%JCB

Supplemental material

Prasad et al., https://doi.org/10.1083/jcb.201706091

Figure S1. **Substrate imaging and dynamics. (A)** Intracellular localization of Δ2GFP, ΔssPrA, and Ste6*C in WT and Δydj1cells. WT and Δydj1cells expressing Δ2GFP, ΔssPrA, or Ste6*C were grown to log phase at 30°C and prepared for immunostaining as described in Fig. 2. Δ2GFP, ΔssPrA, or Ste6*C were detected using anti-HA antibody (green channel), ER/nuclear envelope was visualized by anti-Kar2 antibody (red channel), and nuclei were marked by DAPI staining (purple channel). **(B and C)** WT cells expressing empty vector were probed with anti-HA (B) and anti-FLAG (C) antibodies (green channel). ER membranes were visualized using Kar2 antibody (red channel), and nuclei were labeled by DAPI staining (purple channel). **(D)** Intracellular localization of San1 in *ydj1-151* cells. *ydj1-151* cells expressing San1-V5 were grown at room temperature and shifted to 37°C for as time indicated. After fixation, cells were subjected to immunostaining as described in Fig. 2. Cellular localization of San1 was visualized by anti-V5 antibody staining (green channel). ER membranes were visualized using Kar2 antibody (red channel), and nuclei were labeled by DAPI staining (purple channel). **(E and F)** sf-Δ2GFP is a CytoQC substrate. Cycloheximide decay experiments were performed in WT, Δ*san1*, Δ*ubr1*, Δ*san1*Δ*ubr1*, Δ*ssa1*, Δ*ssa1*,

%JCB

Figure S2. Characterization of Ubr1 and San1 localization by conventional subcellular fractionation and schematic representation of NLS-tagged misfolded proteins along with their localization in WT cells. (A and B) Total protein extract prepared from WT, Δ san1, and Δ ubr1 cells and analyzed by immunoblotting with anti-San1 and anti-Ubr1 antibodies. The black line indicates that intervening lanes have been spliced out. (C) WT cells were disrupted by vortexing using zirconium beads, and the lysates were fractionated by differential centrifugation. The unbroken cells were removed by low-speed centrifugation at 300 g for 5 min. The supernatant was saved as total fraction and subjected to a subsequent high-speed centrifugation at 18,000 g to separate membrane fraction (designated as P18,000 g) and cytosol (designated as S18,000 g). Equal portions of each fraction were analyzed by immunoblotting with various antibodies. Antibodies against Ubr1, San1 (nuclear protein), Pgk1 (cytosolic protein), and histone H3 (nuclear protein) were used. (D) Schematic representation of NLS-tagged misfolded proteins. (E) Cellular localization of Δ 2GFP-NLS or Δ ssPrA-NLS in WT cells was examined by immunostaining. Δ 2GFP-NLS and Δ ssPrA-NLS were stained using anti-HA antibody (green channel). ER membranes were labeled using anti-Kar2 antibody (red channel), and nuclei were marked by DAPI staining (purple channel). Bar, 2 µm.

ssJCB

Figure S3. **Analysis of \DeltassPrA-NLS degradation dependency. (A and B)** Turnover of Δ ssPrA-NLS in WT, Δ *san1*, Δ *ubr1*, Δ *ubr1*, Δ *ubr1*, Δ *u*

"JCB

Figure S4. **Sis1 is required for CytoQC and nuclear QC but dispensable for** Δ **ssPrA nuclear import. (A and B)** Cycloheximide decay experiments were performed in WT cells (R1158) and Tet-Off *SIS1* cells expressing Δ ssPrA or Δ ssPrA-NLS in the absence and presence of doxycycline (DOX; 10 µg/ml) as described in Fig. 6 A. All data plotted were processed using Excel, reflecting three independent experiments with means and SD indicated. (C and D) The ubiquitination of Δ ssPrA or Δ ssPrA-NLS in WT and Tet-Off *SIS1* cells was examined as described in Fig. 6 C. IB, immunoblot; IP, immunoprecipitation. (E and F) Intracellular localization of Δ ssPrA or Δ ssPrA-NLS in WT and Tet-Off *SIS1* cells was determined by indirect immunostaining as described in Fig. 6 E. Asterisks indicate the position of a nonspecific band. Bars, 2 µm.

SJCB

Figure S5. Localization of Ubr1 and San1 is intact in Tet-OFF SIS1 strains. (A–C) Intracellular localization of Ubr1, San1, and Sis1 in WT and Tet-Off SIS1 cells was determined by indirect immunostaining as described in Fig. 6 E. Bars, 2 µm. (D) Equal concentrations of WT and Tet-Off SIS1 cells were serially diluted 10-fold and spotted onto Synthetic Complete plates and incubated at 30°C for ~2 d until colonies were formed.

