### **Supplemental material**

Hoefert et al., https://doi.org/10.1083/jcb.201708173



| D                                    |               |                                                  |               |
|--------------------------------------|---------------|--------------------------------------------------|---------------|
| KEGG pathways enriched in CLEAR-CLIP | FDR (q-value) | GO Biological Process enriched in CLEAR-CLIP     | FDR (q-value) |
| Pathways in cancer                   | 5.35-23       | Tissue development                               | 2.05-60       |
| Endocytosis                          | 4.32-17       | Regulation of multicellular organism development | 3.53-56       |
| Focal adhesion                       | 4.23-15       | Regulation of protein modification process       | 8.55-53       |
| Neurotrophin signaling pathway       | 6.95-15       | Regulation of phosphorus metabolic process       | 7.02-52       |
| ErbB signaling pathway               | 2.18-14       | Regulation of transcription from RNA-pol II      | 7.07-52       |
| Renal cell carcinoma                 | 6.57-13       | Phosphate-containing compound metabolic process  | 7.49-52       |
| Chronic myeloid leukemia             | 1.25-12       | Regulation of molecular function                 | 8.71-52       |
| Ubiquitin-mediated proteolysis       | 2.28-11       | Regulation of intracellular signal transduction  | 1.52-51       |
| MAPK signaling pathway               | 2.28-11       | Cell development                                 | 4.28-49       |
| Regulation of actin cytoskeleton     | 2.28-11       | Positive regulation of protein metabolic process | 6.94-49       |

Figure S1. **miR-200 family expression pattern, representative CLEAR-CLIP reads, and target enrichment. (A)** Proportion of miR-200 family reads from each family member in miRNA-seq from Fig. 1 A. **(B)** In situ hybridization with a probe against miR-200b at E17.5. Bar, 50 µm. **(C)** Sequences of individual reads recovered from regions of the Qk 3' UTR. miRNA sequence is shown in red, and seed sequence shown in blue. **(D)** GO-terms enriched within miR-200 targets identified with CLEAR-CLIP. Analysis was performed with the Molecular Signatures Database (MSigDb; Broad Institute). FDR, false discovery rate.



Figure S2. Effect of miR-200 family expression on body size and hair follicles and validation of HG sorting. (A) Control and Tg littermates at P4.5. (B) H&E staining on back skin from control and Tg animals at P0.5. Bars, 100  $\mu$ m. (C) Percentage of hair follicles (HFs) at each stage of development in control and Tg animals at P0.5. *n* = 3. Error bars represent SD. (D) Sorting strategy used to isolate HG and IFE populations. (E) GSEA comparing HG population with a previously published E14.5 HG microarray signature (Rhee et al., 2006). FDR, false discovery rate; NES, normalized enrichment score. (F) Venn diagram comparing transcriptomes from cultured keratinocytes, HGs, and IFE.



Figure S3. **miR-200s regulate proliferation, migration, FA, and cell junction formation. (A)** Percentage of wells covered by colonies formed by WT keratinocytes untreated (Unt) or treated with doxycycline (Dox). n = 3. **(B)** Number of cells migrated after 8 h in a scratch assay performed on WT keratinocytes untreated or treated with doxycycline. n = 3. **(C)** Extended list of miR-200 family targets identified with CLEAR-CLIP and RNA-seq involved in FA. **(D)** Extended list of miR-200 family targets identified with CLEAR-CLIP and RNA-seq involved in actin cytoskeleton. **(E)** Immunofluorescence of vinculin (red) and Phalloidin stain for actin (green) on WT keratinocytes untreated or treated with doxycycline. **(F)** Number of FAs per cell in E. n = 20 untreated and n = 20 doxycycline-treated cells. **(G)** Immunofluorescence of E-cadherin (red) and phalloidin staining for actin (green) on WT keratinocytes untreated or treated with doxycycline. Cells were treated with calcium for 3 or 7 h. RGB line scans were performed on 90 pixels across the length of each cell junction. Representative image from n > 20 junctions imaged for each condition. **(H)** Immunofluorescence of E-cadherin (red) and phalloidin staining for actin (green) on inducible keratinocytes untreated or treated with calcium for 3 or 7 h. Representative images from n > 20 cell junctions imaged for each condition. **(H)** Immunofluorescence of E-cadherin (red) and phalloidin staining for actin (green) on inducible keratinocytes untreated or treated with calcium for 3 or 7 h. Representative images from n > 20 cell junctions imaged for each condition. **(H)** Bars, 20 µm. **(I)** Quantitative RT-PCR on WT keratinocytes infected with shRNAs. n = 3. **\*\***, P < 0.001; **\*\*\***, P < 0.001; error bars show SD.

