respectively. The error bars represent the standard deviation of promoter activities of target genes. A paired t test was per-
formed to derive p value for each candidate functional SNP.
Quantitative RT-PCR results verified that the expression

levels of ATG10 were significantly increased by approxi-

mately 7-fold in the stable MDA-MB-23 cells compared to

the control cells (Figure 3G). The overexpression of

ATG10 can significantly decrease cell colony formation ef-

ficiency in the stable MDA-MB-23 cells compared to the

control cells, while no significant difference was observed

in cell viability between them (Figures 3H–3J).

Allelic-Specific Expression Analysis for SSBP4 and ZNF404

We performed an ASE analysis on two selected genes,

SSBP4 and ZNF404, via both computational and exper-

imental validation (see Material and Methods). In the
896 The American Journal of Human Genetics 102, 890–903, May 3,
initial cis-eQTL analysis, the lead SNPs rs7258465 and

rs1685191 were observed to be consistently associated

with the expression levels of SSBP4 and ZNF404, respec-

tively, in three datasets (Table S4). The alternative allele

of rs4808801 was associated with decreased expressions

of SSBP4, while the alternative allele rs1685191 was

associated with an increased expression of ZNF404.

We investigated the ASE for both genes using RNA-seq

data in tumor tissue samples from 494 European de-

scendants from TCGA (see Material and Methods). To

measure the ASE for each gene, we searched for an

exonic SNP in LD for each of the lead SNPs rs7258465

and rs1685191. The exonic SNPs rs10405636 (SSBP4;
2018



Figure 3. In Vitro Functional Assays for DCLRE1B, MRPS30, and ATG10
(A) Quantification of DCLRE1B knockdown efficiency in the SK-BR3 breast cancer cells using quantitative RT-PCR. The mRNA levels in
both knockdown and control cells were measured in technical triplicates. ‘‘NC’’ refers to a normal control cell line with transfected con-
trol siRNA (A–F).
(B) After SK-BR3 cells were transfected with siRNA, cell viability assays were conducted in the control and knockdown cells using CCK8
assay at these time points: Days 1–4. ‘‘OD’’ refers to optical density, as measured by the assay.
(C) Cell cycle assays were performed in the control and knockdown cells treated with different concentrations of MMC by PI flow
cytometry. Colors green, red, and black represent the cell stages of G2, S, and G1 cells, respectively.
(D) Distribution of relative cell percentage of G1, S, and G2 cells. Colors light green, light yellow, and light blue represent the relative
percentage of G1, S, and G2 cells, respectively.
(E) Quantification of MRPS30 knockdown efficiency in the MCF-7 breast cancer cells using quantitative RT-PCR. The mRNA levels in
both knockdown and control cells were measured in technical triplicates.
(F) After MCF-7 cells were transfected with siRNA, cell viability assays were conducted in control and knockdown cells using CCK8 assay
at these time points: Days 1, 3, and 5.

(legend continued on next page)
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Figure 4. Allelic-Specific Expression
(ASE) Analysis for Two Targets, SSBP4
and ZNF404
(A and B) At the top of each panel, the
exonic SNP rs10405636 (in LD with lead
SNP rs7258465) and rs12977303 (in LD
with rs1685191) were selected as surro-
gates for SSBP4 and ZNF404, respectively.
The allele associated with higher expres-
sion is indicated by a black arrow based
on the ASE analysis. Number of RNA-seq
(blue) and exome-seq (red) mapped reads
(log2 scale) containing alternative and
reference alleles of (A) rs10405636 in
SSBP4 and (B) rs12977303 in ZNF404 are
plotted across tumor samples.
(C and D) Density plots indicate the frac-
tion of expressed C allele relative to expres-
sion of both alleles of rs10405636 and
A allele relative to expression f both alleles
of rs12977303.
R2 ¼ 0.95) and rs12977303 (ZNF404; LD R2 ¼ 0.29) were

