Total Synthesis of (+)-Pleuromutilin

Elliot P. Farney,⁺ Sean S. Feng,⁺ Felix Schäfers, and Sarah E. Reisman*

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125 reisman@caltech.edu

Supporting Information:

Table of Contents

1. General Procedures	S3
2. Synthetic Procedures.	S4
i. Synthesis of hydrindanone enal (5)	S4
ii. Synthesis of (+)-pleuromutilin (1)	S11
iii. Synthesis of (+)-12-epi-pleuromutilin (12-epi-1)	S26
iv. Synthesis of allylboronic acid (Z-6)	S36
v. Synthesis of allylboronic acid (E-6)	S40
vi. Transannular 1,5-HAT deuterium-labeling studies	
vii. Synthesis of 11-epi and 11,12-bis-epi Dowd-Beckwith rearrangement tricycles	S48
3. Single Crystal X-ray Diffraction Data	S56
4. References	
5. ¹ H and ¹³ C NMR Spectral Data	S61

1. General Procedures

Unless otherwise stated, reactions were performed under an inert atmosphere (Ar) with freshly dried solvents utilizing standard Schlenk techniques. Glassware was oven-dried at 120 °C for a minimum of four hours, or flame-dried utilizing a Bunsen burner under high vacuum. Tetrahydrofuran (THF), methylene chloride (CH₂Cl₂), diethyl ether (Et₂O), benzene (PhH), and toluene (PhMe) were dried by passing through activated alumina columns. Absolute ethanol (200 Proof) was purchased from Koptec. Methanol (HPLC grade) was purchased from Fisher Scientific. Anhydrous ammonia (NH₃) was purchased from Matheson Tri-Gas. N,N-diisopropylethylamine (^{*i*}Pr₂NEt), triethylamine (Et₃N), methanol (MeOH), isopropanol (^{*i*}PrOH), *tert*-butanol (^{*i*}BuOH), and trimethylsilyl chloride (TMSCI) were distilled over calcium hydride prior to use. Unless otherwise stated, chemicals and reagents were used as received. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by UV (254 nm), p-anisaldehyde, and/or KMnO₄ staining. Flash column chromatography was performed using silica gel (SiliaFlash® P60, particle size 40-63 microns [230 to 400 mesh]) purchased from Silicycle. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD with Prodigy Cryoprobe (at 400 MHz and 101 MHz, respectively) or a Varian Inova 500 (at 500 MHz and 101 MHz respectively) and are reported relative to internal CHCl₃ (¹H, δ = 7.26) and CDCl₃ (¹³C, δ = 77.0). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm⁻¹). HRMS were acquired from the Caltech Mass Spectral Facility using fast-atom bombardment (FAB), electrospray ionization (ES+-TOF) or electron impact (EI). Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm.

Reagents were purchased from commercial vendors as follows: 2-(2-bromoethyl)-1,3-dioxane was purchased from TCI America. Palladium(II) acetate (Pd(OAc)₂, >99%), copper(I) iodide (CuI, 99.999%) and tetrakis(acetonitrile)palladium(II) tetrafluoroborate (Pd(CH₃CN)₄(BF₄)₂, >98%) were purchased from Strem Chemicals and stored in a nitrogen-filled glovebox. Tetrahydroxydiboron (B₂(OH)₂, 95%) and copper(I) cyanide (CuCN, 99.98%) were purchased from Sigma-Aldrich and stored in a nitrogen-filled glovebox. Samarium ingot (99.9% trace rare earth metals basis), tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) (Mn(dpm)₃, 97%), phenylsilane (PhSiH₃, 97%), lithium (wire stored in mineral oil, 99.9% trace metal basis), and *tert*-butyl hydroperoxide (TBHP, 5.5 M in decane over 4 Å MS) were purchased from Sigma-Aldrich.

2. Synthetic Procedures

i. Synthesis of hydrindanone enal (5)

Scheme S1. Complete Route Towards Enal (5)

Preparation of trisubstituted enone (9):

A flame-dried, 1 L, 3-necked round bottom flask equipped with a stir bar, reflux condenser, addition funnel, and glass stopper was charged with activated magnesium turnings (8.02 g, 330.0 mmol, 3 equiv). The atmosphere was exchanged three times with argon before addition of THF (40 mL). To the rapidly stirred suspension was added 1,2-dibromoethane (3.10 g, 16.5 mmol, 0.15 equiv) dropwise. An exothermic reaction was observed, and the suspension became grey. The reaction was cooled to ambient temperature, and subsequently, a solution of 2-(2-bromoethyl)-1,3-dioxane (42.9 g, 219.9 mmol, 2 equiv) in THF (170 mL, 0.64 M) was added dropwise via an addition funnel over 1 h. Upon completion of addition, the reaction was stirred for an additional 30 min. The resulting suspension was filtered via cannula into a flame-dried, 2 L, 2-necked round bottom flask equipped with a

large stir bar under an atmosphere of argon, and the Grignard reagent **8** was diluted with THF (170 mL, 0.64 M). Titration against salicylaldehyde phenylhydrazone yielded the concentration of Grignard reagent **8** as 0.38 M.

The Grignard solution was cooled to -45 °C. Subsequently, a freshly prepared solution of CuCN•2LiCl in THF was added via cannula over 20 min. CuCN•2LiCl was prepared by dissolving CuCN (9.85 g, 110.0 mmol, 1 equiv) and LiCl (9.32 g, 220.0 mmol, 2 equiv) in THF (110 mL, 1.0 M w.r.t. CuCN) and vigorously stirring at ambient temperature for 1 h. After an additional 20 min, freshly distilled TMSCl (14.3 g, 132.0 mmol, 1.2 equiv) was added. The reaction became heterogeneous, and stirring was difficult. After 10 min, a solution of (*R*)-enone¹ 7 (12.1 g, 110.0 mmol, 1 equiv) in THF (183 mL, 0.6 M) was added via cannula over 30 min. The reaction was stirred for 1 h and then quenched with sat. aq. NaHCO₃ (10 mL) at -45 °C. After warming to ambient temperature, pentane (600 mL) was added, and the suspension was filtered through Celite. The volatiles were concentrated under reduced pressure, additional pentane (500 mL) was added and the slurry was filtered through Celite. This process was repeated an additional time to afford 38.2 g of a clear oil. ¹H NMR (CDCl₃) shows desired silyl enol ether along with 2-(2-cyanoethyl)-1,3-dioxane. The silyl enol ether was used immediately without further purification.

To a 1 L round bottom flask equipped with a stir bar was added the silyl enol ether, anhydrous DMSO (550 mL, 0.2 M) and Pd(OAc)₂ (2.47 g, 11.0 mmol, 10 mol %). The mixture was sparged with O₂ for 2 h then stirred at ambient temperature for 36 h. At this time, ¹H NMR analysis showed the ratio of product to remaining silyl enol ether was 11:1. Water (700 mL) was added, and the product was extracted into Et₂O (4 x 400 mL). The combined organic layers were washed with brine (1 x 50 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford 38.1 g of a viscous, yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [750 g SiO₂, 60 mL fractions, Et₂O/hexanes = 40% (1.5 L), 45% (500 mL), 50% (500 mL), 55% (500 mL), 65% (500 mL), 80% (500 mL)] to afford trisubstituted enone **9** (20.3 g, 90.5 mmol, 91% yield over 2 steps) as a viscous, clear oil.

TLC (25% EtOAc/hexanes): $R_f = 0.23$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 5.84 (s, 1H, C₄), 4.53 (t, J = 5.0 Hz, 1H, C₃), 4.09 (ddt, J = 10.7, 5.1, 1.3 Hz, 2H, OCH₂CH₂CH₂O), 3.75 (m, 2H, OCH₂CH₂CH₂O), 2.31 (m, 5H, C₁, C₂, C₆, C₈), 2.05 (m, 2H, OCH₂CH₂, C₇), 1.78 (m, 2H, C₁, C₂), 1.68 (m, 1H, C₇), (d sept, J = 13.5, 1.4 Hz, 1H, OCH₂CH₂), 1.12 (d, J = 6.9 Hz, 3H, C₁₆). ¹³C NMR (101 MHz, CDCl₃): δ 202.3 (C₅=O), 164.5 (C₉), 125.1 (C₄), 101.2 (C₃), 66.9 (OCH₂CH₂), 40.8 (C₆), 32.3 (C₁), 31.9 (C₂), 30.8 (C₇), 29.3 (C₈), 25.7 (OCH₂CH₂), 15.1 (C₁₆). FTIR (AT-IR): 2857, 2249, 1662, 1375, 1211, 1146, 1079, 1046, 907, 647 cm⁻¹. HRMS (FAB+, m/z): calc'd for C₁₃H₂₁O₃ [M+H]⁺ 225.1491, found: 225.1502. [α]²³: +65° (c = 1.055, CHCl₃).

Preparation of isopropenyl cyclohexanone (10):

A flame-dried, 3 L, 2-necked round bottom flask equipped with a stir bar was evacuated and backfilled with argon three times. The flask was charged with CuI (17.6 g, 92.6 mmol, 1.5 equiv) and THF (617 mL). The suspension was cooled to -78 °C and stirred for 15 min. Isopropenylmagnesium bromide (0.5 M in THF (Aldrich), 371 mL, 185 mmol, 3 equiv) was added dropwise via cannula transfer and the solution was stirred for 5 min. The

reaction was warmed to -25 °C and stirred for 10 min. Thereafter, the mixture was cooled back down to -78 °C and stirred for 15 min. Trisubstituted enone **9** (13.9 g, 61.8 mmol, 1 equiv) was dissolved in THF (617 mL) and added dropwise via cannula transfer. The solution was warmed to -50 °C and stirred for 25 min or until complete by TLC analysis. The reaction mixture was quenched with sat. aq. NH₄Cl (400 mL) at -50 °C and the biphasic solution was warmed to ambient temperature. The layers were separated and the aqueous phase was extracted with Et₂O (3 x 350 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄ and concentrated under reduced pressure to afford 18.4 g of a viscous oil.

Purification was achieved via flash column chromatography on SiO_2 [1400 g SiO_2 , 20% EtOAc/hexanes] to afford isopropenyl cyclohexenone **10** (11.64 g, 43.7 mmol, 71% yield) as a white solid.

Major Diastereomer (10)

TLC (20% EtOAc/hexanes): $R_f = 0.16$ (*p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 4.93 (br s, 1H, C₁₇), 4.69 (s, 1H, C₁₇), 4.45 (t, J = 4.7 Hz, 1H, C₃), 4.07 (m, 2H, OCH₂CH₂), 3.72 (m, 2H, OCH₂CH₂), 2.73 (dd, J = 14.2, 3.0 Hz, 1H, C₄), 2.20 (app d of septets, J = 6.7, 1.2 Hz, 1H, C₆), 2.07 (dd, J = 14.2, 1.0 Hz, 1H, C₄), 2.04 (m, 1H, OCH₂CH₂), 1.96 (dq, J = 13.8, 3.2 Hz, 1H, C₈), 1.83 (m, 1H, C₇), 1.65 (m, 1H, C₂), 1.61 (dd, J = 1.2, 0.5 Hz, 3H, C₁₁), 1.59 (m, 1H, C₈), 1.46 (m, 1H, C₁), 1.41 (m, 1H, C₁), 1.37 (m, 1H, C₂), 1.36 (m, 1H, C₇), 1.32 (m, 1H, OCH₂CH₂), 0.97 (d, J = 6.5 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 212.2 (C₅=O), 145.7 (C₁₀), 116.0 (C₁₇), 102.3 (C₃), 66.9 (O*C*H₂CH₂), 49.8 (C₄), 47.7 (C₉), 44.8 (C₆), 34.8 (C₈), 34.5 (C₂), 30.4 (C₇), 29.5 (C₁), 25.7 (OCH₂*C*H₂), 18.9 (C₁₁), 14.5 (C₁₆).

FTIR (AT-IR): 2960, 2929, 2853, 1706, 1454, 1239, 1144, 994, 880 cm⁻¹.

HRMS (FAB+, m/z): calc'd for $C_{16}H_{27}O_3[M+H]^+$ 267.1960, found: 267.1966.

 $[\alpha]_{D}^{23}$: +42° (*c* = 1.16, CHCl₃).

Minor Diastereomer (S3)

TLC (20% EtOAc/hexanes): $R_f = 0.27$ (*p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 4.86 (pent, J = 1.2 Hz, 1H, C₁₇), 4.70 (m, 1H, C₁₇), 4.42 (m, 1H, C₃), 4.06 (ddt, J = 10.5, 5.0, 1.2 Hz, 2H, OCH₂CH₂), 3.72 (m, 2H, OCH₂CH₂), 2.40 (dd, J = 13.3, 2.0 Hz, 1H, C₄), 2.35 (m, 1H, C₆), 2.32 (m, 1H, C₄), 2.07 (tt, J = 13.3, 5.2 Hz, 1H, OCH₂CH₂), 1.98 (m, 1H, C₇), 1.88 (m, 1H, C₁), 1.76 (td, J = 11.5, 4.1 Hz, 1H, C₁), 1.68 (dd, J = 1.3, 0.8 Hz, 3H, C₁₁), 1.50 (m, 1H, C₇), 1.40 (m, 1H, C₂), 1.39 (m, 1H, C₂), 1.37 (m, 1H, C₈), 1.35 (m, 1H, C₈), 1.30 (m, 1H, OCH₂CH₂), 1.05 (d, J = 6.7 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 213.3 (C₅=O), 148.8 (C₁₀), 111.9 (C₁₇), 102.3 (C₃), 66.9 (O*C*H₂CH₂), 66.8 (O*C*H₂CH₂), 50.0 (C₄), 46.7 (C₉), 44.3 (C₆), 31.9 (C₁), 30.2 (C₇), 29.5 (C₈), 28.2 (C₂), 25.7 (OCH₂*C*H₂), 19.0 (C₁₁), 14.9 (C₁₆).

FTIR (AT-IR): 2961, 2930, 2850, 1708, 1635, 1452, 1377, 1143, 994, 880 cm⁻¹. **HRMS (FAB+, m/z):** calc'd for $C_{16}H_{27}O_3[M+H]^+$ 267.1960, found: 267.1949.

 $[\alpha]_{D}^{23}$: +1.9° (c = 0.91, CHCl₃).

Preparation of allylic chloride (S1):

This procedure was adapted from the work of Kumar and coworkers.² A flame-dried, 2 L, 2-neck round bottom flask equipped with a stir bar was charged with activated 4 Å mol sieves and cyclohexanone **10** (12.06 g, 45.28 mmol, 1 equiv). The atmosphere was exchanged three times with argon before adding EtOAc (916 mL, 0.05 M) that had been degassed with argon. The resulting colorless solution was cooled to 0 °C and stirred for an additional 10 min. Subsequently, finely ground trichloroisocyanuric acid (TCCA) (10.52 g, 45.28 mmol, 1 equiv) was added in one portion. The reaction was stirred (900 rpm) for 10 min or until complete by TLC analysis. The reaction mixture was quenched at 0 °C with sat. aq. Na₂S₂O₃ (150 mL). The biphasic solution was warmed to ambient temperature and filtered. The aqueous layer was extracted with EtOAc (4 x 100 mL). The combined organic layers were washed with H₂O (100 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to afford a yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [1400 g SiO₂, 15% EtOAc/hexanes \rightarrow 30%] to afford allylic chloride S1 (10.52 g, 39.5 mmol, 77% yield) as a white solid.

TLC (50% EtOAc/hexanes): $R_f = 0.5$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 5.54 (s, 1H, C₁₇), 5.15 (s, 1H, C₁₇), 4.46 (t, *J* = 4.8 Hz, 1H, C₃), 4.12 – 4.03 (m, 2H, OC*H*₂CH₂C*H*₂O), 4.01 (d, *J* = 1.0 Hz, 2H, C₁₁), 3.73 (td, *J* = 12.2, 2.4 Hz, 2H, OC*H*₂CH₂C*H*₂O), 2.76 (dd, *J* = 14.2, 3.0 Hz, 1H, C₄), 2.34 – 2.20 (m, 1H, C₆), 2.14 (dd, *J* = 14.2, 1.1 Hz, 1H, C₂), 2.04 (tdd, *J* = 17.5, 8.7, 4.2 Hz, 2H, C₁), 1.89 (ddt, *J* = 13.3, 6.6, 3.5 Hz, 1H, C₇), 1.80 – 1.65 (m, 2H, C₈), 1.55 – 1.28 (m, 4H, C₁, C₇, C₂, OCH₂C*H*₂CH₂O), 0.99 (d, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 211.7 (C₅=O), 145.0 (C₁₀), 121.0 (C₁₇), 101.9 (C₃), 66.9 (OCH₂CH₂CH₂O), 50.2 (C₄), 48.1 (C₉), 44.9 (C₆), 44.0 (C₁₁), 35.0 (C₈), 35.0 (C₁), 30.6 (C₇), 29.5 (C₂), 25.7 (OCH₂CH₂CH₂O), 14.4 (C₁₆). **FTIR (AT-IR):** 2929, 2359, 1707, 1377, 1214, 1143, 1079, 880, 730, 668 cm⁻¹. **HRMS (FAB+, m/z):** calc'd for C₁₆H₂₆O₃Cl [M+H]⁺ 301.1571, found: 301.1564.

 $[\alpha]_{D}^{23}$: +49° (*c* = 0.495, CHCl₃).

Preparation of enone (11):

A 250 mL round bottom flask equipped with a stir bar and reflux condenser was charged with allylic chloride **S1** (10.8 g, 35.9 mmol, 1 equiv) and THF (125 mL). The homogeneous solution was vigorously stirred (960 rpm) and 6 N HCl (17.96 mL, 108 mmol, 3 equiv) was added dropwise. The reaction was heated to 70 °C and stirred for 4 h. The reaction was quenched with sat. aq. NaHCO₃ (45 mL). The layers were separated and the aqueous

layer was extracted with Et_2O (3 x 75 mL). The combined organic layers were washed with brine (25 mL) and dried over MgSO₄. The suspension was filtered, and concentrated under reduced pressure to afford 10.4 g of a viscous yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [1400 g SiO₂, 5% Et₂O/hexanes \rightarrow 10%] to afford enone **11** (4.15 g, 18.5 mmol, 52% yield) as a colorless solid.

Major Diastereomer (11)

TLC (50% Et₂O/hexanes): $R_f = 0.75$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 6.55 (t, J = 2.7 Hz, 1H, C₃), 5.39 (s, 1H, C₁₇), 4.96 (s, 1H, C₁₇), 4.16 – 4.05 (m, 2H, C₁₁), 2.39 – 2.32 (m, 3H, C₁, C₂), 2.29 – 2.18 (m, 2H, C₆, C₈), 1.95 – 1.84 (m, 2H, C₇, C₈), 1.73 – 1.45 (m, 2H, C₁, C₇), 1.09 (d, J = 6.7 Hz, 2H, C₆).

¹³C NMR (101 MHz, CDCl₃): δ 202.1 (C₅=O), 146.8 (C₄), 146.4 (C₁₀), 137.6 (C₃), 119.0 (C₁₇), 57.9 (C₉), 45.2 (C₆), 44.7 (C₁₁), 39.4 (C₈), 35.3 (C₁), 30.5 (C₇), 30.1 (C₂), 14.9 (C₁₆).

FTIR (AT-IR): 2929, 2860, 1682, 1622, 1454, 1312, 1232, 1012, 927, 757, cm⁻¹.

HRMS (FAB+, m/z): calc'd for $C_{13}H_{18}CIO [M+H]^+ 225.1046$, found: 225.1061.

 $[\alpha]_{D}^{23}$: +58.4° (*c* = 0.715, CHCl₃).

Minor Diastereomer (S3)

TLC (50% Et₂O/hexanes): $R_f = 0.75$ (UV, *p*-anisaldehyde)

¹**H NMR (400 MHz, CDCl₃):** δ 6.70 (t, J = 2.7 Hz, 1H, C₃), 5.3 (s, 1H, C₁₇), 5.00 (s, 1H, C₁₇), 4.21 – 4.01 (m, 2H, C₁₁), 2.55 – 2.44 (m, 1H, C₆), 2.42 – 2.32 (m, 2H, C₂), 2.28 (ddt, J = 12.6, 5.4, 2.7 Hz, 1H, C₁), 2.16 (dt, J = 13.8, 4.0 Hz, 1H, C₈), 2.04 – 1.83 (m, 2H, C₁, C₇), 1.74 (td, J = 13.4, 3.9 Hz, 1H, C₈), 1.54 (dq, J = 13.9, 3.9 Hz, 1H, C₇), 1.12 (d, J = 7.4 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 203.4 (C₅=O), 146.7 (C₄), 145.3 (C₁₀), 140.1 (C₃), 118.2 (C₁₇), 56.7 (C₉), 44.8 (C₁₁), 41.9 (C₆), 39.8 (C₁₂), 30.7 (C₈), 30.0 (C₂), 28.0 (C₇), 17.8 (C₁₆).