# **SJCB**



Figure S4. **Generation of a mouse model lacking miR-200s and the effect of the loss on body size and hair follicles. (A)** Immunofluorescence of Yap1 on inducible keratinocytes untreated or treated with doxycycline (Dox). **(B)** Fluorescence intensity of nucleus compared with cytoplasm from cells in A. n = 3. **(C)** Extended list of miR-200 family targets identified with CLEAR-CLIP and RNA-seq involved in tight junctions and AJs. **(D)** Sequencing result from one of the miR-200b cluster KO founder mice generated through CRISPR. Top arrows indicate expected cut sites, and the bottom arrow shows the repaired sequence. DSB, double-strand break. **(E)** Genotyping band showing null allele in a miR-200b KO mouse. **(F)** Control and miR-200 dKO littermates at P0.5. **(G)** Control and miR-200 dKO littermates at P4.5. **(H)** Immunofluorescence for loricrin (red) and keratin-5 (green) in back skin of control and dKO animals at P0.5. Bars: (A) 50  $\mu$ m; (H and I) 100  $\mu$ m. **(J)** Percentage of hair follicles (HFs) at each stage of development in control and Tg animals at P0.5. n = 3. **(K)** Number of hair follicles per section in control and dKO back skin at P0.5. n = 3. **(L)** Percentage of EdU<sup>+</sup> cells in HGs of control and dKO animals at P0.5. n = 4. Error bars represent SD.



Figure S5. Loss of miR-200s affects cell junction formation and cell orientation, and miR-200s do not directly regulate Sox9. (A) Immunofluorescence of E-cadherin (red) and phalloidin staining for actin (green) on control and dKO keratinocytes induced with calcium for 3 or 7 h. Representative images from n > 20 cell junctions imaged for each treatment. Full-sized images of selections are shown in Fig. 8 N. Bars, 20 µm. (B) Quantitative RT-PCR on dKO keratinocytes infected with shRNAs. n = 3. (C) Angle of HG cells relative to the basement membrane from control and dKO animals at P0.5. n = 4 pairs of animals, n = 16 control cells, and n = 30 dKO cells. (D) Percentage of HGs from control and dKO animals at P0.5 with typical or disrupted cell polarity as imaged with pericentrin in Fig. 10 E. n = 4. (E) A CLEAR-CLIP read for miR-141 ligated to the 3' UTR of Sox9. (F) Relative luciferase activity of Sox9 3' UTR with the addition of the miR-200b cluster, the miR-200c cluster, or both. n = 6. \*, P < 0.05; \*\*, P < 0.01; \*\*\*, P < 0.001; error bars represent SD.