identified as a surrogate for each gene (see Material and

Methods). In accordance with our reported eQTL obser-

vations, we found that the SSBP4-expressed transcript

was significantly biased to contain reference allele

A relative to the alternative allele for rs10405636

(Figure 4A; binomial test p < 0.05 for both). For

rs12977303, we observed that the ZNF404-expressed

transcripts were significantly biased to contain the

alternative allele A relative to reference allele G

(Figure 4B; binomial test p < 0.05). As a background

control, we did not observe the ASE of the exonic

SNPs in these samples when analyzing the whole

exome-seq data (Figures 4A and 4B). We further investi-

gated the ASE for these exonic SNPs using the Seque-

nom allelotype technique in adjacent normal breast tis-

sue samples from a cohort of 235 Chinese breast cancer

patients (see Material and Methods). We identified a to-
(G) The relative expression levels of ATG10 in the MDA-MB-23 stable cells and non-targe
RT-PCR. The mRNA levels in both overexpression and control cells were measured in techni
trol cell line with transfected an empty vector (G–J).
(H) After constructing stable cells for ATG10 using the MDA-MB-23 cell lines, cell viabil
measured using CCK8 at time points: 1, 2, 3, 4 days.
(I and J) After constructing stable cells for ATG10 using theMDA-MB-23 cell lines, these cells a
for colony formation assay. The colonies for these cells and control cells were imaged (I) and q
in MDA-MB-23 stable cells and control cells.
p values were determined by t test from the comparison of knockdown and control cells for ea
0.001; the error bars represent the standard deviation of the measurements from multiple r
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tal of 41 samples containing hetero-

zygous alleles for rs10405636, and

45 samples containing heterozy-

gous alleles for rs12977303 (see Ma-

terial and Methods). Consistent

with the observation described pre-

viously, the SSBP4-expressed tran-

scripts were significantly biased to

contain the reference allele A for
SNP rs10405636 (Figure 4C) (Wilcoxon test, p < 0.05

for both). No significant ASE was observed for SNP

rs12977303 (ZNF404) (Figure 4D). Notably, this obser-

vation may be due to less LD between the lead SNP

and surrogate SNP in the Asian population.
Discussion

Although a large number of genetic susceptibility loci have

been identified for breast cancer risk, the mechanisms by

which risk variants in these loci exert their functions

remain largely unknown. In the present study, we compre-

hensively conducted a cis-eQTL analysis to identify target

genes in these risk loci using four large-scale datasets,

breast cancer tumor and normal tissue samples from

METABRIC, tumor tissue samples from TCGA, and normal

tissue samples from GTEx. Hundreds of associated genes
t control cells measured by quantification
cal triplicates. ‘‘NC’’ refers to a normal con-

ities for these cells and control cells were

nd control cells were reseeded after 12 days
uantification (J) of the numbers of colonies

ch time point. *p< 0.05; **p< 0.01; ***p<
eplicates.



were identified as potential targets at p < 0.05, including

101 genes identified with strong statistical evidence. We

further selected potential functional variants forDCLRE1B,

SSBP4, MRPS30, PAX9, and ATG10 for in vitro functional

characterization using luciferase reporter assays in the

ERþ MCF-7 and ER� SK-BR3 breast cancer cell lines and

confirmed that alternative alleles of these SNPs could

change the promoter activities of target genes. The above

analyses provide strong evidence to identify candidate

genes for further functional investigation in breast cancer

cell behavior. In particular, our results indicate that

DCLRE1B, MRPS30, and ATG10 play a vital role in breast

tumorigenesis by their influence on basic cellular func-

tions. The results from the eQTL analysis and in vitro exper-

iments provide strong evidence for assessing the causality

of the genes identified in our study. These findings pro-

vided additional insight into the genetic and biological ba-

sis for breast cancer development.