FTIR (AT-IR): 2925, 2855, 1687, 1620, 1456, 1376, 1262, 1175, 1098, 924 cm⁻¹.

HRMS (EI+, m/z): calc'd for $C_{13}H_{17}ClO[M]^+224.0968$, found: 224.0940.

 $[\alpha]_{D}^{23}$: 46.8° (*c* = 0.115, CHCl₃).

Preparation of allylic alcohol (S2):

A flame-dried, 50 mL round bottom flask equipped with a stir bar was charged with enone **11** (1.101 g, 4.9 mmol, 1 equiv). The atmosphere was exchanged with argon three times before adding a solution of $CeCl_3 \cdot 2LiCl^3$ (0.3 M in THF, 16.3 mL, 1 equiv). Upon addition of $CeCl_3 \cdot 2LiCl$, a bright yellow solution was obtained and stirred for 1 h at ambient temperature. The reaction mixture was then cooled to -78 °C and stirred for 15 min. The solution then became pale yellow slurry and stirring became difficult. A solution of methylmagnesium chloride (3.0 M in THF (Aldrich), 3.3 mL, 9.8 mmol, 2 equiv) was added dropwise over 30 min. The slurry was perturbed by hand until magnetic stirring resumed. The reaction was stirred at -78 °C until TLC analysis indicated complete consumption of starting material (about 15 min).

The gray solution was quenched at -78 °C via slow addition of 1 M HCl (15 mL) using a vent needle to relieve excess pressure. Thereafter, the solution was warmed to ambient temperature while the slurry slowly quenched. The mixture was then transferred to a separatory funnel and diluted with H₂O (20 mL) and Et₂O (50 mL). The layers separated, and the aqueous layer was extracted with Et₂O (3 x 20 mL). The combined organic layers was washed with brine (40 mL) and dried over MgSO₄. The suspension was filtered and concentrated under reduced pressure to afford a yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [100 g SiO₂, 45 mL fractions, 200 mL forerun, Et₂O/hexanes = 15% (1.2 L), 30% (250 mL), 40% (1 L)] to afford the less polar diastereomer (fractions 3–10) followed by the more polar diastereomer (fractions 17–33). The volatiles were concentrated under reduced pressure to afford an inconsequential mixture of diastereomers **S2** (1.15 g, 4.78 mmol, 97% combined yield). An analytically pure sample of the less polar diastereomer was obtained and a representative spectrum of the mixture as used in the next step is also provided.

TLC (20% Et₂O/hexanes): $R_f = 0.46$ and 0.09 (*p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 5.79 (t, J = 2.4 Hz, 1H, C₃), 5.44 – 5.41 (m, 1H, C₁₇), 5.27 (s, 1H, C₁₇), 4.24 (dd, J = 13.1, 0.6 Hz, 1H, C₁₁), 4.08 (dd, J = 13.1, 1.0 Hz, 1H, C₁₁), 2.46 – 2.33 (m, 3H, C₂, C₈), 2.05 (ddd, J = 13.4, 7.9, 3.4 Hz, 1H, C₁), 1.76 (dt, J = 13.3, 9.0 Hz, 1H, C₁), 1.57 (s, 1H, OH), 1.46 – 1.38 (m, 3H, C₆, C₇, C₈), 1.37 (s, 3H, C₁₅), 0.92 (d, J = 6.4 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 150.1 (C₄), 149.7 (C₁₀), 126.5 (C₃), 113.8 (C₁₇), 72.1 (C₅), 54.5 (C₉), 45.7 (C₁₁), 43.1 (C₆), 41.4 (C₁), 38.2 (C₈), 30.3 (C₂), 28.3 (C₇), 24.4 (C₁₅), 14.8 (C₁₆). **FTIR (AT-IR)**: 3315, 2872, 2360, 1596, 1489, 1275, 1031, 1001, 899, 697 cm⁻¹. **HRMS (FAB+, m/z)**: calc'd for C₁₄H₂₀ClO [M+H]⁺–H₂239.1203, found: 239.1176. [α]²³_D: +27.0° (c = 0.210, CHCl₃).

Preparation of hydrindenone (12):

This procedure was adapted from the work of Dauben and coworkers.⁴ To a 100 mL round bottom flask equipped with a stir bar was added allylic alcohol **S2** (1.15 g, 4.78 mmol, 1 equiv) and CH_2Cl_2 (32 mL). Pyridinium chlorochromate (3.09 g, 14.24 mmol. 3 equiv) was added in one portion and the reaction was stirred at ambient temperature for 12 h or until complete by aliquot NMR.

Upon complete consumption of starting material, the reaction mixture was transferred to a 500 mL separatory funnel. In the reaction flask remained a black resin, which was diluted with 20 mL Et_2O and 60 mL of 5% NaOH. The biphasic mixture was stirred until all the black resin had gone into solution, where it was then transferred into the separatory funnel. The organic layer was separated, and the aqueous layer was extracted with Et_2O (3 x 20 mL). The combined organic layers were then washed with 1 M HCl (2 x 15 mL) which gave a pale yellow organic layer. The phases were again separated, and washed with sat. aq. NaHCO₃. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure.

Purification was achieved via flash column chromatography with SiO_2 [50 g SiO_2 , 10% Et₂O/hexanes] to afford enone **12** (902 mg, 3.78 mmol, 80% yield) as viscous, clear oil.

TLC (20% Et₂O/hexanes): $R_f = 0.24$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 5.49 (s, 1H, C₁₇), 4.93 (d, J = 0.8 Hz, 1H, C₁₇), 4.10 (d, J = 0.9 Hz, 2H, C₁₁), 2.34 – 2.04 (m, 5H, C₁, C₂, C₆, C₈, C₁₅), 1.75 – 1.66 (m, 1H, C₇), 1.63 – 1.54 (m, 1H, C₁), 1.39 – 1.15 (m, 2H, C₇, C₈), 1.06 (d, J = 7.1 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 207.4 (*C*₃=O), 152.3 (*C*₄), 147.4 (*C*₅), 135.6 (*C*₁₀), 121.8 (*C*₁₇), 50.6 (*C*₉), 43.9 (*C*₁₁), 37.7 (*C*₆), 35.6 (*C*₂), 33.2 (*C*₈), 32.5 (*C*₁), 28.2 (*C*₇), 19.1 (*C*₁₆), 16.9 (*C*₁₅).

FTIR (AT-IR): 2932, 1707, 1630, 1444, 1267, 1211, 1077, 926, 801, 754, 622 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{14}H_{19}CIONa[M+Na]^+ 261.1022$, found 261.1006.

 $[\alpha]_D^{23}$: -252.8° (*c* = 0.66, CHCl₃).

Preparation of enal (5):

This procedure was adapted from the work of Kumar and coworkers.² A 20 mL scintillation vial equipped with a stir bar was charged with hydrindenone **12** (250 mg, 1.047 mmol, 1 equiv), $K_2HPO_4 \cdot 3H_2O$ (595 mg, 2.62 mmol, 2.5 equiv), NaI (65 mg, 0.419 mmol, 0.4 equiv) and DMSO (10 mL). The vial was sealed with a teflon cap and the heterogeneous mixture was heated to 95 °C with vigorous stirring (1000 rpm). After 7.5 h, aliquot NMR analysis indicated complete consumption of starting material. The heterogeneous mixture was allowed to cool to ambient temperature and sat. aq. NaHCO₃ (5 mL) was added. The layers were separated and the aqueous layer was extracted with Et₂O (4 x 15 mL). The combined organic layers were washed with H₂O (10 mL), and dried over MgSO₄. The suspension was filtered and concentrated under reduced pressure to afford a yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [75 g SiO₂, Et₂O/hexanes = 20%] to afford enal **5** (157 mg, 0.719 mmol, 69% yield) as a white solid.

TLC (30% Et₂O/hexanes): $R_f = 0.30$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 9.57 (s, 3H, C₁₁), 6.17 (s, 1H, C₁₇), 6.06 (s, 1H, C₁₇), 2.58 (ddd, *J* = 12.9, 7.9, 1.2 Hz, 1H, C₂), 2.48 (dt, *J* = 13.1, 3.4 Hz, 1H, C₈), 2.17 (m, 1H, C₆), 2.16 (s, 3H, C₁₅), 2.12 (ddd, *J* = 18.5, 8.6, 1.1 Hz, 1H, C₁) 2.06 (ddd, *J* = 18.5, 12.6, 7.9 Hz, 1H, C₁), 1.70 (m, 1H, C₇), 1.64 (dd, *J* = 12.6, 8.7, Hz, 1H, C₂), 1.34 (td, *J* = 14.0, 2.7 Hz, 1H, C₈), 1.04 (s, 3H, C₁₆), 0.97 (m, 1H, C₇).

¹³C NMR (101 MHz, CDCl₃): δ 207.9 (*C*₃=O), 193.8 (*C*₁₁=O), 153.5 (*C*₅), 152.8 (*C*₁₀), 140.5 (*C*₁₇), 135.1 (*C*₄), 48.1 (*C*₉), 37.5 (*C*₆), 35.9 (*C*₁), 32.3 (*C*₈), 31.8 (*C*₂), 28.5 (*C*₇), 19.3 (*C*₁₆) 17.0 (*C*₁₅).

FTIR (AT-IR): 2950, 2931, 1705, 1629, 1080, 907, 878, 764, 702, 647 cm⁻¹.

HRMS (FAB+, m/z): calc'd for $C_{14}H_{19}O_2 [M+H]^+ 219.1385$, found 219.1387.

 $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{23}$: -215° (*c* = 1.01, CHCl₃).

ii. Synthesis of (+)-pleuromutilin (1)

Scheme S2. Completion of pleuromutilin (1)

Preparation of crotylation adducts (13a) and (13b):

This procedure was adapted from the work of Szabó and coworkers.⁵ In a nitrogen-filled glovebox, a flamedried, 100 mL Schlenk flask equipped with a stir bar was charged with freshly activated 3 Å molecular sieves (pellets) (1.79 g), allylboronic acid **Z-6** (25.3 mL of a 0.18 M solution, 4.47 mmol, 1 equiv, see page S36), (*R*)-3,3'-Br₂-BINOL (397 mg, 0.894 mmol, 20 mol %), freshly distilled 'BuOH (1.28 mL, 13.4 mmol, 3 equiv), and a solution of the enal hydrindanone **5** (976 mg, 4.47 mmol, 1 equiv) in dry, degassed PhMe (4.5 mL). The resulting heterogeneous mixture was sealed, removed from the glovebox, cooled to -30 °C for 5 min, then placed in a preequilibrated 0 °C bath and stirred.

After 40 h, the reaction was quenched with MeOH (5 mL), stirred for 5 min, filtered, and concentrated under reduced pressure to afford a viscous residue. Purification was achieved via flash column chromatography on SiO₂ [100 g SiO₂, Acetone/hexanes = $4\% \rightarrow 15\%$] to afford remaining enal (fractions 22–31), the desired diastereomer **13a** (fractions 37–70), and **13b** and residual (*R*)-3,3'-Br₂-BINOL (fractions 71–85). The volatiles were concentrated under reduced pressure to afford remaining enal (237 mg, 1.09 mmol, 24% recovered contaminated with ~5% protodeboronated nucleophile), the desired diastereomer **13a** (1.03 g, 1.84 mmol, 41% yield), and the more polar diastereomer **13b**/BINOL mixture respectively.

The **13b**/BINOL mixture was subjected to flash column chromatography on SiO₂ [100 g SiO₂, Et₂O/hexanes = 40%] to afford (*R*)-3,3'-Br₂-BINOL (fractions 1–3) and the more polar diastereomer **13b** (fractions 23–38). Obtained (*R*)-3,3'-Br₂-BINOL (343 mg, 0.772 mmol, 86% recovered) and the more polar diastereomer **13b** (972 mg, 1.73 mmol, 39% yield). Both diastereomers were isolated as puffy white foams.

Experimental Note: It is critical that all operations be carried out in a rigorously oxygen-free environment. Failure to do so will result in rapid decomposition of the allylboronic acid.

Desired Diastereomer (13a)

TLC (desired diastereomer) (20% Acetone/hexanes): $R_f = 0.38$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 7.46–7.38 (m, 6H, *Ph*₃CO), 7.34–7.19 (m, 9H, *Ph*₃CO), 5.81 (dd, *J* = 17.6, 10.9 Hz, 1H, C₁₉), 5.41 (s, 1H, C₁₇), 5.00 (dd, *J* = 10.9, 1.2 Hz, 1H, C₂₀), 4.95 (dd, *J* = 17.7, 1.2 Hz, 1H, C₂₀), 4.81 (d, *J* = 1.1 Hz, 1H, C₁₇), 3.89 (d, *J* = 8.3 Hz, 1H, C₁₁), 3.20 (t, *J* = 6.7 Hz, 2H, C₁₄), 2.34 (d, *J* = 8.3 Hz, 1H, O*H*), 2.22 (app dt, *J* = 10.0, 1.6 Hz, 1H, C₈), 2.17 (m, 1H, C₆), 2.17 (m, 1H, C₂), 2.16 (s, 3H, C₁₅), 2.09 (m, 1H, C₁), 2.05 (m, 1H, C₂), 1.86 (dt, *J* = 13.5, 6.5 Hz, 1H, C₁₃), 1.30 (td, *J* = 13.5, 1.9 Hz, 1H, C₇), 1.63 (m, 1H, C₁₃), 1.54 (m, 1H, C₁), 1.30 (td, *J* = 13.5, 1.07 (s, 3H, C₁₈), 1.05 (d, *J* = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.1 (C_3 =O), 153.4 (C_{10}), 152.4 (C_5), 144.0 (*Ph*₃CO), 142.8 (C_{19}), 135.7 (C_4) 128.6 (*Ph*₃CO), 127.8 (*Ph*₃CO), 127.0 (*Ph*₃CO), 118.4 (C_{17}), 114.7 (C_{20}), 87.4 (*Ph*₃CO), 74.6 (C_{11}), 60.8 (C_{14}), 52.0 (C_9), 44.6 (C_{12}), 38.8 (C_{13}), 38.0 (C_6), 35.6 (C_2), 33.2 (C_8), 32.3 (C_1), 28.2 (C_7), 20.5 (C_{18}), 19.1 (C_{16}), 17.0 (C_{15}). FTIR (AT-IR): 3540, 2901, 2380, 2365, 1699, 1627, 1448, 1274, 1064, 1031, 749 cm⁻¹. HRMS (TOF, ES+): calc'd for $C_{39}H_{44}O_3Na [M+Na]^+$ 583.3188, found 583.3198. $[\alpha]_D^{23}$: -104° (*c* = 0.326, CHCl₃). Melting point: 57.3–58.7 °C

11,12-bis-epi crotylation adduct (13b)

TLC (13b) (20% Acetone/hexanes): $R_f = 0.30$ (UV, *p*-anisaldehyde).

¹H NMR (400 MHz, CDCl₃): δ 7.44–7.38 (m, 6H, *Ph*₃CO), 7.34–7.19 (m, 9H, *Ph*₃CO), 5.86 (dd, *J* = 17.6, 10.9 Hz, 1H, C₁₉), 5.48 (s, 1H, C₁₇), 5.02 (dd, *J* = 10.9, 1.2 Hz, 1H, C₂₀), 4.96 (dd, *J* = 17.7, 1.2 Hz, 1H, C₂₀), 4.86 (d, *J* = 1.1 Hz, 1H, C₁₇), 3.82 (d, *J* = 9.4 Hz, 1H, C₁₁), 3.19 (m, 2H, C₁₄), 2.50 (dd, *J* = 12.3, 7.9 Hz, 1H, C₂), 2.39 (d, *J* = 8.3 Hz, 1H, O*H*), 2.28 (ddd, *J* = 18.4, 12.8, 8.0 Hz, 1H, C₁), 2.17 (m, 1H, C₆), 2.16 (s, 3H, C₁₅), 2.08 (d, *J* = 7.9 Hz, 1H, C₁), 2.01 (dd, *J* = 16.5, 7.0 Hz, 1H, C₁₃), 1.97 (dd, *J* = 14.0, 6.8 Hz, C₈), 1.63 (m, 1H, C₇), 1.58 (q, *J* = 6.6 Hz, C₁₃), 1.46 (m, 1H, C₂), 1.29 (m, 1H, C₈), 1.26 (m, 1H, C₇), 1.10 (d, *J* = 7.0 Hz, 3H, C₁₆), 1.06 (s, 3H, C₁₈). ¹³C NMR (101 MHz, CDCl₃): δ 208.4 (C₃=O), 153.2 (C₁₀), 151.1 (C₅), 144.0 (*Ph*₃CO), 143.1 (C₁₉), 136.4 (C₄) 128.6 (*Ph*₃CO), 127.8 (*Ph*₃CO), 127.0 (*Ph*₃CO), 118.6 (C₁₇), 114.6 (C₂₀), 87.3 (*Ph*₃CO), 75.2 (C₁₁), 60.9 (C₁₄), 52.1

(C₉), 44.3 (C₁₂), 38.7 (C₁₃), 37.8 (C₆), 35.7 (C₁), 32.7 (C₈), 32.5 (C₂), 28.3 (C₇), 21.3 (C₁₈), 19.2 (C₁₆), 16.8 (C₁₅).

FTIR (AT-IR): 3409, 2930, 2359, 2246, 1700, 1628, 1490, 1448, 1271, 1030, 759 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{39}H_{44}O_3Na [M+Na]^+ 583.3188$, found 583.3184.

 $[\alpha]_D^{25}: -55^\circ (c = 1.04, \text{CHCl}_3).$

Melting point: 66.5–68.4 °C

Table S1. Other tested crotylation conditions

Entry	nucleophile	catalyst	additive	solvent	conc.	т	t	conv.	Yield (13a)	Yield (13b)
1	A (2 equiv)	-	4Å MS	PhMe	0.08 M	$-78 \text{ °C} \rightarrow 0 \text{ °C}$	6 h	10%	-	-
2	A (2 equiv)	-	4Å MS	PhMe	0.3 M	0°C	18 h	43%	-	-
3	B (2 equiv)	-	4Å MS	PhMe	0.3 M	0°C	18 h	26%	-	-
4†	C (1 equiv)	-	-	THF/hexanes	0.5 M	–78 °C → 23 °C	3 h	ND	-	-
5	B (2 equiv)	D (1 mol %)	-	PhMe	0.13 M	0°C	18 h	22%	-	-
6	B (2 equiv)	-	Sc(OTf) ₃ (10 mol %)	PhMe	0.15 M	0°C	18 h	47%	-	-
7	B (2 equiv)	Е	Sc(OTf) ₃ (10 mol %)	PhMe	0.15 M	0°C	18 h	29%	-	-
8	<i>Z</i> -6 (1 equiv)	F (20 mol %)	4Å MS	PhMe	0.08 M	0°C	40 h	77%	38%	36%
9	<i>Z</i> -6 (1 equiv)	G (20 mol %)	4Å MS	PhMe	0.08 M	0°C	40 h	66%	28%	38%
10	<i>Z</i> -6 (1 equiv)	H (20 mol %)	4Å MS	PhMe	0.08 M	0°C	40 h	100%	25%	24%
11	<i>Z</i> -6 (1 equiv)	l (20 mol %)	4Å MS	PhMe	0.08 M	0°C	40 h	68%	12%	10%

 $^{\dagger} \text{The}$ lpc-borane (C) used in this reaction was not of high purity due to synthetic challenges

Preparation of MOM protected crotylation adduct (S5):

A flame-dried, 25 mL round bottom flask equipped with a stir bar was charged with alcohol **13a** (300 mg, 0.535 mmol, 1 equiv), CH_2Cl_2 (8.7 mL), and freshly distilled ^{*i*}Pr₂NEt (2.42 mL, 13.9 mmol, 26 equiv). To the homogeneous solution was added chloromethyl methyl ether (1.02 mL, 7.80 mmol, 25 equiv) dropwise over 10 min, taking care to vent HCl fumes formed via the use of a needle. The reaction was stirred at ambient temperature for 36 h. The resulting viscous, orange mixture was quenched via addition of sat. aq. NaHCO₃ (20 mL) and stirred at ambient temperature for 30 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were washed with H_2O (1 x 10 mL), brine (1 x 10 mL), dried over Na₂SO₄, and concentrated via distillation to afford a viscous, dark orange residue.