Table S1. Strains used in this study

Strain	Genotype	Source P. Walter	
W303	MATa, leu2-3,112, his3-11, trp1-1, ura3-1, can1-100, ade2-1		
ACY17b	MATα, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, W303 background	Caplan et al. (1992)	
R1158	MATa,URA3::CMV-tTA, his3-1 leu2-0 met15-0, BY4741 background	Open Biosystem	
TH_7868 (Tet- OFF-SIS1)	MATa,URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, BY4741 background	Open Biosystem	
RPY145	MATa, pRP22, W303 background	Prasad et al. (2012)	
RPY205	MATa, pRP42, W303 background	Prasad et al. (2010)	
RPY206	MATa, pRP44, W303 background	Prasad et al. (2012)	
RPY301	MATa, ydj1::KANMX, pRP42, W303 background	Prasad et al. (2010)	
RPY302	MATa, ydj1::KANMX, pRP44, W303 background	Prasad et al. (2010)	
RPY368	MATa, ydj1::KANMX, pRP22, W303 background	Prasad et al. (2012)	
RPY450	MATa, pRP88, W303 background	This study	
RPY451	MATa, pRP86, W303 background	This study	
RPY585	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, W303 background	This study	
RPY589	MATa, pSK146, W303 background	This study	
RPY596	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pSK146, W303 background	This study	
RPY655	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP86, W303 background	This study	
RPY656	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP88, W303 background	This study	
RPY657	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP92, W303 background	This study	
RPY658	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP93, W303 background	This study	
RPY667	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP44, BY4741 background	This study	
RPY668	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP44, BY4741 background	This study	
RPY669	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP42, BY4741 background	This study	
RPY670	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP42, BY4741 background	This study	
RPY671	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP90, BY4741 background	This study	
RPY672	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP90, BY4741 background	This study	
RPY673	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP91, BY4741 background	This study	
RPY674	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP91, BY4741 background	This study	
RPY675	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP44 and pRP84, BY4741 background	This study	
RPY676	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP44 and pRP84, BY4741 background	This study	
RPY677	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP42 and pRP84, BY4741 background	This study	
RPY678	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP42 and pRP84, BY4741 background	This study	
RPY679	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP90 and pRP84, BY4741 background	This study	
RPY680	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP90 and pRP84, BY4741 background	This study	
RPY681	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, pRP91 and pRP84, BY4741 background	This study	

Strain	Genotype	
RPY682	MATa, URA3::CMV-tTA, his3-1 leu2-0 met15-0, R1158 pSIS1::KanRTetO7TATA, pRP91 and pRP84, BY4741 background	This study
RPY683	MATa, pRP120, W303 background	This study
RPY684	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP120, W303 background	This study
RPY685	MATa, pRP120 and YEp105, W303 background	This study
RPY686	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP120 and YEp105, W303 background	This study
RPY688	MATa, pRP92, W303 background	This study
RPY689	MATa, ssa1::KANMX, ssa2::KANMX, pRP92, W303 background	This study
RPY690	MATa, pRP93, W303 background	This study
RPY691	MATa, ssa1::KANMX, ssa2::KANMX, pRP93, W303 background	
RPY692	MATa, pRP92 and YEp105, W303 background	This study
RPY693	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP92 and YEp105, W303 background	This study
RPY694	MATa, pRP93 and YEp105, W303 background	This study
RPY695	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP93 and YEp105, W303 background	This study
RPY696	MATa, pRP94, W303 background	This study
RPY699	MATa, pRP86 and YEp105, W303 background	This study
RPY700	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP86 and YEp105, W303 background	This study
RPY701	MATa, pRP88 and YEp105, W303 background	This study
RPY702	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP88 and YEp105, W303 background	This study
RPY703	MATa, pRP97 and pRP103, W303 background	This study
RPY704	MATa, ade2-1, his3-1,1 leu2-3,112 ura3-1, trp1-,1 can 1-100, ydj1-2::HIS3, LEU2::ydj1-151, pRP97 and pRP103, W303 background	This study
RPY706	MATa, san1::KANMX, pRP92, W303 background	This study
RPY707	MATa, ubr1::KANMX, pRP92, W303 background	This study
RPY708	MATa, san1::KANMX, ubr1::KANMX, pRP92, W303 background	This study
RPY709	MATa, sse1::KANMX, pRP92, W303 background	This study
RPY710	MATa, san1::KANMX, pRP93, W303 background	This study
RPY711	MATa, ubr1::KANMX, pRP93, W303 background	This study
RPY712	MATa, san1::KANMX, ubr1::KANMX, pRP93, W303 background	This study
RPY713	MATa, sse1::KANMX, pRP93, W303 background	This study
RPY714	MATa, pRP61 and pKW431, W303 background	This study
RPY718	MATa, pRP96, W303 background	This study
RPY719	MATa, san1::KANMX, pRP96, W303 background	This study
RPY720	MATa, ubr1::KANMX, pRP96, W303 background	This study
RPY721	MATa, san1::KANMX, ubr1::KANMX, pRP96, W303 background	This study
RPY722	MATa, sse1::KANMX, pRP96, W303 background	This study
RPY723	MATa, ssa1::KANMX, ssa2::KANMX, pRP96, W303 background	This study
RPY724	MATa, ydj1::KANMX, pRP96, W303 background	This study
CXY351	MATa, sse1::KANMX, pRP97, pRP103 W303 background	This study