The reported target genes identified from eQTL analysis

were further supported by additional evidence. For

example, we observed that almost half of the identified

target genes showed consistent association directions in

at least two datasets. Meanwhile, more than half of candi-

date targets were found to be the nearest genes for func-

tional variants in strong LD with lead variants, and some

additional targets showed evidence of chromatin-chro-

matin interactions between their promoters and the re-

gions where potential functional variants are located. Us-

ing luciferase reporter assays, we further experimentally

confirmed that five functional variants could affect the

promoter activities, providing direct evidence for potential

regulatory mechanisms to link the variants to their target

genes. We also evaluated two target genes by performing

ASE analyses for both computational and experimental

validation. All were replicated by ASE analyses using

RNA-seq mapped reads in the TCGA data and one was

further confirmed by ASE analyses of Sequenom allelotype

genotyping of cDNA data in adjacent normal breast tis-

sues. The advantage of using the ASE approach compared

to eQTL analysis is that the effect of environmental or

trans-acting factors on gene expression could be essentially

eliminated by measuring expressed transcripts for each

allele within the same sample.

Although previous studies have identified many candi-

date eQTL genes for lead variants, some of these candidate

genes have been identified in limited sample size. In this

study, we performed a metaanalysis of large-scale sample

sizes with 1,895 samples fromMETABRIC and 536 samples

from TCGA, which greatly improved the statistical power.

Furthermore, we included eQTL results using data from

138 and 251 breast normal tissues from METABRIC and

GTEx, respectively. Here, we reported candidate target

genes with strong statistical evidence. Additionally, we

analyzed 208 target genes for 86 lead variants with a signif-

icance level between unadjusted p < 0.05 and BH-adjusted

p > 0.05 identified from a meta-analysis of eQTL results of

tumor tissue from METABRIC and TCGA (Figure 1). Using
The Ame
functional data to examine variants in strong LD with the

lead variants, we found that a total of 51 candidate genes

(24.8%) showed evidence of cis-regulation via promoter

or enhancer-promoter interactions. The results indicated

that some target genes with less conservative p values

may be dismissed due to our statistical cutoff.

Gene expression in tumor tissues could be influenced by

both genetic and epigenetic variations or other somatic

alterations. To account for a potential influence of these

factors, we conducted a cis-eQTL analysis in TCGA data

by adjusting methylation and somatic copy number alter-

ations, following a previously reported approach.24 For the

METABRIC data, nomethylation data were available in the

METABRIC samples, which prevented us from excluding

the effect of this potential confounding factor. Notably,

using data from TCGA, we performed eQTL analysis by

adjusted methylation and somatic copy number alter-

ations, and adjusted somatic copy number alterations

only, respectively. We found a similar number of target

genes were identified using the same statistical cutoff in

both analyses, indicating that association detection is

slightly affected without adjusted methylation (data not

shown). The eQTL analysis could also be affected by other

factors such as the effect size, data quality, experimental

design, and tissue heterogeneity. For example, the eQTL

results related to tumor subtypes (i.e., ESR1) may yield

different results, depending on whether overall cancer

cases or those of a particular tumor subtype are

analyzed.16,30 Notably, a particular lead variant may be a

surrogate for multiple variants for breast cancer risk in

the locus. The eQTL analysis for lead variants may not

identify target genes for those surrogated variants when

they are in weak LD, as was shown by a previous fine-map-

ping study.36 On the other hand, lead variants could be sta-

tistically excluded as candidate causative variants in some

GWAS-identified loci. Nevertheless, the target genes identi-

fied based on the lead variants are still reliable, as most sta-

tistically causative variants are still expected to be in strong

LD with them.

The identification of causal variants remains a challenge

becausemany variants in strong LD are located in the same

functional region. Identifying candidate target genes could

be helpful for pinpointing functional variants for further

in vitro functional experiments, as shown by the findings

of the luciferase reporter assays for five functional variants.