Purification was achieved via flash column chromatography on SiO₂ [35 g SiO₂, Et₂O/hexanes = $16\% \rightarrow 35\%$] to afford MOM ether S5 (281 mg, 0.465 mmol, 79% yield) as a puffy white solid. Starting material **13a** was also isolated (38.0 mg, 0.0678 mmol, 13% recovered).

TLC (40% Et₂O/hexanes): $R_f = 0.71$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 7.46–7.38 (m, 6H, *Ph*₃CO), 7.32–7.19 (m, 9H, *Ph*₃CO), 5.77 (dd, *J* = 16.9, 9.9 Hz, 1H, C₁₉), 5.42 (d, *J* = 1.1 Hz, 1H, C₁₇), 4.93 (br m, 1H, C₁₇), 4.84 (dd, *J* = 9.9, 2.4 Hz, 1H, C₂₀), 4.80 (dd, *J* = 16.9, 2.4 Hz, 1H, C₂₀), 4.52 (d, *J* = 6.7 Hz, 1H, OC*H*₂OMe), 4.46 (d, *J* = 6.7 Hz, 1H, OC*H*₂OMe), 3.87 (br s, 1H, C₁₁), 3.37 (s, 3H, OCH₂OC*H*₃), 3.10 (m, m, 2H, C₁₄), 2.17 (app dt, *J* = 12.0, 7.9 Hz, 1H, C₂), 2.15 (m 1H, C₁), 2.11 (m, 1H, C₆), 2.10 (s, 3H, C₁₅), 2.08 (m, 1H, C₈), 1.98 (m, 1H, C₁₃), 1.93 (m, 1H, C₂), 1.86 (m, 1H, C₁₃), 1.62 (m, 1H, C₇), 1.44 (m, 1H, C₁), 1.25 (m, 1H, C₇), 1.23 (m, 1H, C₈), 1.05 (d, *J* = 7.0 Hz, 3H, C₁₆), 0.99 (s, 3H, C₁₈).

¹³C NMR (101 MHz, CDCl₃): δ 208.4 (*C*₃=O), 151.1 (*C*₅), 149.7 (*C*₁₀), 144.4 (*Ph*₃CO), 142.6 (*C*₁₉), 136.4 (*C*₄), 128.7 (*Ph*₃CO), 127.7 (*Ph*₃CO), 126.8 (*Ph*₃CO), 122.3 (*C*₁₇), 113.9 (*C*₂₀), 95.1 (O*C*H₂OCH₃), 86.7 (*Ph*₃CO), 80.2 (*C*₁₁), 60.7 (*C*₁₄), 56.4 (OCH₂O*C*H₃), 50.8 (*C*₉), 45.2 (*C*₁₂), 38.3 (*C*₁₃), 37.5 (*C*₆), 35.9 (*C*₂), 33.2 (*C*₈), 32.7 (*C*₁), 28.2 (*C*₇), 19.1 (*C*₁₆), 17.9 (*C*₁₈), 17.0 (*C*₁₅).

FTIR (AT-IR): 2930, 1703, 1627, 1448, 1213, 1034, 919, 735 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{41}H_{48}O_4Na [M+Na]^+ 627.3450$, found 627.3419.

 $[\alpha]_D^{23}: -39^\circ (c = 1.06, \text{CHCl}_3).$

Melting point: 62.0–63.3 °C

Preparation of alcohol (S6):

A flame-dried, 250 mL round bottom flask equipped with a stir bar was charged with MOM ether **S5** (431 mg, 0.713 mmol, 1 equiv). Thereafter, a freshly prepared solution of formic acid (98%, 4.8 mL) and Et₂O (4.8 mL) was rapidly added, and within 5 min, the reaction was judged to be complete by TLC analysis. We found it critical to stop this reaction immediately after full conversion was achieved. Prolonged times afforded copious quantities of formate ester product. The reaction was diluted with Et₂O (10 mL) and quenched via slow addition of NaHCO₃ (100 mL). The aqueous layer was extracted with Et₂O (4 x 25 mL) and washed with H₂O (1 x 10 mL). The combined organic layers were washed with brine (1 x 5 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford a viscous yellow residue.

Purification was achieved via flash column chromatography on SiO_2 [15 g SiO_2 , Et_2O /hexanes = 70%] to afford alcohol **S6** (225 mg, 0.621 mmol, 88% yield) as a viscous, colorless oil.

TLC (70% Et₂O/hexanes): $R_f = 0.20$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 5.99 (dd, J = 16.9, 9.9 Hz, 1H, C₁₉), 5.49 (d, J = 1.1 Hz, 1H, C₁₇), 5.05 (dd, J= 9.9, 2.4 Hz, 1H, C₂₀), 5.01 (br m, 1H, C₁₇), 4.99 (dd, J = 16.9, 2.4 Hz, 1H, C₂₀), 4.58 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.50 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.01 (br s, 1H, C₁₁), 3.66 (m, 2H, C₁₄), 3.41 (s, 3H, OCH₂OCH₃), 2.24 (m, 1H, C₂), 2.22 (m 1H, C₁), 2.13 (m, 1H, C₆), 2.11 (m, 1H, C₈), 2.10 (s, 3H, C₁₅), 1.99 (m, 1H, C₂), 1.95 (m, 1H, C₁₃), 1.88 (m, 1H, C₁₃), 1.63 (m, 1H, C₇), 1.50 (m, 1H, C₁), 1.27 (m, 1H, C₈), 1.25 (m, 1H, C₇), 1.12 (s, 3H, C₁₈), 1.05 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.3 (*C*₃=O), 151.2 (*C*₅), 149.7 (*C*₁₀), 143.1 (*C*₁₉), 136.4 (*C*₄), 122.5 (*C*₁₇), 114.1 (*C*₂₀), 95.0 (O*C*H₂OCH₃), 80.0 (*C*₁₁), 59.8 (*C*₁₄), 56.4 (OCH₂O*C*H₃), 50.7 (*C*₉), 45.3 (*C*₁₂), 41.5 (*C*₁₃), 37.5 (*C*₆), 35.9 (*C*₂), 33.2 (*C*₈), 32.8 (*C*₁), 28.2 (*C*₇), 19.1 (*C*₁₆), 17.7 (*C*₁₈), 17.0 (*C*₁₅).

FTIR (AT-IR): 3397, 2930, 1701, 1625, 1456, 1371, 1212, 1145, 1035, 917, 734 cm⁻¹.

HRMS (TOF, ES+): calc'd for C₂₂H₃₄O₄Na [M+Na]⁺ 385.2355, found 385.2371.

 $[\alpha]_{D}^{23}$: -53° (*c* = 0.475, CHCl₃).

Stahl Oxidation:⁶

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol **S6** (165 mg, 0.455 mmol, 1 equiv) and MeCN (2.0 mL). Thereafter, added 860 μ L of the [Cu]/bpy stock solution, 860 μ L of the NMI stock solution, and 860 μ L of the ABNO stock solution, in that order. The orange reaction was stirred at 960 rpm open to the atmosphere for 90 min. Subsequently, the resulting light blue solution was diluted with Et₂O (10 mL), passed through a short pad of SiO₂ using Et₂O as the eluent and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [8 g SiO₂, Et₂O/hexanes = $30\% \rightarrow 60\%$] to afford aldehyde **14** (151 mg, 0.419 mmol, 92% yield) as a viscous, colorless oil that solidified to a white solid upon standing in the freezer.

Preparation of stock solutions: [Cu(MeCN)₄]OTf (30.0 mg) and 4,4'-dimethoxy-2,2'-bipyridyl (4-OMebpy) (17.0 mg) were suspended in MeCN (3.0 mL) and stirred for 5 min resulting in a homogeneous, green solution. ABNO (2.5 mg) was dissolved in MeCN (3.0 mL). *N*-methylimidazole (13.4 mg) was dissolved in MeCN (3.0 mL).

TLC (80% Et_2O /hexanes): $R_f = 0.65$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 9.74 (t, J = 2.8 Hz, 1H, C₁₄), 6.07 (dd, J = 16.9, 9.9 Hz, 1H, C₁₉), 5.48 (d, J = 0.7 Hz, 1H, C₁₇), 5.13 (dd, J = 9.9, 2.4 Hz, 1H, C₂₀), 5.09 (dd, J = 16.9, 2.4 Hz, 1H, C₂₀), 5.05 (br m, 1H, C₁₇), 4.54 (d, J = 6.7 Hz, 1H, OC*H*₂OMe), 4.42 (d, J = 6.7 Hz, 1H, OC*H*₂OMe), 4.12 (br s, 1H, C₁₁), 3.36 (s, 3H, OCH₂OC*H*₃), 2.56 (m, 2H, C₁₃), 2.26 (m, 1H, C₁), 2.19 (m, 1H, C₈), 2.17 (m, 1H, C₂), 2.14 (m 1H, C₆), 2.11 (s, 3H, C₁₅), 2.00 (dd, J = 17.0, 7.6 Hz, 1H, C₂), 1.65 (m, 1H, C₇), 1.52 (m, 1H, C₁), 1.27 (s, 3H, C₁₈), 1.25 (m, 1H, C₈), 1.23 (m, 1H, C₇), 1.07 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.1 (C_3 =O), 202.2 (C_{14} =O), 151.4 (C_5), 149.0 (C_{10}), 142.4 (C_{19}), 136.2 (C_4), 122.7 (C_{17}), 114.5 (C_{20}), 94.2 (OCH₂OCH₃), 78.2 (C_{11}), 56.6 (OCH₂OCH₃), 52.4 (C_{13}), 50.5 (C_9), 45.5 (C_{12}), 37.4 (C_6), 35.9 (C_2), 33.1 (C_8), 32.7 (C_1), 28.2 (C_7), 19.1 (C_{16}), 18.9 (C_{18}), 17.0 (C_{15}).

FTIR (AT-IR): 2931, 1704, 1627, 1456, 1212, 1146, 1032, 919, 708 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{22}H_{32}O_4[M+Na]^+$ 383.2198, found 383.2189.

 $[\alpha]_D^{23}$: -56° (*c* = 0.475, CHCl₃).

A 100 mL Schlenk flask equipped with a stir bar was charged with aldehyde **14** (108 mg, 0.300 mmol, 1 equiv), deionized H₂O (32 μ L, 1.80 mmol, 6 equiv), and THF (15.0 mL) and submitted to five freeze-pump-thaw cycles. The solution was cooled to 0 °C and stirred at this temperature for 15 min. Thereafter, SmI₂/THF (9.0 mL, 0.900 mmol, 3 equiv) was added dropwise over 8 min. The deep blue color of SmI₂ was immediately quenched upon addition of each drop. The first drop afforded a yellow solution, fading to pale yellow and almost clear by the time 1.6 equiv SmI₂ had been added. When 2.2 equiv SmI₂ had been added, the blue color became increasingly persistent and upon addition of 2.6 equiv SmI₂, the reaction was dark blue/green. After stirring an additional 10 min at 0 °C, TMSCI/THF (1.5 mL, 1.50 mmol, 5 equiv TMSCI) was added dropwise over 2 min, and the reaction was stirred an additional 10 min. Throughout this time, the deep blue color was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred open to the atmosphere for 5 min.

The resulting pale yellow solution was diluted with Et_2O (75 mL), and washed with H_2O (2 x 15 mL). The aqueous layer was back-extracted with Et_2O (2 x 15 mL), and the combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure to afford a dark orange oil.

Purification was achieved via flash column chromatography on SiO_2 [12 g SiO_2 , Et₂O/hexanes = 30%] to afford tricycle **17** (100 mg, 0.276 mmol, 92% yield) as a crystalline white solid.

Preparation of SmI₂: A 100 mL Schlenk flask containing a stir bar was charged with freshly filed Sm metal (650 mg). The system was flame-dried under high vacuum then cooled to ambient temperature before adding freshly purified 1,2-diiodoethane (700 mg). 1,2-diiodoethane (1.6 g) was dissolved in Et₂O (50 mL) and washed with sat. aq. Na₂S₂O₃ (3 x 10 mL) and deionized water (2 x 10 mL), dried over Na₂SO₄, filtered, and dried to 1.41 g of a white solid. The atmosphere was exchanged three times for argon. Subsequently, the flask was charged with anhydrous THF (25 mL) that had been submitted to five freeze-pump-thaw cycles. Note: The THF used for the synthesis of SmI₂ must contain <50 ppm H₂O; THF containing greater quantities of water resulted in excessive induction times for the synthesis of SmI₂. Further, residual oxygen results in formation of oxidative fragmentation products in the radical cyclization. The suspension was stirred for 2 min and the flask was cautiously and briefly (5 s) placed under partial high vacuum, then purged with argon. This process was repeated two additional times to remove ethylene gas formed from insertion of Sm metal into 1,2-diiodoethane. The resulting heterogeneous suspension was rapidly (930 rpm) stirred; after 5 min, the reaction turned dark green, and within 10 min, a dark blue color was observed. After stirring under argon for 3 h at ambient temperature, the system was cautiously and briefly placed under high vacuum, then purged with argon. This process was repeated two additional times, then stirring was halted. The mixture was allowed to settle for 15 min prior to use.

Stock solution of TMSCI: TMSCI was freshly distilled from CaH_2 (5% w/w) under argon, collecting a 15% forerun then taking the middle fraction. A solution of TMSCI (350 µL) in THF (5.0 mL) was submitted to five freeze-pump-thaw cycles.

TLC (50% Et₂O/hexanes): $R_f = 0.55$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 6.35 (dd, J = 17.8, 11.3 Hz, 1H, C₁₉), 5.33 (dd, J = 17.8, 1.4 Hz, 1H, C₂₀), 5.34 (s, 1H, C₁₇), 5.28 (s, 1H, C₁₇), 5.19 (dd, J = 11.2, 1.4 Hz, 1H, C₂₀), 4.54 (d, J = 7.1 Hz, 1H, OCH₂OMe), 4.40 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.13 (d, J = 5.9 Hz, 1H, C₁₄), 3.95 (s, 1H, C₁₁), 3.38 (s, 3H, OCH₂OCH₃), 2.33 (m, 1H, C₂), 2.29 (m, 1H, C₂), 2.24 (m, 1H, C₄), 2.06 (m, 1H, C₁), 2.03 (m, 1H, C₈), 1.92 (dd, J = 16.1, 6.5 Hz, 1H, C₁₃), 1.70 (m, 1H, C₆), 1.60 (dt, J = 13.3, 3.4 Hz, 1H, C₇), 1.50 (dd, J = 16.1, 0.9 Hz, 1H, C₁₃), 1.39 (ddt, J = 13.3, 6.5, 3.4 Hz, 1H, C₇), 1.33 (m, 1H, C₁), 1.30 (s, 3H, C₁₅), 1.28 (m, 1H, C₈), 1.24 (s, 3H, C₁₈), 0.96 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 216.8 (C₃=O), 148.3 (C₁₀), 139.9 (C₁₉), 114.2 (C₂₀), 112.2 (C₁₇), 92.1 (OCH₂OCH₃), 77.2 (C₁₁), 67.2 (C₁₄), 59.6 (C₄), 56.0 (OCH₂OCH₃), 46.5 (C₉), 45.2 (C₁₃), 44.7 (C₁₂), 42.1 (C₅), 37.3 (C₆), 34.9 (C₂), 31.0 (C₈), 29.7 (C₁), 28.8 (C₁₈), 26.8 (C₇), 18.2 (C₁₆), 13.4 (C₁₅).

FTIR (AT-IR): 3508 (br), 2926, 1735, 1628, 1458, 1264, 1144, 1093, 1024, 907, 738 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{22}H_{35}O_4 [M+H]^+$ 363.2535, found 363.2536.

 $[\alpha]_{D}^{23}$: +155° (c = 0.330, CHCl₃).

Melting point: 142.0–143.4 °C

Preparation of silyl enol ether (18):

A flame-dried 25 mL round bottom flask equipped with a stir bar was charged with tricycle 17 (129 mg, 0.356 mmol, 1 equiv) and anhydrous THF (7.1 mL) under an atmosphere of argon. The mixture was cooled to -78 °C and stirred for 5 min prior to dropwise addition of LiHMDS in THF (1.07 mL of a 1.0 M solution, 1.07 mmol, 3 equiv) over 5 min. The resulting yellow solution was stirred at -78 °C for 5 min and was then placed in an ice bath and stirred for 5 min. Subsequently, TIPSOTf (191 µL, 0.712 mmol, 2 equiv) was added rapidly. After 3 min, the reaction was quenched at 0 °C via rapid addition of sat. aq. NaHCO₃ (3 mL) and vigorously stirred at 0 °C for 10 min. Thereafter, the mixture was extracted into Et₂O (3 x 20 mL) and the combined organic layers were washed with sat. aq. NaHCO₃ (3 x 10 mL) (note: failure to quench residual TIPSOTf in this manner resulted in extensive decomposition of product upon concentration). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [15 g SiO₂, Et₂O/hexanes = 8%] to afford silyl enol ether **18** (141 mg, 0.272 mmol, 76% yield) as a puffy, viscous, colorless oil that formed a white solid upon standing in the freezer overnight.

TLC (15% Et₂O/hexanes): $R_f = 0.48$ (*p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 6.39 (dd, J = 17.8, 11.3 Hz, 1H, C₁₉), 5.28 (dd, J = 17.8, 1.4 Hz, 1H, C₂₀), 5.17 (dd, J = 11.2, 1.4 Hz, 1H, C₂₀), 5.13 (s, 1H, C₁₇), 5.05 (s, 1H, C₁₇), 4.68 (d, J = 7.1 Hz, 1H, OCH₂OMe), 4.40 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.06 (m, 1H, C₁₄), 3.64 (s, 1H, C₁₁), 3.34 (s, 3H, OCH₂OCH₃), 2.53 (ddd, J = 15.6, 10.2, 7.5 Hz, 1H, C₂), 2.37 (dd, J = 15.6, 11.0, 3.8 Hz, 1H, C₂), 2.32 (dd, J = 10.9, 3.6 Hz, 1H, C₈), 2.11 (dd, J = 15.0, 6.0 Hz, 1H, C₁₃), 1.78 (ddd, J = 13.9, 10.2, 3.8 Hz, 1H, C₁), 1.64 (m, 1H, C₇), 1.51 (m, 1H, C₆), 1.46 (ddd, J = 13.9, 10.2, 3.8 Hz, 1H, C₁), 1.64 (m, 1H, C₇), 1.51 (m, 1H, C₆), 1.46 (ddd, J = 13.9, 10.2, 13.9, 10.2, 13.9, 10.2, 13.9, 10.2, 13.9, 13

6.3, 3.8 Hz, 1H, C₁), 1.41 (m, 1H, C₁₃), 1.40 (m, 1H, C₇), 1.39 (m, 1H, C₈), (s, 3H, C₁₅), 1.17 (s, 3H, C₁₈), 1.15 (m, 3H, OSi(CH(CH₃)₂)₃), 1.12 (m, 18H, OSi(CH(CH₃)₂)₃), 0.97 (d, J = 7.0 Hz, 3H, C₁₆). ¹³C NMR (101 MHz, CDCl₃): δ 151.8 (C₁₀), 147.8 (C₃), 140.7 (C₁₉), 119.2 (C₄), 113.9 (C₂₀), 108.9 (C₁₇), 92.2 (OCH₂OCH₃), 79.0 (C₁₁), 67.6 (C₁₄), 55.6 (OCH₂OCH₃), 51.5 (C₉), 46.9 (C₁₃), 46.6 (C₅), 44.8 (C₁₂), 44.1 (C₆), 38.8 (C₈), 34.9 (C₁), 34.4 (C₂), 28.9 (C₁₈), 28.7 (C₇), 18.19 (OSi(CH(CH₃)₂)₃), 18.15 (OSi(CH(CH₃)₂)₃), 18.1 (C₁₆), 16.4 (C₁₅), 13.6 (OSi(CH(CH₃)₂)₃). FTIR (AT-IR): 3495 (br), 2941, 2866, 2359, 2323, 1627, 1462, 1327, 1040, 1002, 882 cm⁻¹. HRMS (TOF, ES+): calc'd for C₃₁H₅₄O₄SiNa [M+Na]⁺ 541.3689, found 541.3711. [α]²³: +42.2° (c = 0.490, CHCl₃). Melting point: 99.8–101.1°C

Preparation of ketone (19):

This procedure was adapted from the work of Shenvi and coworkers.⁷ A flame-dried 25 mL Schlenk tube was charged with silyl enol ether **18** (116 mg, 0.224 mmol, 1 equiv) and adventitious water was removed via azeotropic drying with PhH (3 x 1 mL) under high vacuum. An oven-dried stir bar was added, and the atmosphere was exchanged three times for argon. Thereafter, ^{*i*}PrOH (3.4 mL), PhSiH₃ (36.3 mg, 0.336 mmol, 41.4 μ L, 1.5 equiv), and *tert*-butyl hydroperoxide (89.5 μ L of a 5.0 M solution in nonane, 0.448 mmol, 2 equiv) were added. The mixture was subjected to three freeze-pump-thaw cycles. Another Schlenk tube was charged with tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) (17.5 mg), and the atmosphere was exchanged three times for argon before adding ^{*i*}PrOH (1.4 mL). This solution was subjected to three freeze-pump-thaw cycles then purged with argon. A portion of this stock solution (1.1 mL, equating to 13.5 mg Mn(dpm)₃, 0.0224 mmol, 10 mol %) was added to the substrate solution, and the reaction was stirred at ambient temperature. The reaction began as a dark orange solution but became light yellow within 10 min. After 30 min, an additional portion (300 μ L) of the Mn(dpm)₃ stock solution was added.