Table S2. Plasmids used in this study

Plasmid	Encoded protein	Promoter	Vector	Source
pRP22	Ste6*C-HA	TDH3	pRS313*	Ng Laboratory plasmid collection
pRP42	∆ssPrA-HA	TDH3	pRS313*	Ng Laboratory plasmid collection
pRP42	Δ2GFP-HA	TDH3	pRS313*	Ng Laboratory plasmid collection
pRP61	GFP	TDH3	pRS313*	Ng Laboratory
pRP86	Δ2GFP-HA	TDH3	pRS316*	This study
pRP88	∆ssPrA-HA	TDH3	pRS316*	This study
pRP90	Δ2GFP-HA-NLS	TDH3	pRS313*	This study
pRP91	∆ssPrA-HA-NLS	TDH3	pRS313*	This study
pRP92	Δ2GFP-HA-NLS	TDH3	pRS316*	This study
pRP93	∆ssPrA-HA-NLS	TDH3	pRS316*	This study
pRP94	FLAG-Ubr1	ADH1	Yeplac181	A. Varshavsky (Du et al., 2002)
pRP96	Sf-Δ2GFP-HA	TDH3	pRS313*	This study
pRP97	Sf-∆2GFP-HA	TDH3	pRS314*	This study
pRP103	HTB2-mcherry	TDH3	pRS316*	Ng Laboratory plasmid collection
YEp105	Myc-Ub	CUP1	YEp105 (2μ Trp)	M. Hochstrasser (Hochstrasser et al., 1991)
pRP120	Ste6*C-HA	TDH3	pRS316*	This study
pSK146	San1-V5H6	GAL	pTS210	Ng Laboratory plasmid collection
pAC376	Myc-Ub	CUP1	YEp351 (2μ Leu)	Chellappa et al. (2001)
pKW431	NLS-GFP-P12	ADH1	pRS426	K. Weis (University of California, Berkeley, Berkeley, CA)

Table S3. Oligonucleotide primers used in this study

Primer	Construct	Sequence (5'–3')
RP143	pRP103	CGGGATCCCGATGTCCTCTGCCGCCGAAAA
RP145	pRP103	GCTCTAGAGCCTACTTGTACAGCTCGTCCATGCCG
RP163	pRP90	CCCATATGATGTTCCAGATTACGCTTCACCAAAGAAGAAGCAGCGTAAGGTAGAAGCATCAGGATCATAAGCTCTAGATAATCTCTGCTTTT
RP164	pRP91	CCCATATGATGTTCCAGATTACGCTTCACCAAAGAAGAAGCAGCGTAAGGTAGAAGCATCAGGATCATGATCCCCCCTAGATAATCTCTGCT

References

Caplan, A.J., D.M. Cyr, and M.G. Douglas. 1992. YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell. 71:1143–1155. https://doi.org/10.1016/S0092-8674(05)80063-7

Chellappa, R., P. Kandasamy, C.S. Oh, Y. Jiang, M. Vemula, and C.E. Martin. 2001. The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. Fatty acid-mediated regulation of Mga2p activity is independent of its proteolytic processing into a soluble transcription activator. J. Biol. Chem. 276:43548–43556. https://doi.org/10.1074/jbc.M107845200

Du, F., F. Navarro-Garcia, Z. Xia, T. Tasaki, and A. Varshavsky. 2002. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc. Natl. Acad. Sci. USA. 99:14110–14115. https://doi.org/10.1073/pnas.172527399

Hochstrasser, M., M.J. Ellison, V. Chau, and A. Varshavsky. 1991. The short-lived MAT alpha 2 transcriptional regulator is ubiquitinated in vivo. Proc. Natl. Acad. Sci. USA. 88:4606–4610. https://doi.org/10.1073/pnas.88.11.4606

Prasad, R., S. Kawaguchi, and D.T. Ng. 2010. A nucleus-based quality control mechanism for cytosolic proteins. *Mol. Biol. Cell*. 21:2117–2127. https://doi.org/10 .1091/mbc.E10-02-0111

Prasad, R., S. Kawaguchi, and D.T. Ng. 2012. Biosynthetic mode can determine the mechanism of protein quality control. *Biochem. Biophys. Res. Commun.* 425:689–695. https://doi.org/10.1016/j.bbrc.2012.07.080