Many functional variantsmay not be located in the nearest

eQTL genes, and it would be difficult to identify them. The

findings from our study could provide data for designing

in vitro functional assays (i.e., ChIA-PET and 5C chromatin

interaction) to further explore the underlying mechanisms

in breast cancer cell lines in the future. It should also be

noted that we systematically annotated hundreds of po-

tential functional variants for target genes. However, it is

still a challenge to select variants for downstream func-

tional assays to pinpoint the causative ones. In future

studies, the dense genotype data from a fine-mapping

study would be essential to statistically identify most likely
rican Journal of Human Genetics 102, 890–903, May 3, 2018 899



causative variants. On the other hand, a massively parallel

reporter assay (MPRA) approach may also be considered to

simultaneously screen hundreds of variants for functional

investigation.60

Our study suggests that a functional variant may affect

multiple target genes, which is consistent with a previous

observation.30 Some of the target genes of the same variant

seem to share the same regulatory mechanism. As an

example, a SNP rs720475 was found to be associated

with one tandem duplication gene family, the OR2A

(OR2A7 and OR2A20P) family.

In conclusion, we conducted a comprehensive cis-eQTL

analysis for lead variants and nearby genes using data from

four large-scale transcriptome datasets. We provided addi-

tional evidence that the associations of risk variants in

many loci with breast cancer riskmay bemediated through

the regulation of eQTL target genes. Our study has discov-

ered additional biological mechanisms for understanding

genetic susceptibility risk loci and breast cancer risk and

has provided additional insights into the genetic and bio-

logical basis for pathogenesis of this common cancer.
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Figure S1: The result of luciferase reporter assays for rs35712350 (surrogate for lead 

SNP rs10474352; ARRDC3). The error bars represent the standard deviation of promoter 

activities of target genes. At the bottom of each panel: the alternative allele of functional 

SNPs’ changing promoter activities using luciferase reporter assays in the ER+ MCF-7 and 

ER- SK-BR3 breast cancer cell lines. The fragment containing the reference allele of each 

SNP was cloned downstream for luciferase construct and an alternative allele was 

engineered into it. 

 



 

 

Figure S2: The relative mRNA levels of DCLRE1B, MPRS30, and ATG10 in breast 

cancer cell lines relative to GAPDH were determined by quantitative RT-PCR. The 

mRNA levels in both knockdown and control cells were measured in technical 

triplicates. The error bars represent the standard deviation of the mRNA expression. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S3. A flow chart to illustrate chromatin-interaction data analysis to 

search for evidence of the target gene and lead SNP. Panels from top to bottom: A) 

eQTL analysis to identify target genes for lead SNP; B) the functional annotation for 

SNPs in strong LD with lead SNP using Haploreg database; C) the illustration of 

chromatin-chromatin interactions between potential function variants and the target 

gene. To analyze chromatin interactions between the regions for potential functional 

variants and promoter regions of the identified candidate target genes, we examined ±250 

bp nearby regions of functional variants and ±2kb nearby regions of the gene transcription 

start site (TSS).   



 

 