After 1 h, the reaction was passed through a plug of SiO₂ (eluting with Et₂O/hexanes = 10%), and concentrated under reduced pressure to afford a dark orange oil that was immediately purified via flash column chromatography on SiO₂ [15 g SiO₂, Et₂O/hexanes = 7% \rightarrow 11%] to afford ketone **19** (63.9 mg, 0.123 mmol, 55% yield) as a viscous, colorless oil.

In addition, the following were isolated: C19–C20 reduced product (9.9 mg, 0.0190 mmol, 8% yield) (15% Et₂O/hexanes, $R_f = 0.70$ [*p*-anisaldehyde, stains green]), fully reduced product (4.4 mg, 0.00842 mmol, 4% yield, 1:1 dr) (15% Et₂O/hexanes, $R_f = 0.53$ [*p*-anisaldehyde, stains dark blue]), and remaining starting material (26.6 mg, 0.0513 mmol, 23% recovered).

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as higher temperatures promoted over-reduction and lower temperatures slowed catalysis. ^{*i*}PrOH was stored over activated 4 Å molecular sieves (pellets) overnight then was distilled from CaH₂ (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use.

TLC (15% Et₂O/hexanes): $R_f = 0.60$ (*p*-anisaldehyde).

¹**H** NMR (500 MHz, CDCl₃): δ 6.15 (dd, J = 17.6, 11.1 Hz, 1H, C₁₉), 5.28 (dd, J = 17.6, 1.6 Hz, 1H, C₂₀), 5.23 (dd, J = 11.1, 1.6 Hz, 1H, C₂₀), 4.69 (d, J = 7.0 Hz, 1H, OCH₂OMe), 4.62 (d, J = 7.0 Hz, 1H, OCH₂OMe), 3.40 (s, 3H, OCH₂OCH₃), 3.29 (d, J = 4.6 Hz, 1H, C₁₁), 2.80 (d, J = 11.4 Hz, 1H, C₁₃), 2.47 (m, 2H, C₂), 2.04 (ddd, J = 13.8, 10.2, 5.1 Hz, 1H, C₁), 1.98 (dt, J = 13.1, 3.0 Hz, 1H, C₈), 1.95 (d, J = 11.4 Hz, 1H, C₁₃), 1.91 (dq, J = 7.1, 4.6 Hz, 1H, C₁₀), 1.65 (qd, J = 13.8, 3.4 Hz, 1H, C₇), 1.57 (s, 3H, C₁₅), 1.43 (m, 1H, C₆), 1.34 (m, 1H, C₇), 1.31 (m, 1H, C₁), 1.26 (m, 1H, C₈), 1.24 (d, J = 7.0 Hz, 3H, C₁₆), 1.18 (m, 3H, OSi(CH(CH₃)₂)₃), 1.13 (m, 18H, OSi(CH(CH₃)₂)₃), 1.10 (s, 3H, C₁₈), 0.83 (d, J = 7.1 Hz, 3H, C₁₇).

¹³C NMR (125 MHz, CDCl₃): δ 215.1 (*C*₁₄=O), 148.2 (*C*₃), 139.0 (*C*₁₉), 117.8 (*C*₄), 115.5 (*C*₂₀), 99.3 (O*C*H₂OCH₃), 85.2 (*C*₁₁), 56.4 (OCH₂O*C*H₃), 54.8 (*C*₅), 51.5 (*C*₉), 49.3 (*C*₁₃), 48.3 (*C*₁₂), 43.8 (*C*₆), 39.4 (*C*₈), 37.1 (*C*₁₀), 34.0 (*C*₂), 27.8 (*C*₇), 27.5 (*C*₁), 27.3 (*C*₁₈), 22.2 (*C*₁₅), 18.15 (OSi(*C*H(CH₃)₂)₃), 18.11 (OSi(*C*H(CH₃)₂)₃), 16.5 (*C*₁₆), 13.6 (OSi(CH(*C*H₃)₂)₃), 11.5 (*C*₁₇).

FTIR (AT-IR): 2944, 2867, 1698, 1650, 1463, 1331, 1206, 1038, 1004 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{31}H_{54}O_4SiNa [M+Na]^+ 541.3689$, found 541.3701.

 $[\alpha]_{D}^{23}$: -204.8° (*c* = 1.48, CHCl₃).

Table S2. Radical 1,5-HAT conditions

	N O	Me H H H H H H H H H H H H H	conditions	Me MOMO H Me V Me OTIPS	H Me	MON H- Me • OTIP:	Me H Me S	Me D + Z Me	MOM H- Me	Me Me No H No Me Me S dr		
				19)		В			С		
Entry	Substrate	[M]	[H·]	TBHP ^a	solvent	conc.	т	t	conv.	Yield (19)	Yield (B)	Yield (C)
1	<i>lso</i> -18	Mn(dpm) ₃ (10 mol % x 2)	Ph(O ⁱ Pr)SiH ₂ (1 equiv)	Yes	hexanes	0.2 M	23 °C	5 min	80%	36%	22%	22%
2	<i>lso-</i> 18	Mn(dpm) ₃ (10 mol % x 2)	PhSiH ₃ (1.5 equiv)	Yes	ⁱ PrOH	0.2 M	23 °C	1 h	69%	38%	5%	-
3	<i>lso-</i> 18	Mn(dpm) ₃ (10 mol % x 2)	PhSiH ₃ (1.5 equiv)	Yes	ⁱ PrOH	0.04 M	23 °C	1 h	66%	50%	6%	-
4	<i>lso-</i> 18	Mn(dpm) ₃ (10 mol %)	PhSiH ₃ (1.5 equiv)	Yes	ⁱ PrOH	0.04 M	23 °C	1 h	88%	66%	6%	-
5 ^b	18	Mn(dpm) ₃ (10 mol %)	PhSiH ₃ (1.5 equiv)	Yes	ⁱ PrOH	0.04 M	23 °C	1 h	82%	58%	8%	4%
6 ^{b,c}	18	Mn(dpm) ₃ (10 mol % + 3 mol %)	PhSiH ₃ (1.5 equiv)	Yes	ⁱ PrOH	0.04 M	23 °C	1 h	77%	55%	8%	4%
7	18	Mn(dpm) ₃ (10 mol % x 2)	Ph(O ⁱ Pr)SiH ₂ (1 equiv)	Yes	hexanes	0.2 M	23 °C	5 min	ND	30%	ND	ND
8	18	Mn(dpm) ₃ (10 mol % x 2)	Ph(O ⁱ Pr) ₂ SiH (1 equiv)	Yes	hexanes	0.2 M	23 °C	5 min	14%	14%	ND	ND
9	18	Co(Salen ^{tBu, tBu})Cl (3 mol % x 2)	PhSiH ₃ (6 mol %)	No	PhH	0.05 M	23 °C	30 min	10%	<5%	-	-
10	18	Co(Salen ^{tBu, tBu})Cl (3 mol % x 2)	PhSiH ₃ (6 mol %)	No	PhH	0.05 M	60 °C	30 min	10%	<5%	-	-
11	18	Co(Salen ^{<i>t</i>Bu, <i>t</i>Bu)Cl (10 mol %)}	PhSiH ₃ (6 mol %)	No	PhH	0.05 M	23 °C	30 min	ND	10%	-	7%

^a1.5 equiv. ^bUnder rigorously degassed conditions using freshly-distilled anhydrous ^jPrOH. ^cReaction conducted on 0.224 mmol scale.

Preparation of alcohol (20):

A 250 mL 3-necked flask equipped with a stir bar was equipped with a cold finger connected to a two-way valve, and the entire apparatus was flame-dried under high vacuum. After cooling to ambient temperature, the atmosphere was exchanged three times for argon, and anhydrous EtOH (13.3 mL) and Et₂O (7.3 mL) were added. The mixture was cooled to -78 °C, and ammonia (53 mL) was condensed into the vessel. Subsequently, a solution of ketone **19** (41.4 mg, 0.0798 mmol, 1 equiv) in Et₂O (8.3 mL) was added. After allowing the system to equilibrate for 5 min, Li⁰ wire (124 mg, 17.9 mmol, 224 equiv) that had been freshly washed with hexanes and cut into ~5 mg pieces was added. Within 3 min, a deep blue color developed, and after 30 min, the reaction was colorless.

The apparatus was removed from the cooling bath, and ammonia was boiled off over 2 h. The resulting slurry was extracted into Et_2O (100 mL), washed with sat. aq. NaHCO₃ (1 x 15 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford an oil. Purification was achieved via flash column chromatography on SiO₂ [3 g SiO₂, Et_2O /hexanes = 7%] to afford alcohol **20** (25.2 mg, 0.0487 mmol, 61% yield) as a viscous, colorless oil.

TLC (15% Et₂O/hexanes): $R_f = 0.41$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 6.07 (ddd, J = 17.9, 11.2 Hz, 0.7 Hz, 1H, C₁₉), 5.28 (dd, J = 17.9, 1.6 Hz, 1H, C₂₀), 5.23 (dd, J = 11.2, 1.6 Hz, 1H, C₂₀), 4.64 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.62 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.16 (dd, J = 7.1, 2.6 Hz, 1H, C₁₄), 3.40 (s, 3H, OCH₂OCH₃), 3.01 (d, J = 5.6 Hz, 1H, C₁₁), 2.46–2.34 (m, 2H, C₂), 2.04 (ddd, J = 14.9, 7.8, 0.8 Hz, 1H, C₁₃), 1.99 (m, 1H, C₁₀), 1.96 (dt, J = 9.4, 3.4 Hz, 1H, C₁), 1.60 (d, J = 14.9 Hz, 1H, C₁₃), 1.46 (m, 1H, C₇), 1.41 (m, 1H, C₆), 1.40 (s, 3H, C₁₅), 1.35 (m, 1H, C₇), 1.23 (m, 1H, C₈), 1.21 (m, 1H, C₈), 1.17 (m, 1H, C₁), 1.15 (m, 3H, OSi(CH(CH₃)₂)₃), 1.13 (m, 18H, OSi(CH(CH₃)₂)₃), 1.01 (s, 3H, C₁₈), 0.99 (d, J = 6.3 Hz, 3H, C₁₆), 0.85 (d, J = 7.1 Hz, 3H, C₁₇).

¹³C NMR (101 MHz, CDCl₃): δ 147.0 (C₃=O), 141.3 (C₁₉), 120.5 (C₄), 114.4 (C₂₀), 99.2 (O*C*H₂OCH₃), 84.6 (C₁₁), 68.6 (C₁₄), 56.5 (OCH₂OCH₃), 50.7 (C₉), 46.5 (C₁₂), 46.1 (C₁₃), 46.0 (C₅), 43.3 (C₆), 39.3 (C₁), 38.2 (C₁₀), 34.3 (C₂), 30.0 (C₁₈), 28.5 (C₈), 28.3 (C₇), 18.3 (C₁₅), 18.24 (OSi(*C*H(CH₃)₂)₃), 18.18 (OSi(*C*H(CH₃)₂)₃), 17.8 (C₁₆), 13.8 (OSi(CH(*C*H₃)₂)₃), 11.8 (C₁₇).

FTIR (AT-IR): 3493 (br), 2944, 2866, 2359, 2341, 1637, 1461, 1218, 1038, 1002 cm⁻¹. **HRMS (TOF, ES+):** calc'd for C₃₁H₅₅O₄Si $[(M+H)-H_2]^+$ 519.3870, found 519.3873. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\boldsymbol{23}}$: -52.3° (c = 0.342, CHCl₃). **Preparation of (+)-pleuromutilin (1):**

This procedure was adapted from the work of Procter and coworkers.⁸ A flame-dried 2 dram vial equipped with a stir bar was charged with alcohol **20** (20.2 mg, 0.0388 mmol, 1 equiv), EDCI+HCl (44.6 mg, 0.233 mmol, 6 equiv), and DMAP (28.4 mg, 0.233 mmol, 6 equiv), and the atmosphere was exchanged three times for argon. Subsequently, the vessel was charged with anhydrous CH_2Cl_2 (1.9 mL) and 2-(2,2,2-trifluoroacetoxy)acetic acid (40.0 mg, 0.230 mmol, 6 equiv), and the reaction was stirred at ambient temperature. After 10 min, a light yellow color developed, and after 30 min, the reaction was complete by TLC analysis (30% Et₂O/hexanes, $R_f = 0.77$ [*p*-anisaldehyde, stains dark blue/purple], R_f (starting material) = 0.70). Thereafter, a solution of anhydrous MeOH (31 μ L, 0.776 mmol, 20 equiv) in freshly distilled Et₃N (107 μ L, 0.768 mmol, 20 equiv) was added, and the reaction immediately turned bright yellow. After 5 min, the reaction was judged was complete by TLC analysis (30% Et₂O/hexanes, $R_f = 0.35$ [*p*-anisaldehyde, stains dark blue/purple]). A solution of HCl in THF (1.16 mL of a 2.0 M solution, 1.92 mmol) was added, and the reaction was heated to 50 °C. After 30 min, an additional portion of HCl in THF (500 uL) was added. At this time, hydrolysis of the methoxymethyl group was judged complete by TLC analysis (70% Et₂O/hexanes, $R_f = 0.42$ [*p*-anisaldehyde, stains dark blue/black]), and after 2 h global hydrolysis was complete.

The reaction was cooled to 0 °C and was cautiously quenched with sat. aq. NaHCO₃ (3 mL). After warming to ambient temperature, the crude mixture was extracted into Et₂O (3 x 5 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford an orange oil. Purification was achieved via flash column chromatography on SiO₂ [1.5 g SiO₂, Et₂O/hexanes = 50% \rightarrow 70%] to afford (+)-pleuromutilin 1 (11.8 mg, 0.0312 mmol, 80% yield) as a white solid.

TLC (70% Et₂O/hexanes): $R_f = 0.22$ (*p*-anisaldehyde).

¹**H** NMR (500 MHz, CDCl₃): δ 6.50 (dd, J = 17.4, 11.0 Hz, 1H, C₁₉), 5.85 (d, J = 8.6 Hz, 1H, C₁₄), 5.37 (dd, J = 11.0, 1.3 Hz, 1H, C₂₀), 5.22 (dd, J = 17.4, 1.4 Hz, 1H, C₂₀), 4.05 (qd, J = 17.1, 5.4 Hz, 2H, C₂₂), 3.34 (dd, J = 10.8, 6.6 Hz, 1H, C₁₁), 2.35 (t, J = 5.5 Hz, 1H, C₂₂–OH), 2.33 (m, 1H, C₁₀), 2.25 (m, 1H, C₂), 2.22 (m, 1H, C₂), 2.11 (br s, 1H, C₄), 2.10 (dd, J = 16.0, 8.7 Hz, 1H, C₁₃), 1.79 (dq, J = 14.5, 3.1 Hz, 1H, C₈), 1.68 (m, 1H, C₆), 1.66 (m, 1H, C₁), 1.55 (dd, J = 13.8, 2.7 Hz, 1H, C₇), 1.51 (m, 1H, C₁), 1.46 (br m, 1H, C₁₂–OH), 1.44 (s, 3H, C₁₅), 1.40 (ddd, J = 13.8, 6.0, 2.7 Hz, 1H, C₇), 1.33 (d, J = 16.0 Hz, 1H, C₁₃), 1.19 (s, 3H, C₁₈), 1.15 (td, J = 14.3, 4.4 Hz, 1H, C₈), 0.91 (d, J = 7.1 Hz, 3H, C₁₇), 0.72 (d, J = 7.1 Hz, 3H, C₁₆).

¹³C NMR (126 MHz, CDCl₃): δ 216.8 (C₃=O), 172.1 (C₂₁=O), 138.8 (C₁₉), 117.4 (C₂₀), 74.5 (C₁₁), 69.8 (C₁₄), 61.3 (C₂₂), 58.0 (C₄), 45.4 (C₉), 44.7 (C₁₃), 44.0 (C₁₂), 41.8 (C₅), 36.6 (C₆), 36.0 (C₁₀), 34.4 (C₂), 30.4 (C₈), 26.8 (C₇), 26.3 (C₁₈), 24.8 (C₁), 16.6 (C₁₆), 14.7 (C₁₅), 11.5 (C₁₇).

FTIR (AT-IR): 3437 (br), 2931, 1728, 1454, 1374, 1267, 1215, 1153, 1094, 1015, 915, 858, 734 cm⁻¹. **HRMS (TOF, ES+):** calc'd for $C_{22}H_{34}O_5Na [M+Na]^+ 401.2304$, found 401.2296.

 $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{23}$: +33.4° (c = 0.252, CHCl₃). $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{23}$: +33° (c = 0.25, CHCl₃).⁹

 Table S3. Comparison of ¹H NMR data for (+)-pleuromutilin (1)

Proton Number 1α 1β 2α	Natural (+)-Pleuromutilin [§] ¹ H NMR, 500 MHz, CDCl ₃ ¹ H [δ , multi, J (Hz)] 1.41–1.53 (m) 1.61–1.73 (m) 2.16–2.30 (m)	This Work, Synthetic (+)-Pleuromutilin ¹ H NMR, 500 MHz, CDCl ₃ ¹ H [δ , multi, J (Hz)] 1.41–1.52 (m) 1.61–1.73 (m) 2.16–2.30 (m)
2β	2.16–2.30 (m)	2.16–2.30 (m)
3	2 11 (-)	211(-)
4	2.11 (\$)	2.11 (\$)
5	1 (1, 1, 72 ()	1 (1 1 72 ()
6	1.61-1.73 (m)	1.61-1.73 (m)
70 70	1.55 (dd, J = 13.8, 2.7 Hz)	1.55 (dd, J = 13.8, 2.7 Hz)
/p	$\frac{1.40 (\text{ddd}, J = 13.8, 6.0, 2.7 \text{ Hz})}{1.70 (\text{dd}, J = 14.5, 2.1 \text{ Hz})}$	1.40 (ddd, J = 13.8, 0.0, 2.7 Hz)
80	1.79 (dq, J = 14.5, 3.1 Hz)	1.79 (dq, J = 14.5, 5.1 Hz)
٥p م	1.13 (щ, <i>J</i> – 14.3, 4.4 нz)	1.13 (td, J - 14.3, 4.4 Hz)
9	2 20 2 40 (m)	2 20 2 40 (m)
10	2.29-2.40 (III) 2.24 (dd $L=10.8$ 6.6 Hz)	2.29-2.40 (III)
11	5.54 (dd, <i>J</i> = 10.8, 0.0 HZ)	5.54 (dd, <i>J</i> = 10.8, 0.0 HZ)
12 12 gr	2 10 (dd I - 160 9.7 Hz)	2 10 (44 I - 160 87 Hz)
130	2.10 (dd, J = 10.0, 8.7 Hz)	2.10 (dd, J = 10.0, 8.7 Hz)
13p	1.35 (d, J = 10.0 Hz)	1.35 (d, J - 10.0 Hz)
14	3.85 (d, J - 8.0 HZ)	3.83 (d, J - 8.0 HZ)
15	1.44 (S)	1.44(8)
10	0.71 (d, J = 7.1 Hz)	0.71 (d, J = 7.1 Hz)
1/	0.90 (d, J = /.1 Hz)	0.90 (d, J = 7.1 Hz)
18	1.18 (s)	1.18 (s)
19	6.50 (dd, J = 17.4, 11.0 Hz)	6.50 (dd, J = 17.4, 11.0 Hz)
<u>20a</u>	5.37 (dd, J = 11.0, 1.4 Hz)	5.37 (dd, J = 11.0, 1.3 Hz)
20β	5.22 (dd, J = 17.4, 1.4 Hz)	5.22 (dd, J = 17.4, 1.4 Hz)
21		
22	4.05 (qd, <i>J</i> = 17.1, 5.4 Hz)	4.05 (qd, <i>J</i> = 17.1, 5.4 Hz)
23	2.30–2.40 (br)*	2.30–2.40 (br)*
24	1.44–1.52 (br)*	1.44–1.52 (br)*

*Signals disappeared upon D₂O quench

[§]Spectrum acquired using a sample of natural (+)-pleuromutilin purchased from Sigma-Aldrich (SML0285-5MG, Lot# 032M4709V)

Table S4. Comparison of ¹³C NMR data for (+)-pleuromutilin (1)

	0 - 1 - 1 1 D D 10	T1 : VV = 1	
	Schulz and Berner Report,	I nis work,	~
Carbon Number	Natural (+)-Pleuromutilin	Synthetic (+)-Pleuromutilin	Chemical Shift
	13 C NMR, 90 MHz, CDCl ₃	¹³ C NMR, 126 MHz, CDCl ₃	Difference
	¹³ C (δ) ppm	¹³ C (δ) ppm	
1	24.9	24.8	0.1
2	34.5	34.4	0.1
3	216.8	216.8	0
4	58.2	58.0	0.2
5	41.9	41.8	0.1
6	36.7	36.6	0.1
7	26.9	26.8	0.1
8	30.4	30.4	0
9	45.5	45.4	0.1
10	36.1	36.0	0.1
11	74.7	74.5	0.2
12	44.1	44.0	0.1
13	44.9	44.7	0.2
14	69.9	69.8	0.1
15	14.8	14.7	0
16	16.6	16.6	0
17	11.5	11.5	0
18	26.5	26.3	0.2
19	138.9	138.8	0.1
20	117.3	117.4	0.1
21	172.2	172.1	0.1
22	61.4	61.3	0.1

iii. Synthesis of (+)-12-epi-pleuromutilin

Scheme S3. Enal (5) to (+)-12-epi-pleuromutilin (12-epi-1).