#### Table S1. Primers used in this study

| Oligonucleotide                                                              | Sequence (5'–3')                                         |
|------------------------------------------------------------------------------|----------------------------------------------------------|
| CRISPR; L gRNA for miR-200b cluster                                          | GTGCCAGCCTCCTGCGACCG                                     |
| CRISPR; R gRNA for miR-200b cluster                                          | ATCGTGCGCTCTATAATAGG                                     |
| cloning; 200b luciferase reporter; forward                                   | CTAGATCATCATTACCAGGCAGTATTAGATCTCATCATTACCAGGCAGTATTAC   |
| cloning; 200b luciferase reporter; reverse                                   | TCGAGTAATACTGCCTGGTAATGATGAGATCTAATACTGCCTGGTAATGATGAT   |
| cloning; 141 luciferase reporter; forward                                    | CTAGACCATCTTTACCAGACAGTGTTAGATCCCATCTTTACCAGACAGTGTTAC   |
| cloning; 141 luciferase reporter; reverse                                    | TCGAGTAACACTGTCTGGTAAAGATGGGATCTAACACTGTCTGGTAAAGATGGT   |
| cloning; 200c luciferase reporter; forward                                   | CTAGATCCATCATTACCCGGCAGTATTAGATCTCCATCATTACCCGGCAGTATTAC |
| cloning; 200c luciferase reporter; reverse                                   | TCGAGTAATACTGCCGGGTAATGATGGAGATCTAATACTGCCGGGTAATGATGGAT |
| cloning; miR-200b cluster; forward                                           | GTTGACCTCTCCACTACCTA                                     |
| cloning; miR-200b cluster; reverse                                           | ACCAGTGTTGATAGCACAGG                                     |
| cloning; cyclin G2 3' UTR; forward                                           | CACAGACTGGAATACCTACCTTC                                  |
| cloning; cyclin G2 3' UTR; reverse                                           | GCACTGACCAATTATCACACA                                    |
| cloning; Ptpn14 3' UTR; forward                                              | GTCCCTCAGTACCAGAAGAAATG                                  |
| cloning; Ptpn14 3' UTR; reverse                                              | GAGGGAACAGTGCAAAGGAATA                                   |
| cloning; Ywhab 3' UTR; reverse                                               | GCTCAGACTGGTCCCTTAATAC                                   |
| cloning; Ywhab 3' UTR; reverse                                               | CCACCACAGAAGCAAACATTAG                                   |
| cloning; Snai2 3' UTR; forward                                               | TGGCGCAACCAGTGTTTA                                       |
| cloning; Snai2 3' UTR; reverse                                               | GTGGCTATTAACCGTACCTCAC                                   |
| cloning; Cfl2 3' UTR; forward                                                | CCCGTTCGTGAATGAGTGAATA                                   |
| cloning; Cfl2 3' UTR; reverse                                                | TGTGAGGGTAGGGAGTTTGA                                     |
| cloning; Ccnd2 3' UTR; forward                                               | CGTTTGGTTCCGTTTGGTTC                                     |
| cloning; Ccnd2 3' UTR; reverse                                               | GTCTTAGCCTGTTGCTCCTATAA                                  |
| cloning; Lats1 3' UTR; reverse                                               | TATGAACTGAGTATTATAGTCAAT                                 |
| cloning; Lats1 3' UTR; reverse                                               | ТGAACAAAATACTAAAATTGCAGA                                 |
| cloning; Lats2 3' UTR; reverse                                               | ТССАТТААААСАСТАТТТТТАААА                                 |
| cloning; Lats2 3' UTR; reverse                                               | TAGCGAGAATACTGTAAGTCACAA                                 |
| cloning; Fat1 3' UTR; reverse                                                | CCATTTCCAGCGTCCTAACT                                     |
| cloning; Fat1 3' UTR; reverse                                                | CCTTTACAAGACCATTGCATCAC                                  |
| cloning; Fat2 3' UTR; reverse                                                | GGGTGAGAACTAGGAGGGTAAT                                   |
| cloning; Fat2 3' UTR; reverse                                                | CCAAAGCCACTTGTGCAATC                                     |
| genotyping; pTRE2-200bcl; forward                                            | ATGCTGCCCAGTAAGATGGC                                     |
| genotyping; pTRE2-200bcl; reverse                                            | CCTACAGCTCCTGGGCAACGTG                                   |
| genotyping; K14 forward primer for K14rtTA and K14cre                        | TGGGCGGGTGCCGAGAT                                        |
| genotyping; K14rtTA; reverse                                                 | TGCTGTTTCACTGGTTATGCGG                                   |
| genotyping; cre; reverse                                                     | TTGCCCCTGTTTCACTATCCAG                                   |
| genotyping; miR-200c cluster floxed allele; forward                          | CAACAGCCTCTGACCTTTAACC                                   |
| genotyping; miR-200c cluster floxed allele; reverse                          | CCTTCTGGGCAGACAAGAATAC                                   |
| genotyping; miR-200bcl CRISPR KO, left side; forward; forward<br>for KO band | GCTGAGCATCCGGAAAAGTA                                     |
| genotyping; miR-200bcl CRISPR KO, left side; reverse                         | CAGGCTACCTCTTAGTGGCTGT                                   |
| genotyping; miR-200bcl CRISPR KO, right side; forward                        | ATGGGGAGTTTGAGTGTTGC                                     |
| genotyping; miR-200bcl CRISPR KO, right side; reverse; reverse for KO band   | TGCAAGGCTGCTTGTTAATG                                     |
| qPCR; Cyr61; forward                                                         | CCCCCGGCTGGTGAAAGT                                       |
| qPCR; Cyr61; reverse                                                         | GCGGTTCGGTGCCAAAGA                                       |