Table S1: A collection of 159 lead SNPs for breast cancer risk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Primers Sequence 
ATG10_NheI_P_S CTAGCTAGCGGTGAACCTCAGCGATCAGA 
ATG10_NcoI_P_A CATGCCATGG ATACTCACCCCTCTCCGCTC 
ATG10_BamHI_E_S CGGGATCCGATGGTGGGGGAGCTTTCTA 
ATG10_SalI_E_A ACGCGTCGACAGTGATGAACTATGCAATAACATGA 
ATG10_M_S AATGTAAACTGAATATTGATAGAGAAGGGA 
ATG10_M_A CTATCAATATTCAGTTTACATTGAAACCCT 
PAX9_ KpnI_P_S GGGGTACCTATAGGTGGCGCTGTGACAAG 
PAX9_ NcoI_P_A CATGCCATGGGGGGATGGCGGCTAAAAGG 
PAX9_BamHI_E_S CGGGATCCGGACAGCCCCAGTAGTTAGT 
PAX9_SalI_E_A ACGCGTCGACCATTTGAACTTCCTGCCTGAGC 
PAX9_M_S GTGCAGCGTCTACCCCCGCACTCTCGCGGA 
PAX9_M_A GAGAGTGCGGGGGTAGACGCTGCACATCCA 
DCLRE1B_KpnI_P_S GGGGTACCGGTCTCCTACTGGAACCAACTG 
DCLRE1B_HindIII_P_A CCC AAGCTTGGGAAACATCGGCCTAGCTTACTT 
DCLRE1B_M_S TCTTGCATCGTCACCTACAGGTATGGGGCT 
DCLRE1B_M_A CCCATACCTGTAGGTGACGATGCAAGAGGT 
DCLRE1B_ATG_M_S AACCCTACCACCTTGAATTCCTGATCCCC 
DCLRE1B_ATG_M_A GGGATCAGGAATTCAAGGTGGTAGGGTTG 
MRPS30_ XhoI_P_S CCGCTCGAGACAGCCTCCTTCCTTGGTTCA 
MRPS30_HindIII_P_A CCCAAGCTTCCCCAGATAGGAACGAAAGGACTA 
MRPS30_ M_S CAGAAACGACCTCCCAAGACGTCGCGGCGA 
MRPS30_ M_A GACGTCTTGGGAGGTCGTTTCTGTAGCCGT 
MRPS30_ ATG_M_S GAATCGCGGGCAAAGTTGGCGGCGGCCAG 
MRPS30_ ATG_M_A GCCGCCGCCAACTTTGCCCGCGATTCCGGA 
SSBP4_BglII_P_S GAAGATCTAGGCTGGAGCGCAATCTTGG 
SSBP4_HindIII_P_A CCCAAGCTTCGCTCCACACAGCAAAAGTG 
SSBP4_ M_S TCCGAAGTGCTGGGaCTACAGGCACACGCT 
SSBP4_ M_A AGCGTGTGCCTGTAGtCCCAGCACTTCGGA 

Table S2. Primer pairs used for the construction and mutation of LUC 
expression vectors. “S” represents sense primers; “A” represents anti-sense 
primers; “P” represents the associated primers for the promoter sequence cloning; 
“E” represents the associated primers for the enhancer sequence cloning; “M” 
represents the associated primers for site-directed mutagenesis; “ATG” represents 
the associated premiers for initial codon site-directed mutagenesis. The coordinates 
(hg38) of cloning sequences: ATG10, chr5:81970347-81972314 (P), 82074325-
82075574 (E); PAX9, chr14:36656034-36658001 (P), 36662767-36664064 (E); 
DCLRE1B, chr1:113905616-113907995 (P), 113903813-113906037 (E); MRPS30, 
chr5: 44807527-44809701 (P); SSBP4, chr19:18416066-18419590 (P).   
 
 
 
 
 



Primers Sequence 
GAPDH_Q_F1 CTCCAAAATCAAGTGGGGCG 
GAPDH_Q_R1 ATGGTTCACACCCATGACGA 
DCLRE1B_Q_F1 TTGGAACCAGACCCACCCTA 
DCLRE1B_Q_R1 GCACGAAGCTCGGAGTAAGA 
MRPS30_Q_F ACGGCTACAGAAACGACCTG 
MRPS30_Q_R GAAGGTCTGCGGGTAAACCA 

Table S3. Primer pairs used for silencing gene expressions of DCLRE1B and 
MRPS30, using siRNAs in breast cancer cell lines. 
 

 

Table S4: A list of target genes identified to be associated with lead SNPs based on eQTL 

analysis, using data from METABRIC, TCGA and GTEx. 

 

Table S5: A functional annotation of SNPs in strong LDs (R2 > 0.8 in European population 

based on the 1000 Genomes project) with 51 lead SNPs for target genes.  

 

Table S6: The list of eQTL target genes found to be the nearest genes of functional SNPs, 

or supported by chromatin interactions between their promoters and the regions of 

functional SNPs. 
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