Preparation of 12-epi (13c) and 11-epi (13d) crotylation adducts:

This procedure was adapted from the work of Szabó and coworkers.⁵ In a nitrogen-filled glovebox, a flamedried, 50 mL Schlenk flask equipped with a stir bar was charged with freshly activated 3 Å molecular sieves (pellets) (613 mg), allylboronic acid *E*-6 (11.5 mL of a 0.15 M solution, 1.68 mmol, 1 equiv, see S40), (*R*)-3,3'-Br₂-BINOL (149 mg, 0.336 mmol, 20 mol %), freshly distilled 'BuOH (483 μ L, 5.09 mmol, 3 equiv), and a solution of the enal hydrindanone **5** (367 mg, 1.68 mmol, 1 equiv) in dry, degassed PhMe (1.68 mL). The resulting heterogeneous mixture was sealed, removed from the glovebox, then placed in a pre-equilibrated 0 °C bath and stirred.

After 40 h, the reaction was quenched with MeOH (5 mL), stirred for 5 min, filtered, and concentrated under reduced pressure to afford a viscous residue. Purification was achieved via flash column chromatography on SiO₂ [100 g SiO₂, Acetone/hexanes = $4\% \rightarrow 15\%$] to afford **13c** and a mixture of **13d** and residual (*R*)-3,3'-Br₂-BINOL (fractions 71–85). The volatiles were concentrated under reduced pressure to afford **13c** (566 mg, 1.01 mmol, 60% yield) as a puffy white solid and the **13d**/BINOL mixture, respectively.

The **13d**/BINOL mixture was subjected to flash column chromatography on SiO₂ [100 g SiO₂, Et₂O/hexanes = 40%] to afford (R)-3,3'-Br₂-BINOL and **13d** (237 mg, 0.423 mmol, 25% yield) as a puffy white solid.

Experimental Note: It is critical that all operations be carried out in a rigorously oxygen-free environment. Failure to do so will result in rapid decomposition of the allylboronic acid.

12-epi crotylation adduct (13c)

TLC (20% acetone/hexanes): $R_f = 0.54$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 7.43 (dd, J = 8.4, 1.3 Hz, 6H, OC*Ph*₃), 7.34 – 7.19 (m, 9H, OC*Ph*₃), 6.15 (dd, J = 17.8, 10.9 Hz, 1H, C₁₉), 5.59 (s, 1H, C₁₇), 5.04 (dd, J = 10.9, 1.2 Hz, 1H, C₂₀), 4.92 (dd, J = 17.8, 1.3 Hz, 1H, C₂₀), 4.76 (s, 1H, C₁₇), 4.01 (d, J = 6.7 Hz, 1H, C₁₁), 3.21 (dt, J = 10.0, 6.3 Hz, 1H, C₁₄), 3.11 (ddd, J = 9.9, 7.4, 5.4 Hz, 1H, C₁₄), 2.54 (d, J = 7.0 Hz, 1H, O*H*), 2.22 – 2.05 (m, 8H, C₁, C₂, C₆, C₈), 1.92 (dd, J = 13.5, 6.2 Hz, 1H, C₁₃), 1.80 (dd, J = 12.9, 6.9 Hz, 1H, C₁₃), 1.64 (dtd, J = 15.5, 6.1, 5.1, 3.5 Hz, 1H, C₇), 1.57 – 1.46 (m, 1H, C₁), 1.36 – 1.13 (m, 3H, C₇, C₈), 1.05 (d, J = 7.1 Hz, 3H, C₁₆), 0.88 (s, 3H, C₁₈).

¹³C NMR (101 MHz, CDCl₃): δ 208.0 (C₃=*O*), 152.8 (C₁₀), 152.5 (C₅), 143.9 (OC*Ph*₃), 142.8 (C₁₉), 135.7 (C₄), 128.6 (OC*Ph*₃), 127.8 (OC*Ph*₃), 127.0 (OC*Ph*₃), 118.4 (C₁₇), 113.9 (C₂₀), 87.4 (O*C*Ph₃), 74.4 (C₁₁), 60.7 (C₁₄), 52.0 (C₉), 44.5 (C₁₂), 40.0 (C₁₃), 38.0 (C₆), 35.5 (C₂), 33.2 (C₈), 32.4 (C₁), 28.4 (C₇), 19.9 (C₁₈), 19.1 (C₁₆), 17.0 (C₁₅). FTIR (thin film, NaCl): 3416, 2930, 1702, 1627, 1448, 1213, 1032, 758, 632 cm⁻¹. HRMS (TOF, ES+): calc'd for C₃₉H₄₄O₃Na [M+Na]⁺ 583.3188, found 583.3174. [*α*]²³_{*P*}: -72.0° (*c* = 0.41, CHCl₃).

11-epi crotylation adduct (13d)

TLC (40% Et₂O/hexanes): $R_f = 0.14$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 7.46 – 7.39 (m, 6H, OC*Ph*₃), 7.33 – 7.20 (m, 9H, OC*Ph*₃), 6.15 (dd, *J* = 17.8, 10.9 Hz, 1H, C₁₉), 5.62 (s, 1H, C₁₇), 5.04 (dd, *J* = 10.9, 1.3 Hz, 1H, C₂₀), 4.95 (dd, *J* = 17.8, 1.4 Hz, 1H, C₂₀), 4.77 (s, 1H, C₁₇), 3.95 (d, *J* = 7.3 Hz, 1H, C₁₁), 3.26 – 3.16 (m, 1H, C₁₄), 3.15 – 3.05 (m, 1H, C₁₄), 2.62 (d, *J* = 7.4 Hz, 1H, O*H*), 2.47 (dd, *J* = 12.2, 7.9 Hz, 1H, C₂), 2.32 – 2.17 (m, 1H, C₈), 2.15 (d, *J* = 5.9 Hz, 1H, C₆), 2.12 (s, 3H, C₁₅), 2.04 (dd, *J* = 18.4, 7.6 Hz, 1H, C₈), 1.95 (dd, *J* = 12.5, 7.2 Hz, 1H, C₁₃), 1.89 (d, *J* = 13.2 Hz, 1H, C₁), 1.85 – 1.76 (m, 1H, C₁₃), 1.65 – 1.56 (m, 1H, C₇), 1.42 (td, *J* = 12.5, 7.9 Hz, 1H, C₂), 1.33 – 1.11 (m, 3H, C₁, C₇), 1.06 (d, *J* = 7.1 Hz, 3H, C₁₆), 0.89 (s, 3H, C₁₈).

¹³C NMR (101 MHz, CDCl₃): δ 208.4 (C₃=*O*), 152.2 (C₁₀), 151.0 (C₅), 143.9 (OC*Ph*₃), 142.9 (C₁₉), 136.3 (C₄), 128.6 (OC*Ph*₃), 127.8 (OC*Ph*₃), 127.0 (OC*Ph*₃), 118.7 (C₁₇), 113.9 (C₂₀), 87.5 (O*C*Ph₃), 74.7 (C₁₁), 60.7 (C₁₄), 52.0 (C₉), 44.3 (C₁₂), 40.2 (C₁₃), 37.5 (C₆), 35.8 (C₈), 32.7 (C₁), 32.5 (C₂), 28.2 (C₇), 20.4 (C₁₈), 19.2 (C₁₆), 16.8 (C₁₅). FTIR (thin film, NaCl): 3451, 2930, 1702, 1630, 1449, 1214, 1066, 923, 759, 705 cm⁻¹. HRMS (TOF, ES+): calc'd for C₃₉H₄₄O₃Na [M+Na]⁺ 583.3188, found 583.3178. [*α*]²³_D: -53.4° (*c* = 0.585, CHCl₃).

Preparation of MOM protected crotylation adduct (12-epi-S5):

A flame-dried, 50 mL round bottom flask equipped with a stir bar was charged with alcohol **13c** (535 mg, 0.954 mmol, 1 equiv), CH_2Cl_2 (4.8 mL), and freshly distilled ^{*i*}Pr₂NEt (4.3 mL, 24.7 mmol, 26 equiv). To the homogeneous solution was added chloromethyl methyl ether (1.8 mL. 23.8 mmol, 25 equiv) dropwise over 10 min, taking care to vent HCl fumes formed via the use of a needle. The reaction was stirred at ambient temperature for 20 h. The resulting viscous, orange mixture was quenched via addition of sat. aq. NaHCO₃ (20 mL) and stirred at ambient temperature for 30 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL) and washed with H_2O (1 x 10 mL). The combined organic layers were washed with brine (1 x 10 mL), dried over Na₂SO₄, and concentrated via distillation to afford a viscous, dark orange residue.

Purification was achieved via flash column chromatography on SiO_2 [50 g SiO_2 , Et₂O/hexanes = 20%] to afford MOM ether **12**-*epi*-**S5** (455 mg, 0.75 mmol, 79% yield) as a puffy white solid.

TLC (40% Et₂O/hexanes): $R_f = 0.56$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 7.42 (m, 6H, OC*Ph*₃), 7.32 – 7.17 (m, 9H, OC*Ph*₃), 5.88 (dd, *J* = 17.7, 10.9 Hz, 1H, C₁₉), 5.49 (s, 1H, C₁₇), 4.93 (dd, *J* = 10.9, 1.2 Hz, 1H, C₂₀), 4.86 (s, 1H, C₁₇), 4.79 (dd, *J* = 17.7, 1.2 Hz, 1H, C₂₀), 4.59 (d, *J* = 6.7 Hz, 1H, OC*H*₂OCH₃), 4.55 (d, *J* = 6.7 Hz, 1H, OC*H*₂OCH₃), 3.84 (s, 1H, C₁₁), 3.38 (s, 3H, OCH₂OC*H*₃), 3.14 – 3.00 (m, 2H, C₁₄), 2.22 – 2.04 (m, 8H, C₁, C₂, C₆, C₇, C₁₅), 1.98 – 1.81 (m, 2H, C₁₃), 1.67 – 1.57 (m, 1H, C₈), 1.56 – 1.40 (m, 1H, C₁), 1.28 – 1.20 (m, 2H, C₇, C₈), 1.06 (d, *J* = 7.1 Hz, 3H, C₁₆), 0.93 (s, 3H, C₁₈).

¹³C NMR (101 MHz, CDCl₃): δ 208.1 (C₃=*O*), 151.8 (C₅), 149.8 (C₁₀), 144.4 (OC*Ph*₃), 143.2 (C₁₉), 136.2 (C₄), 128.7 (OC*Ph*₃), 127.7 (OC*Ph*₃), 126.8 (OC*Ph*₃), 121.4 (C₁₇), 113.8 (C₂₀), 96.4 (OCH₂OCH₃), 86.8 (OC*P*h₃), 82.1 (C₁₁), 60.7 (C₁₄), 56.4 (OCH₂OCH₃), 51.0 (C₉), 45.3 (C₁₂), 37.7 (C₆), 36.9 (C₁₃), 35.9 (C₂), 33.4 (C₇), 32.5 (C₁), 28.2 (C₈), 19.7 (C₁₉), 19.1 (C₁₆), 17.1 (C₁₅).

FTIR (thin film, NaCl): 3418, 2931, 2071, 1704, 1628, 1449, 1214, 1036, 920, 760 cm⁻¹. HRMS (TOF, ES+): calc'd for C₄₁H₄₈O₄Na [M+Na]⁺ 627.3450, found 627.3444. $[\alpha]_D^{23}$: -52.6° (c = 0.965, CHCl₃).

Preparation of alcohol (12-epi-S6)

A flame-dried, 250 mL round bottom flask equipped with a stir bar was charged with MOM ether **12**-*epi*-**S5** (332 mg, 0.549 mmol, 1 equiv). Thereafter, a freshly prepared solution of formic acid (98%, 3.4 mL) and Et₂O (3.4 mL) was rapidly added, and within 5 min, the reaction was judged to be complete by TLC analysis. We found it critical to stop this reaction immediately after full conversion was achieved. Prolonged times afforded copious quantities of formate ester product. The reaction was diluted with Et₂O (15 mL) and quenched via slow addition of NaHCO₃ (100 mL). The aqueous layer was extracted with Et₂O (4 x 25 mL) and washed with H₂O (1 x 10 mL). The combined organic layers were washed with brine (1 x 25 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford a viscous yellow residue.

Purification was achieved via flash column chromatography on SiO₂ [7 g SiO₂, Et₂O/hexanes = 70%] to afford alcohol **12**-*epi*-**S6** (173 mg, 0.477 mmol, 87% yield) as a viscous, colorless oil.

TLC (40% Et₂O/hexanes): $R_f = 0.13$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 6.07 (dd, J = 17.8, 10.9 Hz, 1H, C₁₉), 5.58 (s, 1H, C₁₇), 5.11 (dd, J = 10.9, 1.1 Hz, 1H, C₂₀), 5.03 (dd, J = 17.8, 1.2 Hz, 1H, C₂₀), 4.92 (s, 1H, C₁₇), 4.65 (d, J = 6.8 Hz, 1H, OCH₂OCH₃), 4.59 (d, J = 6.8 Hz, 1H, OCH₂OCH₃), 3.94 (s, 1H, C₁₁), 3.66 (td, J = 6.9, 3.0 Hz, 2H, C₁₄), 3.42 (s, 3H, OCH₂OCH₃), 2.30 – 2.11 (m, 8H, C₁, C₂, C₆, C₈, C₁₅), 1.89 (td, J = 6.8, 4.1 Hz, 2H, C₁₃), 1.66 – 1.54 (m, 2H, C₁, C₇), 1.31 – 1.23 (m, 2H, C₇, C₈), 1.11 (s, 3H), 1.07 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 207.9 (C₃=*O*), 151.9 (C₅), 149.8 (C₁₀), 143.7 (C₁₉), 136.1 (C₄), 121.7 (C₁₇), 114.0 (C₂₀), 96.2 (O*C*H₂OCH₃), 82.1 (C₁₁), 59.7 (C₁₄), 56.4 (OCH₂O*C*H₃), 50.9 (C₉), 45.4 (C₁₂), 39.9 (C₁₃), 37.7 (C₇), 35.8 (C₂), 33.4 (C₈), 32.5 (C₁), 28.1 (C₇), 19.8 (C₁₈), 19.0 (C₁₆), 17.0 (C₁₅).

FTIR (thin film, NaCl): 3417, 2931, 1704, 1627, 1455, 1212, 1152, 1036, 918, 731 cm⁻¹.

HRMS (TOF, ES+): calc'd for C₂₂H₃₄O₄Na [M+Na]⁺ 385.2355, found 385.2344.

 $[\alpha]_{D}^{23}$: -43.8° (*c* = 0.230, CHCl₃).

Stahl Oxidation:⁶

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol **12**-*epi*-**S6** (164 mg, 0.452 mmol, 1 equiv) and MeCN (2.0 mL). Thereafter, added 860 μ L of the [Cu]/bpy stock solution, 860 μ L of the NMI stock solution, and 860 μ L of the ABNO stock solution, in that order. The orange reaction was stirred at 960 rpm open to the atmosphere for 90 min. Subsequently, the resulting light blue solution was diluted with Et₂O (3 mL), passed through a short pad of SiO₂ using Et₂O as the eluent, and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [8 g SiO₂, Et₂O/hexanes = $30\% \rightarrow 60\%$] to afford aldehyde **12-***epi***-14** (148 mg, 0.411 mmol, 90% yield) as a viscous, colorless oil that solidified to a white solid upon standing in the freezer.

Preparation of stock solutions: See page S15.

TLC (70% Et₂O/hexanes): $R_f = 0.57$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 9.73 (dd, J = 4.1, 1.8 Hz, 1H, C₁₄), 6.08 (dd, J = 17.7, 10.9 Hz, 1H, C₁₉), 5.51 (s, 1H, C₁₇), 5.16 (dd, J = 10.9, 0.7 Hz, 1H, C₂₀), 5.10 (dd, J = 17.7, 0.7 Hz, 1H, C₂₀), 4.99 – 4.97 (m, 1H, C₁₇), 4.58 (d, J = 6.9 Hz, 1H, OCH₂OCH₃), 4.51 (d, J = 6.9 Hz, 1H, OCH₂OCH₃), 4.00 (d, J = 1.2 Hz, 1H, C₁₁), 3.40 (s, 3H, OCH₂OCH₃), 2.66 (dd, J = 15.1, 4.1 Hz, 1H, C₁₃), 2.49 (dd, J = 15.1, 1.7 Hz, 1H, C₁₃), 2.29 – 2.05 (m, 8H, C₁, C₂, C₆, C₈, C₁₅), 1.68 – 1.49 (m, 2H, C₁, C₇), 1.32 (s, 3H, C₁₈), 1.30 – 1.21 (m, 2H, C₇, C₈), 1.06 (d, J = 7.1 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 207.8 (C₁₄=*O*), 202.6 (C₃=*O*), 141.8 (C₅), 122.0 (C₁₀), 114.8 (C₁₉), 95.3 (OCH₂OCH₃), 80.4 (C₁₁), 56.5 (OCH₂OCH₃), 50.7 (C₉), 50.2 (C₁₃), 45.7 (C₁₂), 37.6 (C₆), 35.9 (C₂), 33.4 (C₈), 32.5 (C₁), 28.1 (C₇), 21.8 (C₁₈), 19.1 (C₁₆), 17.1 (C₁₅).

FTIR (thin film, NaCl): 2932, 1714, 1628, 1456, 1413, 1373, 1212, 1151, 1035, 921 cm⁻¹. HRMS (TOF, ES+): calc'd for $C_{22}H_{32}O_4Na [M+Na]^+$ 383.2198, found 383.2182. $[\alpha]_D^{23}$: -67.3° (c = 0.095, CHCl₃).

Preparation of tricycle (12-epi-17)

A 25 mL Schlenk tube equipped with a stir bar was charged with a solution of aldehyde **12**-*epi*-**14** (75 mg, 0.208 mmol, 1 equiv) in 10.3 mL of THF that had been submitted to five freeze-pump-thaw cycles and H₂O/THF (1.88 mL). The solution was cooled to 0 °C and stirred at this temperature for 5 min. Thereafter, SmI₂/THF (6.3 mL, 0.63 mmol, 3 equiv) was added dropwise over 8 min. The deep blue color of SmI₂ was immediately quenched upon addition of each drop. The first drop afforded a yellow solution, fading to a pale yellow and almost clear by the time 1.6 equiv SmI₂ had been added. When 2.2 equiv SmI₂ had been added, the blue color became increasingly persistent and upon addition of 2.6 equiv SmI₂, the reaction was dark blue/green. After stirring an additional 10 min at 0 °C, TMSCI/THF (1.9 mL, 1.05 mmol, 5 equiv TMSCI) was added dropwise over 2 min, and the reaction was stirred an additional 10 min. Throughout this time, the deep blue color was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred open to the atmosphere for 5 min.