#### Table S1. Primers used in this study (Continued)

| Oligonucleotide                          | Sequence (5'-3')               |  |
|------------------------------------------|--------------------------------|--|
| qPCR; Ctgf; forward                      | GGGCCTCTTCTGCGATTTC            |  |
| qPCR; Ctgf; reverse                      | ATCCAGGCAAGTGCATTGGTA          |  |
| qPCR; Lats2; forward                     | GGACCCCAGGAATGAGCAG            |  |
| qPCR; Lats2; reverse                     | CCCTCGTAGTTTGCACCACC           |  |
| qPCR; Cfl2; forward                      | GCATCTGGAGTTACAGTGAATGA        |  |
| qPCR; Cfl2; reverse                      | CACCAATGTCACCCAAGA             |  |
| qPCR; Cyclin E2; forward                 | ATGTAAGACGCAGCCGTTTA           |  |
| qPCR; Cyclin E2; reverse                 | GCTGATTCCTCCAGACAGTACA         |  |
| qPCR; Celsr1; forward                    | TCGCTGACTTCGGTGCTTG            |  |
| qPCR; Celsr1; reverse                    | TTACCAGCTCTACCCAAACGG          |  |
| qPCR; Met; forward                       | GTGAACATGAAGTATCAGCTCCC        |  |
| qPCR; Met; reverse                       | TGTAGTTTGTGGCTCCGAGAT          |  |
| qPCR; Egfr; forward                      | GCCATCTGGGCCAAAGATACC          |  |
| qPCR; Egfr; reverse                      | GTCTTCGCATGAATAGGCCAAT         |  |
| qPCR; Ptk2/Fak; forward                  | TTAGGCGATCCTATTGGGAGATG        |  |
| qPCR; Ptk2/Fak; reverse                  | TTCTTAGTGTTTTGGCCTTGACA        |  |
| qPCR; Rock2; forward                     | TTGGTTCGTCATAAGGCATCAC         |  |
| qPCR; Rock2; reverse                     | TGTTGGCAAAGGCCATAATATCT        |  |
| CLEAR-CLIP; 3' linker                    | NNTGGAATTCTCGGGTGCCAAGG        |  |
| CLEAR-CLIP; 5' Linker                    | GUUCAGAGUUCUACAGUCCGACGAUCNNNN |  |
| CLEAR-CLIP; RT primer                    | GCCTGGCACCCGAGAATTCCA          |  |
| CLEAR-CLIP; library first round F primer | GTTCTACAGTCCGACGAT             |  |

#### Reference

Rhee, H., L. Polak, and E. Fuchs. 2006. Lhx2 maintains stem cell character in hair follicles. Science. 312:1946–1949. https://doi.org/10.1126/science.1128004