The resulting pale yellow solution was diluted with Et_2O (50 mL), and washed with H_2O (2 x 10 mL). The aqueous layer was back-extracted with Et_2O (2 x 10 mL), and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford a dark orange oil. Purification was achieved via flash column chromatography on SiO₂ [10 g SiO₂, Et_2O /hexanes = 30%] to afford tricycle **12-epi-17** (62 mg, 0.172 mmol, 77% yield) as a white solid.

Preparation of SmI₂: See page S16.

Stock solution of TMSCI: See page S16.

Stock solution of H_2O/THF : A solution of H_2O (60 µL) in THF (5.0 mL) was submitted to five freeze-pump-thaw cycles.

TLC (50% Et₂O/hexanes): $R_f = 0.50$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 5.98 (dd, J = 17.5, 10.8 Hz, 1H, C₁₉), 5.42 (d, J = 0.9 Hz, 1H, C₁₇), 5.32 (t, J = 0.7 Hz, 1H, C₁₇), 5.09 (dd, J = 17.5, 1.0 Hz, 1H, C₂₀), 5.03 (dd, J = 10.8, 1.0 Hz, 1H, C₂₀), 4.54 (d, J = 7.1 Hz, 1H, OCH₂OCH₃), 4.34 (dd, J = 7.1, 0.5 Hz, 1H, OCH₂OCH₃), 4.12 (d, J = 6.2 Hz, 1H, C₁₄), 4.00 (s, 1H, C₁₁), 3.34 (s, 3H, OCH₂OCH₃), 2.39 – 2.16 (m, 3H, C₂, C₄), 2.13 – 1.96 (m, 3H, C₁, C₈, C₁₃), 1.72 (dtt, J = 15.9, 6.2, 2.9 Hz, 1H, C₆), 1.63 (dd, J = 13.1, 3.3 Hz, 1H, C₇), 1.46 – 1.37 (m, 1H, C₇), 1.29 (s, 4H, C₁, C₁₅), 1.24 (d, J = 0.8 Hz, 3H, C₁₈), 1.08 (dd, J = 15.8, 1.2 Hz, 1H, C₈), 0.98 (d, J = 6.8 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 216.6 (C₃=*O*), 148.1 (C₁₉), 147.9 (C₁₀), 112.8 (C₁₇), 111.3 (C₂₀), 92.3 (OCH₂OCH₃), 76.2 (C₁₁), 67.0 (C₁₄), 59.5 (C₄), 55.9 (OCH₂OCH₃), 46.5 (C₉), 45.7 (C₈), 43.6 (C₁₂), 42.1 (C₅), 37.4 (C₆), 34.9 (C₂), 31.2 (C₁₃), 29.8 (C₁), 26.8 (C₇), 18.2 (C₁₆), 15.1 (C₁₈), 13.4 (C₁₅).

FTIR (thin film, NaCl): 3521, 2937, 1738, 1456, 1376, 1147, 1095, 1032, 967 cm⁻¹.

HRMS (FAB+) calc'd for $C_{22}H_{35}O_4 [M+H]^+ 363.2535$, found 363.2556. [α]_D²³: +161.6° (c = 0.09, CHCl₃).

Preparation of silyl enol ether (12-epi-18):

A flame-dried 1 dram vial equipped with a stir bar was charged with tricycle **12**-*epi*-**17** (13.1 mg, 0.036 mmol, 1 equiv) and anhydrous THF (720 μ L) under an atmosphere of argon. The mixture was cooled to -78 °C and stirred for 5 min prior to dropwise addition of LiHMDS in THF (108 μ L of a 1.0 M solution, 0.108 mmol, 3 equiv) over 5 min. The resulting yellow solution was stirred at -78 °C for 5 min and was then placed in an ice bath and stirred for 5 min. Subsequently, TIPSOTf (22 μ L, 0.072 mmol, 2 equiv) was added rapidly. After 3 min, the reaction was quenched at 0 °C via rapid addition of sat. aq. NaHCO₃ (1 mL) and vigorously stirred at 0 °C for 10 min. Thereafter, the mixture was extracted into Et₂O (3 x 1 mL) and the combined organic layers were washed with sat. aq. NaHCO₃ (3 x 1 mL) (note: failure to quench residual TIPSOTf in this manner resulted in extensive decomposition of product upon concentration). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [3 g SiO₂, Et₂O/hexanes = 8%] to afford silyl enol ether **12-epi-18** (19.1 mg, 0.036 mmol, quantitative yield) as a puffy, viscous, colorless oil that formed a white solid upon standing in the freezer overnight.

TLC (30% Et₂O/hexanes): $R_f = 0.56$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 6.02 (dd, J = 17.5, 10.8 Hz, 1H, C₁₉), 5.39 (s, 1H, C₁₇), 5.23 (s, 1H, C₁₇), 5.09 (dd, J = 17.5, 1.1 Hz, 1H, C₂₀), 5.01 (dd, J = 10.8, 1.1 Hz, 1H, C₂₀), 4.50 (d, J = 6.9 Hz, 1H, OCH₂OCH₃), 4.42 (q, J = 2.8 Hz, 2H, C₂), 4.33 (d, J = 6.9 Hz, 1H, OCH₂OCH₃), 4.24 – 4.15 (m, 2H, C₁₁, C₁₄), 3.33 (s, 3H, OCH₂OCH₃), 2.81 (s, 1H, C₄), 2.33 (ddd, J = 14.2, 3.2, 1.7 Hz, 1H, C₁), 2.21 – 1.95 (m, 3H, C₈, C₁₃), 1.77 (ddq, J = 14.3, 7.1, 3.8 Hz, 1H, C₆), 1.65 – 1.53 (m, 1H, C₇), 1.45 – 1.32 (m, 2H, C₁, C₇), 1.32 – 1.18 (m, 6H, C₁₈, OSi(CH(CH₃)₂)₃), 1.15 (s, 3H, C₁₅), 1.12 (dd, J = 7.2, 5.1 Hz, 18H, OSi(CH(CH₃)₂)₃), 1.04 – 0.95 (m, 4H, C₁₃, C₁₆).

¹³C NMR (101 MHz, CDCl₃) δ 157.5 (C₃), 149.5 (C₁₀), 148.6 (C₁₉), 112.0 (C₁₇), 110.9 (C₂₀), 98.6 (C₂), 92.7 (OCH₂OCH₃), 77.2 (C₁₁), 67.7 (C₁₄), 55.9 (OCH₂OCH₃), 53.2 (C₄), 48.9 (C₉), 46.3 (C₁₃), 43.8 (C₁₂), 41.3 (C₅), 40.9 (C₁), 38.4 (C₆), 30.1 (C₈), 27.2 (C₇), 18.3 (C₁₆), 18.1 (OSi(CH(CH₃)₂)₃), 17.7 (OSi(CH(CH₃)₂)₃), 15.6 (C₁₈), 15.3 (C₁₅), 12.9 (OSi(CH(CH₃)₂)₃).

FTIR (thin film, NaCl): 2928, 1636, 1465, 1298, 1140, 1026, 906, 689 cm⁻¹. HRMS (FAB+) calc'd for $C_{31}H_{54}O_4Si [M+H]^+ 518.3791$, found 518.3798. $[\alpha]_D^{23}$: +31.1° (c = 0.15, CHCl₃). Preparation of ketone (12-epi-19):

This procedure was adapted from the work of Shenvi and coworkers.⁷ To a 1 dram vial was added TIPS enol ether **12**-*epi*-**18** (25.6 mg, 0.049 mmol, 1 equiv) and adventitious water was removed via azeotropic drying with PhH (3 x 1 mL) under high vacuum (70 mTorr). An oven dried stir bar was added, and the atmosphere was exchanged three times with argon. Thereafter, 775 μ L of a stock solution containing PhSiH₃ (9.3 μ L, 0.075 mmol, 1.5 equiv) and TBHP (20 μ L, 0.100 mmol, 2 equiv) in ^{*i*}PrOH was added, followed by 175 μ L of a stock solution containing Mn(dpm)₃ (3.0 mg, 0.00506 mmol, 0.1 equiv) in ^{*i*}PrOH. The reaction was stirred for 30 min at ambient temperature and another 50 μ L of the Mn(dpm)₃ (0.9 mg, 0.00144 mmol, 0.03 equiv) was added. After 1 h, the reaction was passed through a plug of SiO₂ (eluting with Et₂O/hexanes = 10%), and concentrated under reduced pressure to afford a dark orange oil.

Purification was achieved via flash column chromatography on SiO₂ [3 g SiO₂, Et₂O/hexanes = $7\% \rightarrow 11\%$] to afford ketone **12-***epi***-19** (13.7 mg, 0.0251 mmol, 54% yield) as a viscous, colorless oil.

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as higher temperatures promoted over-reduction and lower temperatures slowed catalysis. ^{*i*}PrOH was stored over activated 4 Å molecular sieves (pellets) overnight then was distilled from CaH₂ (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use.

Preparation of stock solutions: PhSiH₃ (30 μ L) and *tert*-butyl hydroperoxide (65 μ L of a 5.0 M solution in nonane) were dissolved in ^{*i*}PrOH (2.5 mL) and the homogeneous solution was submitted to three freeze-pump-thaw cycles. Mn(dpm)₃ (17.3 mg) was dissolved in 1 mL ^{*i*}PrOH and the dark brown homogeneous solution was submitted to three freeze-pump-thaw cycles.

TLC (30% Et₂O/hexanes): $R_f = 0.72$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 5.96 (dd, J = 17.4, 10.7 Hz, 1H, C₁₉), 5.09 – 4.97 (m, 2H, C₂₀), 4.55 (d, J = 7.0 Hz, 1H, OCH₂OCH₃), 4.53 (d, J = 7.0 Hz, 1H, OCH₂OCH₃), 4.44 (s, 1H, C₂), 3.81 (d, J = 5.8 Hz, 1H, C₁₁), 3.37 (s, 3H, OCH₂OCH₃), 3.22 (s, 1H, C₄), 2.92 (d, J = 12.0 Hz, 1H, C₁₃), 2.15 (ddd, J = 14.1, 3.2, 1.6 Hz, 1H, C₁), 1.95 – 1.66 (m, 4H, C₇, C₈, C₁₀, C₁₃), 1.66 – 1.50 (m, 3H, C₁, C₆, C₇), 1.34 (s, 3H, C₁₅), 1.27 – 1.22 (m, 4H, C₈, OSi(CH(CH₃)₂)₃), 1.19 (s, 3H, C₁₈), 1.17 (d, J = 7.0 Hz, 3H, C₁₆), 1.13 (d, J = 2.9 Hz, 9H, OSi(CH(CH₃)₂)₃), 1.11 (d, J = 2.9 Hz, 9H, OSi(CH(CH₃)₂)₃).

¹³C NMR (101 MHz, CDCl₃): δ 214.4 (C₁₄=*O*), 156.8 (C₃), 147.7 (C₁₉), 111.4 (C₂₀), 98.6 (C₂), 98.1 (O*C*H₂OCH₃), 81.5 (C₁₁), 56.6 (OCH₂O*C*H₃), 51.5 (C₄), 50.6 (C₅), 48.1 (C₉), 47.9 (C₁₂), 46.6 (C₁₃), 37.2 (C₆), 34.5 (C₁), 34.4 (C₁₀), 32.0 (C₇), 26.7 (C₈), 23.2 (C₁₅), 18.1 (OSi(CH(*C*H₃)₂)₃), 16.2 (C₁₆), 15.0 (C₁₈), 12.9 (OSi(*C*H(CH₃)₂)₃), 12.0 (C₁₇). FTIR (thin film, NaCl): 2946, 2868, 1698, 1634, 1463, 1300, 1129, 1086, 882, 692 cm⁻¹. HRMS (FAB+): calc'd for C₃₁H₅₄O₄Si [M]⁺ 518.3791, found 518.3797. [α]²³_D: -18.5° (c = 0.195, CHCl₃).

Preparation of alcohol (12-epi-20)

A 100 mL 3-necked flask equipped with a stir bar was equipped with a cold finger connected to a two-way valve, and the entire apparatus was flame-dried under high vacuum. After cooling to ambient temperature, the atmosphere was exchanged three times for argon, and anhydrous EtOH (7.3 mL) and Et₂O (4 mL) were added. The mixture was cooled to -78 °C, and ammonia (30 mL) was condensed into the vessel. Subsequently, a solution of ketone **12-epi-19** (23 mg, 0.0443 mmol, 1 equiv) in Et₂O (5.3 mL) was added. After allowing the system to equilibrate for 5 min, Li⁰ wire (69 mg, 9.9 mmol, 223 equiv) that had been freshly washed with hexanes and cut into ~10 mg pieces was added. Within 3 min, a deep blue color developed, and after 30 min, the reaction was colorless.

The apparatus was removed from the cooling bath, and ammonia was boiled off over 1 h. The resulting slurry was extracted into Et_2O (50 mL), washed with sat. aq. NaHCO₃ (10 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford an oil.

Purification was achieved via flash column chromatography on SiO₂ [3 g SiO₂, Et₂O/hexanes = 7%] to afford alcohol **12**-*epi*-**20** (12.7 mg, 0.0244 mmol, 55% yield) as a viscous, colorless oil.

TLC (15% Et₂O/hexanes): $R_f = 0.36$ (*p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 5.76 (dd, J = 17.6, 10.8 Hz, 1H, C₁₉), 4.97 (dd, J = 17.6, 1.2 Hz, 1H, C₂₀), 4.90 (dd, J = 10.8, 1.2 Hz, 1H, C₂₀), 4.50 (d, J = 6.9 Hz, 1H, OCH₂OCH₃), 4.47 (d, J = 6.8 Hz, 1H, OCH₂OCH₃), 4.20 (t, J = 7.5, 6.7 Hz, 1H, C₁₄), 3.35 (s, 3H, OCH₂OCH₃), 3.08 (d, J = 5.6 Hz, 1H, C₁₁), 2.47 - 2.28 (m, 2H, C₂), 2.22 - 2.07 (m, 2H, C₁₀, C₁₃), 1.98 (d, J = 15.3 Hz, 2H, C₁, C₇), 1.40 (m, 5H, C₆, C₇, C₁₅), 1.26 - 1.08 (m, 27H, C₁, C₈, C₁₃, C₁₈, OSi(CH(CH₃)₂)₃), 1.01 (d, J = 6.6 Hz, 3H, C₁₆), 0.84 (d, J = 7.2 Hz, 3H, C₁₇).

¹³C NMR (101 MHz, CDCl₃): δ 149.1 (C₁₉), 147.2 (C₃), 120.3 (C₄), 110.5 (C₂₀), 99.0 (O*C*H₂OCH₃), 83.5 (C₁₁), 68.2 (C₁₄), 56.5 (OCH₂O*C*H₃), 50.6 (C₉), 47.1 (C₁₃), 46.2 (C₅), 44.9 (C₁₂), 43.2 (C₆), 39.4 (C₁), 36.3 (C₁₀), 34.4 (C₂), 28.4 (C₇), 28.3 (C₈), 18.33 (C₁₅), 18.26 (OSi(CH(*C*H₃)₂)₃), 18.2 (OSi(CH(*C*H₃)₂)₃), 17.8 (C₁₆) 14.4 (C₁₈), 13.8 (OSi(*C*H(CH₃)₂)₃), 11.4 (C₁₇).

FTIR (thin film, NaCl): 2921, 2866, 1635, 1463, 1328, 1218, 1030, 1002, 913, 797 cm⁻¹. **HRMS (FAB+):** calc'd for $C_{31}H_{56}O_4Si [M]^+ 520.3948$, found 520.3932. $[\alpha]_D^{23}: -46.3^\circ (c = 0.14, CHCl_3).$ Preparation of (+)-12-epi-pleuromutilin (12-epi-1):

This procedure was adapted from the work of Procter and coworkers.⁸ A flame-dried 2 dram vial equipped with a stir bar was charged with alcohol **12**-*epi*-**20** (12.7 mg, 0.0244 mmol, 1 equiv), EDCI-HCl (28.0 mg, 0.146 mmol, 6 equiv), and DMAP (17.8 mg, 0.146 mmol, 6 equiv), and the atmosphere was exchanged three times for argon. Subsequently, the vessel was charged with anhydrous CH_2Cl_2 (1.2 mL) and 2-(2,2,2-trifluoroacetoxy)acetic acid (25.0 mg, 0.146 mmol, 6 equiv), and the reaction was stirred at ambient temperature. After 10 min, a light yellow color developed, and after 30 min, the reaction was complete by TLC analysis (30% Et₂O/hexanes, $R_f = 0.77$ [*p*-anisaldehyde], R_f (starting material) = 0.70). Thereafter, a solution of anhydrous MeOH (19 µL, 0.480 mmol, 20 equiv) in freshly distilled Et₃N (67 µL, 0.480 mmol, 20 equiv) was added, and the reaction immediately turned bright yellow. After 5 min, the reaction was judged was complete by TLC analysis (30% Et₂O/hexanes, $R_f = 0.35$ [*p*-anisaldehyde]). A solution of HCl in THF (600 µL of a 2.0 M solution, 1.2 mmol) was added, and the reaction was heated to 50 °C. After 30 min, an additional portion of HCl in THF (260 uL) was added. At this time, hydrolysis of the methoxymethyl group was judged complete by TLC analysis (70% Et₂O/hexanes, $R_f = 0.42$ [*p*-anisaldehyde]), and after 2 h global hydrolysis was complete.

The reaction was cooled to 0 °C and was cautiously quenched with sat. aq. NaHCO₃ (3 mL). After warming to ambient temperature, the crude mixture was extracted into Et_2O (3 x 5 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford an orange oil.

Purification was achieved via flash column chromatography on SiO₂ [1.5 g SiO₂, Et₂O/hexanes = $50\% \rightarrow 70\%$] to afford (+)-12-*epi*-pleuromutilin **12-***epi***-1** (5.4 mg, 0.0143 mmol, 60% yield) as a white solid.

TLC (70% Et₂O/hexanes): $R_f = 0.26$ (*p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 5.81 – 5.65 (m, 2H, C₁₄, C₁₉), 5.27 – 5.17 (m, 2H, C₂₀), 4.07 (dd, J = 17.1, 5.6 Hz, 1H, C₂₂), 4.01 (dd, J = 17.1, 5.2 Hz, 1H, C₂₂), 3.45 (d, J = 6.4 Hz, 1H, C₁₁), 2.45 – 2.00 (m, 6H, C₂, C₄, C₁₀, C₁₃, C₂₂OH,), 1.81 (dq, J = 13.9, 2.7 Hz, 1H, C₈), 1.73 – 1.58 (m, 2H, C₁, C₆), 1.58 – 1.45 (m, 3H, C₁, C₇, C₁₁OH), 1.44 (s, 3H, C₁₅), 1.42 – 1.36 (m, 1H, C₇), 1.25 (s, 3H, C₁₈), 1.18 – 1.04 (m, 2H, C₈, C₁₃), 0.97 (d, J = 7.1 Hz, 3H, C₁₇), 0.70 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 217.0 (C₃=*O*), 172.1 (C₂₁), 146.8 (C₁₉), 115.4 (C₂₀), 71.9 (C₁₁), 70.1 (C₁₄), 61.3 (C₂₂), 58.2 (C₄), 45.4 (C₉), 45.3 (C₁₂), 43.6 (C₁₃), 41.8 (C₅), 36.6 (C₆), 34.5 (C₂), 34.4 (C₁₀), 30.1 (C₈), 26.9 (C₇), 25.0 (C₁), 16.7 (C₁₆), 14.8 (C₁₅), 14.1 (C₁₈), 10.8 (C₁₇).

FTIR (thin film, NaCl): 3437, 2927, 1728, 1603, 1444, 1382, 1232, 1098, 1011, 755 cm⁻¹. HRMS (FAB+): calc'd for $C_{22}H_{33}O_5 [M+H]^+-H_2 377.2328$, found 377.2329 $[\alpha]_D^{23}$: +9.12° (c = 0.125, CHCl₃).

iv. Synthesis of allylboronic acid (Z-6)

Scheme S4. Synthesis of allylboronic acid (Z-6)

Preparation of trityl protected alcohol (S7):

A flame-dried, 250 mL round bottom flask equipped with a stir bar was charged with 3-butyn-1-ol (7.01 g, 100.0 mmol, 7.57 mL, 1 equiv), CH_2Cl_2 (150 mL, 0.67 M), and DMAP (2.44 g, 20.0 mmol, 20 mol %). To the homogeneous solution was added Et_3N (20.2 g, 200.0 mmol, 27.9 mL, 2 equiv) and trityl chloride (27.8 g, 100.0 mmol, 1 equiv). The reaction was stirred at ambient temperature for 18 h. Subsequently, added H_2O (225 mL) and extracted into Et_2O (3 x 200 mL). The combined organic layers were washed with brine (2 x 50 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford a white solid.

The solid was dissolved in a minimal volume of CH_2Cl_2 (30 mL) and purified via flash column chromatography on SiO₂ (300 g SiO₂, Et₂O/hexanes = 5%) to afford product **S7** (21.9 g, 70.1 mmol, 70% yield) as a white solid. Spectral data were in complete agreement with literature values.¹¹

TLC (20% Et₂O/hexanes): $R_f = 0.73$ (UV, KMnO₄).

Preparation of ynoate (S8):

The atmosphere of a flame-dried, 1 L round bottom flask equipped with a stir bar was exchanged three times for nitrogen then charged with anhydrous THF (180 mL) and freshly distilled diisopropylamine (9.58 g, 94.6 mmol, 13.3 mL, 1.35 equiv). The mixture was cooled to -78 °C and "BuLi (35.9 mL of a 2.46 M solution, 88.3 mmol, 1.26 equiv) added slowly over 15 min. The solution was stirred was at
-78 °C for 5 min, warmed to 0 °C, stirred 10 min, then cooled back to -78 °C. Thereafter, a solution of the tritylprotected substrate **S7** (21.9 g, 70.1 mmol, 1 equiv) in anhydrous THF (70 mL) was added dropwise over 30 min, and the reaction was stirred for an additional 15 min. Ethyl chloroformate (22.8 g, 210.3 mmol, 20.1 mL, 3 equiv) was then added over 15 min, and the reaction was stirred for an additional 10 min before being warmed to ambient temperature and stirred for 3 h.

The reaction was quenched via addition of saturated aq. $NH_4Cl (150 \text{ mL})$ and stirred for 10 min. Thereafter, $H_2O (150 \text{ ml})$ was added, the reaction was extracted into $Et_2O (2 \times 150 \text{ mL})$, the combined organic layers were dried over Na_2SO_4 , and concentrated under reduced pressure to afford a pale yellow solid. The crude residue was suspended in hexanes (80 mL), heated to a boil, additional hexanes (100 mL) was added, and the heterogeneous suspension was filtered while hot to remove residual ammonium salts. The mixture was re-heated and slowly cooled overnight to afford product **S8** (19.6 g, 51.0 mmol, 73% yield) as white crystals.

TLC (20% Et₂O/hexanes): $R_f = 0.52$ (UV).

¹H NMR (400 MHz, CDCl₃): δ 7.52–7.42 (m, 6H, *Ph*₃CO), 7.34–7.20 (m, 9H, *Ph*₃CO), 4.25 (q, *J* = 7.2 Hz, 2H, OC*H*₂CH₃), 3.31 (t, *J* = 6.9 Hz, 2H, C₁₄), 2.63 (t, *J* = 6.9 Hz, 2H, C₁₃), 1.34 (t, *J* = 7.1 Hz, 3H, OCH₂C*H*₃). ¹³C NMR (101 MHz, CDCl₃): δ 153.7 (C₂₀=O), 143.7 (*Ph*₃CO), 128.6 (*Ph*₃CO), 127.9 (*Ph*₃CO), 127.1 (*Ph*₃CO), 86.9 (Ph₃CO), 86.5 (C₁₂), 74.0 (C₁₉), 61.9 (O*C*H₂CH₃), 61.1 (C₁₄), 20.3 (C₁₃), 14.1 (OCH₂*C*H₃). FTIR (AT-IR): 2937, 2882, 2243, 1713, 1471, 1377, 1018 cm⁻¹. HRMS (FAB+, m/z): calc'd for C₂₆H₂₄O₃ [M]⁺ 384.1726, found 384.1739. Melting point: 89.4–90.0 °C

Preparation of acrylate (Z-S9):

In a nitrogen-filled glovebox, a flame-dried 2 L flask equipped with a large stir bar was charged with CuI (9.68 g, 50.9 mmol, 1 equiv). Anhydrous THF (390 mL) was transferred to the flask via cannula, and the heterogeneous suspension was stirred at 0 °C for 20 min. Thereafter, MeLi (64.8 mL of a 1.57 M solution in Et₂O, 101.7 mmol, 2 equiv) was added dropwise over 25 min during which time the reaction went from a heterogeneous brown suspension to a nearly colorless, homogeneous solution. After an additional 5 min of stirring, the mixture was cooled to -78 °C and stirred for 20 min prior to dropwise addition of alkynoate ester **S8** (19.6 g, 50.9 mmol, 1 equiv) in anhydrous THF (130 mL) via cannula over 20 min. The reaction was stirred at -78 °C for 2 h then quenched with H₂O (25 mL) at -78 °C.

After 10 min, the solution was warmed to ambient temperature, filtered through a pad of Celite, and the Celite was rinsed with Et_2O (3 x 75 mL). The combined organic layers were washed with H_2O (2 x 50 mL) and brine (1 x 50 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford acrylate **Z-S9** (19.5 g, 48.7 mmol, 96% yield, 96:4 *Z:E*) as a viscous, yellow oil.

TLC (10% Et₂O/hexanes): $R_f = 0.55$ (UV).

¹**H NMR (400 MHz, CDCl₃):** δ 7.48–7.41 (m, 6H, *Ph*₃CO), 7.32–7.19 (m, 9H, *Ph*₃CO), 5.74 (d, *J* = 1.4 Hz, 1H, C₁₉), 4.13 (q, *J* = 7.1 Hz, 2H, OC*H*₂CH₃), 3.26 (t, *J* = 6.4 Hz, 2H, C₁₄), 2.97 (t, *J* = 6.4 Hz, 2H, C₁₃), 1.90 (d, *J* = 1.4 Hz, 3H, C₁₈), 1.26 (t, *J* = 7.1 Hz, 3H, OCH₂C*H*₃).

¹³C NMR (101 MHz, CDCl₃): δ 166.2 (C₂₀=O), 157.9 (C₁₂), 144.2 (*Ph*₃CO), 128.7 (*Ph*₃CO), 127.7 (*Ph*₃CO), 126.8 (*Ph*₃CO), 117.5 (C₁₉), 86.6 (*Ph*₃CO), 62.4 (C₁₄), 59.5 (O*C*H₂CH₃), 33.7 (C₁₃), 26.1 (C₁₈), 14.3 (OCH₂*C*H₃). FTIR (AT-IR): 2982, 2915, 2873, 1709, 1652, 1489, 1447, 1265, 1194, 1146, 779 cm⁻¹. HRMS (FAB+, m/z): calc'd for C₁₇H₂₇O₃[(M+H)-H₂]⁺ 399.1960, found 399.1958.

Preparation of (Z)-3-methyl-5-(trityloxy)pent-2-en-1-ol (Z-S10):

The atmosphere of a flame-dried, 1 L round bottom flask equipped with a stir bar was exchanged three times for argon then charged with acrylate **Z-S9** (19.5 g, 48.7 mmol, 1 equiv) and anhydrous CH_2Cl_2 (162 mL) and cooled to -78 °C. Subsequently, a freshly-prepared solution of DIBAL-H (20.8 g, 146.2 mmol, 26.1 mL) in anhydrous hexanes (122 mL) was added via cannula over 25 min. The resulting light yellow reaction was stirred at -78 °C for 2 h.

The reaction was quenched at -78 °C via slow addition of H₂O (30 mL) followed by 2 M NaOH (30 mL), stirred 10 min at -78 °C, and warmed to 0 °C. Additional H₂O (30 mL) was added, and the suspension was transferred to a 1 L Erlenmeyer flask containing a large stir bar and cooled to 0 °C. Subsequently, anhydrous MgSO₄ (100 g) was added slowly, and a strongly exothermic reaction was observed. After stirring vigorously for 20 min, the slurry was filtered through Celite, the Celite was washed with Et₂O (3 x 100 mL), and concentrated under reduced pressure to afford a viscous, pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [300 g SiO₂, Et₂O/hexanes = $30\% \rightarrow 50\%$] to afford allylic alcohol **Z-S10** (16.2 g, 45.2 mmol, 92% yield) as a viscous, colorless oil.

TLC (30% Et₂O/hexanes): $R_f = 0.30$ (KMnO₄).

¹**H NMR (400 MHz, CDCl₃):** δ 7.48–7.41 (m, 6H, *Ph*₃CO), 7.32–7.19 (m, 9H, *Ph*₃CO), 5.59 (t, *J* = 7.1 Hz, 1H, C₁₉), 4.14 (d, *J* = 7.1 Hz, 2H, C₂₀), 3.20 (t, *J* = 6.4 Hz, 2H, C₁₄), 2.37 (t, *J* = 6.4 Hz, 2H, C₁₃), 1.66 (s, 3H, C₁₈), 1.50 (br m, 1H, O*H*).

¹³C NMR (101 MHz, CDCl₃): δ 144.0 (*Ph*₃CO), 137.5 (C₁₂), 128.7 (*Ph*₃CO), 127.8 (*Ph*₃CO), 127.0 (*Ph*₃CO), 126.1 (C₁₉), 87.0 (Ph₃CO), 61.8 (C₁₄), 58.9 (C₂₀), 32.6 (C₁₃), 23.7 (C₁₈).

FTIR (AT-IR): 3361 (br), 3057, 2915, 2875, 1596, 1490, 1448, 1265, 1061, 1001 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{25}H_{26}O_2Na [M+Na]^+ 381.1831$, found 381.1843.

Preparation of trityl-protected (Z)-allylboronic acid (Z-6):

This procedure was adapted from the work of Szabó and coworkers.⁵ In a nitrogen-filled glovebox, a flamedried, 100 mL round bottom flask equipped with a stir bar was charged with allylic alcohol Z-S10 (2.67 g, 7.45 mmol, 1 equiv) and anhydrous, degassed DMSO (18.6 mL, 0.4 M). The mixture was stirred until the viscous allylic alcohol dissolved, at which time $Pd(MeCN)_4(BF_4)_2$ (165 mg, 0.373 mmol, 5 mol %) was added followed by tetrahydroxydiboron (801 mg, 8.94 mmol, 1.2 equiv). The reaction was vigorously stirred and transformed from a dark orange/red solution to dark green to black within 2 min. After stirring for 90 min at ambient temperature, the black mixture was transferred via cannula to a 100 mL Schlenk flask, the atmosphere of which had been exchanged with argon three times. Degassed PhMe (37.0 mL) was added to the black mixture followed by degassed 16% aq. NaCl (15 mL). The system was sealed off, shaken, and the layers were separated. The organic layer was washed with additional degassed 16% aq. NaCl (3 x 15 mL) to afford an organic solution with a black particulate suspension. The suspension was allowed to stand for 30 min, during which time the particulates settled. The top solution was transferred via cannula to a 100 mL Schlenk tube, the atmosphere of which had been exchanged with argon three times, and the tube was pumped into the glovebox where naphthalene was added as an internal standard. A ¹H NMR sample was prepared in the glovebox using dry, <u>degassed</u> CDCl₃, and it was determined that [allylboronic acid] = 0.18 M. Allylboronic acid **Z-6** was immediately used in the next reaction.

v. Synthesis of allylboronic acid (E-6)

Scheme S5. Synthesis of allylboronic acid (E-6)

A flame-dried, 250 mL round bottom flask equipped with a stir bar was charged with alkynoate ester **S8** (7.79 g, 20.2 mmol, 1 equiv) and freshly distilled MeOH (100 mL). Thereafter, thiophenol (2.3 mL, 22.2 mmol, 1.1 equiv) and a freshly prepared solution of NaOMe (0.1 M, 2.02 mL, 2.02 mmol, 0.1 equiv) were added. The solution was stirred under argon for 12 h or until TLC analysis indicated complete consumption of starting material. The reaction mixture was filtered over a pad of SiO₂ and concentrated under reduced pressure to afford a yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [500 g SiO₂, Et₂O/hexanes = 7% Et₂O/hexanes \rightarrow 10%] to afford thiol acrylate **S11** (8.3 g, 16.8 mmol, 83% yield) as a white foamy solid.

TLC (40% Et₂O/hexanes): $R_f = 0.56$ (UV, *p*-anisaldehyde).

¹H NMR (400 MHz, CDCl₃): δ 7.39 – 7.18 (m, 15H, OC*Ph*₃, S*Ph*), 5.90 (d, *J* = 0.8 Hz, 1H, C₁₉), 4.21 (q, *J* = 7.1 Hz, 2H, OC*H*₂CH₃), 3.00 (t, *J* = 6.7 Hz, 2H, C₁₄), 2.42 (t, *J* = 6.7 Hz, 2H, C₁₃), 1.31 (t, *J* = 7.1 Hz, 3H, OCH₂C*H*₃). ¹³C NMR (101 MHz, CDCl₃): δ 166.1 (C₂₀=*O*), 157.8 (C₁₂), 143.8 (OC*Ph*₃), 135.7 (S*Ph*), 130.5 (S*Ph*), 129.2 (S*Ph*), 129.1 (S*Ph*), 128.6 (OC*Ph*₃), 127.8 (OC*Ph*₃), 126.9 (OC*Ph*₃), 113.7 (C₁₉), 86.5 (O*C*Ph₃), 62.1 (C₁₄), 60.0 (O*C*H₂CH₃), 36.9 (C₁₃), 14.4 (OCH₂CH₃).

FTIR (AT-IR): 3057, 2975, 2871, 1699, 1590, 1448, 1209, 1115, 1059, 1031 cm⁻¹. **HRMS (TOF, ES+):** calc'd for C₃₂H₃₀O₃NaS [M+Na]⁺ 517.1813, found 517.1819.

Preparation of (E)-3-methyl-5-(trityloxy)pent-2-en-1-ol (E-S10):

In a nitrogen-filled glovebox, a flame-dried, 500 mL round bottom flask equipped with a stir bar was charged with CuI (4.2 g, 21.8 mmol, 1.3 equiv). Anhydrous THF (168 mL) was added and the heterogeneous suspension was stirred at -78 °C for 10 min. Thereafter, MeMgBr (6.7 mL of a 3.0 M solution in Et₂O, 20.2 mmol, 1.2 equiv) was added dropwise. The reaction was warmed to 0 °C and stirred for 30 min. The solution was cooled back down to -78 °C, where thiol acrylate **S11** (8.3 g, 16.8 mmol) was added via cannula transfer in anhydrous THF (30 mL). The reaction was stirred for 1 h or until complete by TLC analysis. Upon completion, the reaction was quenched with H₂O (25 mL) at -78 °C and warmed to ambient temperature, and filtered through a pad of Celite. The Celite was rinsed with Et₂O until TLC analysis indicated there was no product remaining. The combined organic layers were washed with H₂O (2 x 50 mL) and brine (1 x 50 mL), dried over MgSO₄, and concentrated under reduced pressure to afford product as a viscous, yellow oil. The crude material was subjected to the next reaction without further purification. A representative spectrum of the crude mixture as used in the next step is provided.

TLC (20% Et₂O/hexanes): $R_f = 0.60$ (UV, *p*-anisaldehyde).

A flame-dried, 250 mL round bottom flask equipped with a stir bar was charged with crude acrylate *E*-S9 (16.8 mmol, 1 equiv). Thereafter, anhydrous CH_2Cl_2 (56 mL) was added and the solution was cooled to -78 °C. A freshly prepared solution of DIBAL-H in hexanes (12 mL of a 1.2 M solution in hexanes, 67.2 mmol, 4 equiv) was added via cannula transfer. The reaction was stirred at -78 °C for 40 min.

The solution was <u>slowly</u> quenched with sat. aq. Rochelle's salt (50 mL) and stirred overnight or until two clear layers formed. The aqueous layer was extracted with CH_2Cl_2 (3 x 30 mL). The combined organic layers were washed with brine (50 mL) and dried over MgSO₄. The suspension was filtered and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [125 g SiO₂, 30% Et₂O/hexanes \rightarrow 60%] to afford allylic alcohol *E*-S10 (6.02 g, 16.8 mmol, quantitative yield over 2 steps) as a clear viscous oil.

TLC (60% Et_2O /hexanes): $R_f = 0.42$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 7.40 (dt, J = 8.6, 1.9 Hz, 6H, OCPh₃), 7.31 – 7.09 (m, 9H, OCPh₃), 5.41 (td, J = 6.9, 1.3 Hz, 1H, C₁₉), 4.10 (d, J = 7.0 Hz, 2H, C₂₀), 3.13 (t, J = 6.8 Hz, 2H, C₁₄), 2.30 (t, J = 6.8 Hz, 2H, C₁₃), 1.59 (s, 3H), 1.16 (s, 1H, OH).

¹³C NMR (101 MHz, CDCl₃): δ 144.3 (OCPh₃), 137.1 (C₁₂), 128.6 (OCPh₃), 127.7 (OCPh₃), 126.9 (OCPh₃), 125.1 (C₁₉), 86.5 (OCPh₃), 62.3 (C₁₄), 59.3 (C₂₀), 39.9 (C₁₃), 16.6 (C₁₈).

FTIR (AT-IR): 3321, 3057, 2871, 1596, 1448, 1218, 1061, 1031, 1001, 704 cm⁻¹

HRMS (TOF, ES+): calc'd for $C_{25}H_{26}O_2Na [M+Na]^+ 381.1831$, found 381.1826.

Preparation of trityl-protected (E)-allylboronic acid (E-6):

This procedure was adapted from the work of Szabó and coworkers.⁵ In a nitrogen-filled glovebox, a flamedried, 25 mL round bottom flask equipped with a stir bar was charged with allylic alcohol *E*-S10 (896 mg, 2.5 mmol, 1 equiv) and anhydrous, degassed DMSO (6.25 mL). The mixture was stirred until the viscous allyl alcohol dissolved, at which time $Pd(MeCN)_4(BF_4)_2$ (55.5 mg, 0.125 mmol, 5 mol %) was added followed by tetrahydroxydiboron (269 mg, 3.00 mmol, 1.2 equiv). The reaction was vigorously stirred and transformed from a dark orange/red solution to dark green to black within 2 min. After stirring for 90 min at ambient temperature, the black mixture was transferred via cannula to a 25 mL Schlenk flask, the atmosphere of which had been exchanged with argon three times. Degassed PhMe (12.3 mL) was added to the black mixture followed by degassed 16% aq. NaCl (5 mL). The system was sealed off, shaken, and the layers were separated. The organic layer was washed with additional degassed 16% aq. NaCl (3 x 5 mL) to afford an organic solution with a black particulate suspension. The suspension was allowed to stand for 30 min, during which time the particulates settled. The top solution was transferred via cannula to a 50 mL Schlenk tube, the atmosphere of which had been exchanged with argon three times, and the tube was pumped into the glovebox where naphthalene was added as an internal standard. A ¹H NMR sample was prepared in the glovebox using dry, <u>degassed</u> CDCl₃, and it was determined that [allylboronic acid] = 0.15 M. Allylboronic acid *E*-6 was immediately used in the next reaction.

vi. Transannular [1,5]-HAT deuterium-labeling studies

Scheme S6. Synthesis of deuterium-labeled aldehyde (S14).

A 25 mL round bottom flask equipped with a stir bar was charged with aldehyde 14 (32.2 mg, 0.0894 mmol, 1 equiv) and 'BuOH (4.5 mL) followed by deionized water (3.2 mL) and 2-methyl-2-butene (163 mg, 2.32 mmol, 246 μ L, 26 equiv). Thereafter, a solution of KH₂PO₄ (42.6 mg, 0.313 mmol, 3.5 equiv) in H₂O (650 μ L) was added followed by a solution of NaClO₂ (8.9 mg, 0.0983 mmol, 1.1 equiv) in H₂O (650 μ L). The mixture was rapidly stirred at ambient temperature for 6 h, at which time the reaction was extracted into Et₂O (4 x 2 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford 25.8 mg of a clear oil that was used in the next step without further purification.

A flame-dried 2 dram vial equipped with a stir bar was charged with LiAlD₄ (11.5 mg, 0.274 mmol, 4 equiv) and the atmosphere was exchanged three times for argon. Subsequently, anhydrous Et_2O (1.7 mL) was added followed by dropwise addition of carboxylic acid **S12** in Et_2O (1.7 mL) over 5 min. The resulting light grey suspension was rapidly stirred at ambient temperature for 45 min, at which time H₂O (1 mL) was cautiously added, using a vent needle to aid in expulsion of gas. The slurry was extracted into Et_2O (4 x 2 mL), the combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure to afford 14.1 mg of a viscous oil that was used in the next step without further purification.

Stahl Oxidation:⁶

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol **S13** and MeCN (100 μ L). Thereafter, added 140 μ L of the [Cu]/bpy stock solution, 140 μ L of the NMI stock solution, and 140 μ L of the ABNO stock solution, in that order. The orange reaction was stirred at 960 rpm open to the atmosphere. Within 15 min, TLC analysis (Et₂O/hexanes = 70%, UV and anisaldehyde) indicated complete conversion to aldehyde **S14** (R_f = 0.57, stains deep blue), and after 2 h, complete conversion to the desired enone-aldehyde product (R_f = 0.66, stains brown) was observed. Subsequently, the resulting light blue solution was diluted with Et₂O (2 mL), passed through a short pad of SiO₂ using Et₂O as the eluent, and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [1.5 g SiO₂, Et₂O/hexanes = $30\% \rightarrow 45\%$] to afford deuterated aldehyde S14 (9.8 mg, 0.027 mmol, 40% yield over 3 steps) as a viscous, colorless

oil. It should be noted that this compound was isolated as a 9:1 mixture of C_6 -epimers, separable after the reductive radical cyclization. ¹H NMR indicates 94% deuterium incorporation at C_{14} .

Preparation of stock solutions: See page S15.

TLC (80% Et₂O/hexanes): $R_f = 0.65$ (UV).

¹**H** NMR (400 MHz, CDCl₃): δ 6.07 (dd, J = 16.9, 9.9 Hz, 1H, C₁₉), 5.48 (d, J = 0.7 Hz, 1H, C₁₇), 5.13 (dd, J = 9.9, 2.4 Hz, 1H, C₂₀), 5.09 (dd, J = 16.9, 2.4 Hz, 1H, C₂₀), 5.05 (br m, 1H, C₁₇), 4.54 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.42 (d, J = 6.7 Hz, 1H, OCH₂OMe), 4.12 (br s, 1H, C₁₁), 3.36 (s, 3H, OCH₂OCH₃), 2.56 (m, 2H, C₁₃), 2.26 (m, 1H, C₁), 2.19 (m, 1H, C₈), 2.17 (m, 1H, C₂), 2.14 (m 1H, C₆), 2.11 (s, 3H, C₁₅), 2.00 (dd, J = 17.0, 7.6 Hz, 1H, C₂), 1.65 (m, 1H, C₇), 1.52 (m, 1H, C₁), 1.27 (s, 3H, C₁₈), 1.25 (m, 1H, C₈), 1.23 (m, 1H, C₇), 1.07 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.1 (C_3 =O), 202.2 (C_{14} =O) (1:1:1 triplet) (coupling of $I = \frac{1}{2}$ ¹³C nucleus to quadrupolar ²H nucleus also causes T₂ broadening), 151.4 (C_5), 149.0 (C_{10}), 142.4 (C_{19}), 136.2 (C_4), 122.7 (C_{17}), 114.5 (C_{20}), 94.2 (OCH₂OCH₃), 78.2 (C_{11}), 56.6 (OCH₂OCH₃), 52.4 (C_{13}) (reduced intensity due to ²H coupling), 50.5 (C_9), 45.5 (C_{12}), 37.4 (C_6), 35.9 (C_2), 33.1 (C_8), 32.7 (C_1), 28.2 (C_7), 19.1 (C_{16}), 18.9 (C_{18}), 17.0 (C_{15}). FTIR (AT-IR): 2931, 2359, 2323, 1704, 1628, 1456, 1212, 1148, 1036, 919 cm⁻¹.

HRMS (TOF, ES+): calc'd for C₂₂H₃₁DO₄Na [M+Na]⁺ 384.2261, found 384.2270.

 $[\alpha]_D^{23}$: -43.2° (*c* = 0.455, CHCl₃).

Preparation of deuterium-labeled tricycle (17-*d*):

A 25 mL Schlenk flask equipped with a stir bar was charged with deuterated aldehyde **S14** (7.3 mg, 0.0202 mmol, 1 equiv), THF (1.0 mL), and a solution of deionized H₂O (2.2 μ L, 0.121 mmol, 6 equiv) in THF (184 μ L) and submitted to five freeze-pump-thaw cycles. The solution was cooled to 0 °C and stirred at this temperature for 15 min. Thereafter, SmI₂/THF (606 μ L, 0.0606 mmol, 3 equiv) was added dropwise over 8 min. After stirring an additional 10 min at 0 °C, TMSCI/THF (195 μ L, 0.101 mmol, 5 equiv TMSCI) was added dropwise over 2 min, and the reaction was stirred an additional 10 min. Throughout this time, the deep blue color was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred open to the atmosphere for 5 min. The resulting pale yellow solution was diluted with Et₂O (5 mL), and washed with H₂O (2 x 2 mL). The aqueous layer was back-extracted with Et₂O (2 x 2 mL), and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford a dark orange oil.

Purification was achieved via flash column chromatography on SiO₂ [1.5 g SiO₂, Et₂O/hexanes = $30\% \rightarrow 40\%$] to afford deuterated tricycle **17-***d* (6.3 mg, 0.017 mmol, 84% yield) as a clear residue.

Preparation of SmI₂: See page S16.

Stock solution of TMSCI: See page S16.

TLC (50% Et₂O/hexanes): $R_f = 0.55$ (*p*-anisaldehyde, KMnO₄).

¹**H NMR (400 MHz, CDCl₃):** δ 6.35 (dd, J = 17.8, 11.3 Hz, 1H, C₁₉), 5.33 (dd, J = 17.8, 1.4 Hz, 1H, C₂₀), 5.34 (s, 1H, C₁₇), 5.28 (s, 1H, C₁₇), 5.19 (dd, J = 11.2, 1.4 Hz, 1H, C₂₀), 4.54 (d, J = 7.1 Hz, 1H, OCH₂OMe), 4.40 (d, J = 6.7 Hz, 1H, OCH₂OMe), 3.95 (s, 1H, C₁₁), 3.38 (s, 3H, OCH₂OCH₃), 2.33 (m, 1H, C₂), 2.29 (m, 1H, C₂), 2.24 (m, 1H, C₄), 2.06 (m, 1H, C₁), 2.03 (m, 1H, C₈), 1.92 (dd, J = 16.1, 6.5 Hz, 1H, C₁₃), 1.70 (m, 1H, C₆), 1.60 (dt, J = 13.3, 3.4 Hz, 1H, C₇), 1.50 (dd, J = 16.1, 0.9 Hz, 1H, C₁₃), 1.39 (ddt, J = 13.3, 6.5, 3.4 Hz, 1H, C₇), 1.33 (m, 1H, C₁), 1.30 (s, 3H, C₁₅), 1.28 (m, 1H, C₈), 1.24 (s, 3H, C₁₈), 0.96 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 216.8 (C_3 =O), 148.3 (C_{10}), 139.9 (C_{19}), 114.2 (C_{20}), 112.2 (C_{17}), 92.1 (OCH₂OCH₃), 77.2 (C_{11}), 67.2 (C_{14}) (1:1:1 triplet) (coupling of $I = \frac{1}{2}$ ¹³C nucleus to quadrupolar ²H nucleus also causes T₂ broadening), 59.6 (C_4), 56.0 (OCH₂OCH₃), 46.5 (C_9), 45.2 (C_{13}) (reduced intensity due to ²H coupling), 44.7 (C_{12}), 42.1 (C_5), 37.3 (C_6), 34.9 (C_2), 31.0 (C_8), 29.7 (C_1), 28.8 (C_{18}), 26.8 (C_7), 18.2 (C_{16}), 13.4 (C_{15}).

FTIR (AT-IR): 3508, 2926, 1735, 1628, 1458, 1264, 1144, 1093, 1024, 907, 738 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{22}H_{34}DO_4 [M+H]^+$ 364.2598, found 364.2595.

 $[\alpha]_{D}^{23}$: +123.5° (*c* = 0.235, CHCl₃).

Redox relay by transannular 1,5-HAT is confirmed by deuterium-labeling:

This procedure was adapted from work by Shenvi and coworkers.⁷ A flame-dried 0.5 dram vial was charged with deuterated tricycle **17-***d* (3.0 mg, 0.00825 mmol, 1 equiv) and adventitious water was removed via azeotropic drying with PhMe (3 x 200 µL) under high vacuum. An oven-dried stir bar was added, and the atmosphere was exchanged three times for argon. Thereafter, a stock solution of PhSiH₃ (0.89 mg, 0.00825 mmol, 1.0 µL, 1.5 equiv) and *tert*-butyl hydroperoxide (2.5 µL of a 5.0 M solution in nonane, 0.0124 mmol, 2 equiv) in ^{*i*}PrOH (96 µL) were added. Additional ^{*i*}PrOH (100 µL) was added, and the mixture was sparged with argon for 10 min. Subsequently, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) (0.50 mg, 0.000825 mmol, 10 mol %) was added as a solid, sparging was continued for an additional 20 sec, and the reaction was stirred at ambient temperature. After 10 min, the reaction was diluted with Et₂O/hexanes = 50%, passed through a plug of SiO₂ (eluting with Et₂O/hexanes = 50%), and concentrated under reduced pressure to afford a dark orange oil.

Purification was achieved via flash column chromatography on SiO₂ [750 mg SiO₂, Et₂O/hexanes = $20\% \rightarrow 30\%$] to afford ketone **21-***d* (1.4 mg, 0.00385 mmol, 47%) as a clear residue. Isolated starting material (1.4 mg, 0.00385 mmol, 47%).

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as higher temperatures promoted over-reduction and lower temperatures slowed catalysis. ^{*i*}PrOH was stored over activated 4 Å molecular sieves (pellets) overnight then was distilled from CaH₂ (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use.

Preparation of Stock Solutions: A stock solution of $PhSiH_3$ (20 µL) and *tert*-butyl hydroperoxide (50 µL of a 5.0 M solution in nonane) in ^{*i*}PrOH (1.6 mL) was prepared under an atmosphere of argon, and 100 µL of this stock solution was added to substrate, as described below.

TLC (40% Et₂O/hexanes): $R_f = 0.24$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 6.18 (dd, J = 17.8, 11.3 Hz, 1H, C₁₉), 5.36 (dd, J = 17.8, 1.5 Hz, 1H, C₂₀), 5.27 (dd, J = 11.2, 1.5 Hz, 1H, C₂₀), 4.67 (ABq, J = 6.8 Hz, 2H, OCH₂OMe), 3.54 (d, J = 5.2 Hz, 1H, C₁₁), 3.42 (s, 3H, OCH₂OCH₃), 2.70 (d, J = 12.4 Hz, 1H, C₁₃), 2.57 (d, J = 2.3 Hz, 1H, C₄), 2.27 (m, 2H, C₂), 2.07 (d, J = 12.4 Hz, 1H, C₁₃), [1.99 (C₁₀) (dq signal absent)], 1.83 (dd, J = 12.9, 9.6 Hz, 1H, C₁), 1.74 (dq, J = 14.3, 2.9 Hz, C₈), 1.63 (dt, J = 12.9, 3.3 Hz, 1H, C₇), 1.56 (m, 1H, C₆), 1.53 (m, 1H, C₁), 1.46 (s, 3H, C₁₅), 1.29 (m, 1H, C₇), 1.21 (s, 3H, C₁₈), 1.18 (d, J = 6.8 Hz, 3H, C₁₆), 1.17 (m, 1H, C₈), 0.89 (d, J = 7.2 Hz, 3H, C₁₇).

¹³C NMR (101 MHz, CDCl₃): δ 216.9 (C_3 =O), 212.5 (C_{14} =O), 138.5 (C_{19}), 116.1 (C_{20}), 98.1 (OCH₂OCH₃), 81.9 (C_{11}) (reduced intensity due to ²H coupling), 57.9 (C_4), 56.8 (OCH₂OCH₃), 50.6 (C_5), 48.1 (C_{12}), 47.5 (C_{13}), 45.6 (C_9), 36.5 (C_6), 35.5 (C_{10}) (signal absent), 34.6 (C_2), 31.0 (C_8), 27.9 (C_{18}), 26.1 (C_7), 24.7 (C_1), 21.0 (C_{15}), 16.2 (C_{16}), 11.1 (C_{17}).

FTIR (AT-IR): 2930, 1733, 1698, 1455, 1089, 1035 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{22}H_{34}DO_4 [M+H]^+$ 364.2598, found 364.2600.

 $[\alpha]_D^{23}$: +24.3° (*c* = 0.065, CHCl₃).

Redox relay by transannular 1,5-HAT without deuterium-labeling:

This procedure was adapted from work by Shenvi and coworkers.⁷ A flame-dried 1 dram vial was charged with tricycle 17 (30.0 mg, 0.0828 mmol, 1 equiv) and adventitious water was removed via azeotropic drying with PhMe (3 x 400 μ L) under high vacuum. An oven-dried stir bar was added, and the atmosphere was exchanged three times for argon. Thereafter, ^{*i*}PrOH (830 μ L), PhSiH₃ (13.4 mg, 0.124 mmol, 15.2 μ L, 1.5 equiv), and *tert*-butyl hydroperoxide (33.1 µL of a 5.0 M solution in nonane, 0.166 mmol, 2 equiv) were added. The heterogeneous min. Subsequently, tris(2,2,6,6-tetramethyl-3,5mixture was sparged with argon for 10 heptanedionato)manganese(III) (5.0 mg, 0.00828 mmol, 10 mol %) was added as a solid, sparging was continued for an additional 20 sec, and the reaction was stirred at ambient temperature. After 10 min, the reaction was diluted with Et_2O /hexanes = 50%, passed through a plug of SiO₂ (eluting with Et_2O /hexanes = 50%), and concentrated under reduced pressure to afford a dark orange oil.

Purification was achieved via flash column chromatography on SiO₂ [15 g SiO₂, Et₂O/hexanes = $20\% \rightarrow 35\%$] to afford ketone **21** (16.9 mg, 0.047 mmol, 56% yield) as a clear residue. Isolated starting material (12.1 mg, 0.033 mmol, 40%).

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as higher temperatures promoted over-reduction and lower

temperatures slowed catalysis. ^{*i*}PrOH was stored over activated 4 Å molecular sieves (pellets) overnight then was distilled from CaH₂ (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use.

TLC (40% Et₂O/hexanes): $R_f = 0.24$ (*p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 6.18 (dd, J = 17.8, 11.3 Hz, 1H, C₁₉), 5.36 (dd, J = 17.8, 1.5 Hz, 1H, C₂₀), 5.27 (dd, J = 11.2, 1.5 Hz, 1H, C₂₀), 4.67 (ABq, J = 6.8 Hz, 2H, OCH₂OMe), 3.54 (d, J = 5.2 Hz, 1H, C₁₁), 3.42 (s, 3H, OCH₂OCH₃), 2.70 (d, J = 12.4 Hz, 1H, C₁₃), 2.57 (d, J = 2.3 Hz, 1H, C₄), 2.27 (m, 2H, C₂), 2.07 (d, J = 12.4 Hz, 1H, C₁₃), 1.99 (dq, J = 7.2, 5.2 Hz, 1H, C₁₀), 1.83 (dd, J = 12.9, 9.6 Hz, 1H, C₁), 1.74 (dq, J = 14.3, 2.9 Hz, C₈), 1.63 (dt, J = 12.9, 3.3 Hz, 1H, C₇), 1.56 (m, 1H, C₆), 1.53 (m, 1H, C₁), 1.46 (s, 3H, C₁₅), 1.29 (m, 1H, C₇), 1.21 (s, 3H, C₁₈), 1.18 (d, J = 6.8 Hz, 3H, C₁₆), 1.17 (m, 1H, C₈), 0.89 (d, J = 7.2 Hz, 3H, C₁₇).

¹³C NMR (101 MHz, CDCl₃): δ 216.9 (*C*₃=O), 212.5 (*C*₁₄=O), 138.5 (*C*₁₉), 116.1 (*C*₂₀), 98.1 (O*C*H₂OCH₃), 81.9 (*C*₁₁), 57.9 (*C*₄), 56.8 (OCH₂O*C*H₃), 50.6 (*C*₅), 48.1 (*C*₁₂), 47.5 (*C*₁₃), 45.6 (*C*₉), 36.5 (*C*₆), 35.5 (*C*₁₀), 34.6 (*C*₂), 31.0 (*C*₈), 27.9 (*C*₁₈), 26.1 (*C*₇), 24.7 (*C*₁), 21.0 (*C*₁₅), 16.2 (*C*₁₆), 11.1 (*C*₁₇).

FTIR (AT-IR): 2957, 1734, 1698, 1455, 1089, 1035, 916 cm⁻¹.

HRMS (TOF, ES+): calc'd $C_{22}H_{34}O_4 [(M+H)-H_2]^+$ 361.2379, found 361.2396.

 $[\alpha]_{D}^{23}$: +34.0° (*c* = 0.951, CHCl₃).

vii. Synthesis of 11-epi and 11,12-bis-epi Dowd-Beckwith rearrangement tricycles (11-epi-26) and (26)

Preparation of MOM protected 11-epi crotylation adduct (11-epi-S5):

A flame-dried, 25 mL round bottom flask equipped with a stir bar was charged with alcohol **13d** (200 mg, 0.360 mmol, 1 equiv), CH_2Cl_2 (1.8 mL), and freshly distilled ^{*i*}Pr₂NEt (1.63 mL, 9.36 mmol, 26 equiv). To the homogeneous solution was added chloromethyl methyl ether (677 µL, 8.92 mmol, 25 equiv) dropwise over 10 min, taking care to vent HCl fumes formed via the use of a needle. The reaction was stirred at ambient temperature for 20 h. The resulting viscous, orange mixture was quenched via addition of sat. aq. NaHCO₃ (10 mL) and stirred at ambient temperature for 30 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL) and washed with H_2O (10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated via distillation to afford a viscous, dark orange residue.

Purification was achieved via flash column chromatography on SiO₂ [4 g SiO₂, Et₂O/hexanes = $16\% \rightarrow 35\%$] to afford MOM ether **11**-*epi*-**S5** (187 mg, 0.0.31 mmol, 86% yield) as a puffy white solid.

TLC (40% Et₂O/hexanes): $R_f = 0.4$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 7.49 – 7.36 (m, 6H, OC*Ph*₃), 7.35 – 7.17 (m, 9H, OC*Ph*₃), 5.85 (dd, *J* = 17.7, 10.8 Hz, 1H, C₁₉), 5.46 (s, 1H, C₁₇), 4.96 – 4.90 (m, 2H, C₁₇, C₂₀), 4.82 (dd, *J* = 17.7, 1.3 Hz, 1H, C₂₀), 4.57 (d, *J* = 6.9 Hz, 1H, OC*H*₂OCH₃), 4.51 (d, *J* = 6.9 Hz, 1H, OC*H*₂OCH₃), 3.86 (s, 1H, C₁₁), 3.34 (s, 3H, OCH₂OC*H*₃), 3.08 (t, *J* = 7.2 Hz, 2H, C₁₄), 2.41 (dd, *J* = 12.8, 7.8 Hz, 1H, C₂), 2.29 – 2.10 (m, 6H, C₁, C₆, C₁₅), 2.07 – 2.02 (m, 1H, C₈), 1.89 (dt, *J* = 10.9, 7.3 Hz, 2H, C₁₃), 1.63 – 1.41 (m, 2H, C₂, C₇), 1.26 – 1.15 (m, 2H, C₇, C₈), 1.09 (d, *J* = 7.0 Hz, 3H, C₁₆), 0.95 (s, 3H, C₁₈).

¹³C NMR (101 MHz, CDCl₃): δ 208.5 (C₃=*O*), 150.8 (C₅), 149.3 (C₁₀), 144.4 (OC*Ph*₃), 143.6 (C₁₉), 137.2 (C₄), 128.6 (OC*Ph*₃), 127.6 (OC*Ph*₃), 126.7 (OC*Ph*₃), 122.4 (C₁₇), 113.6 (C₂₀), 95.8 (O*C*H₂OCH₃), 86.8 (O*C*Ph₃), 82.2 (C₁₁), 60.7 (C₁₄), 56.2 (OCH₂O*C*H₃), 51.3 (C₉), 45.1 (C₁₂), 37.5 (C₆), 37.0 (C₁₃), 35.7 (C₁), 33.3 (C₈), 32.3 (C₂), 28.7 (C₇), 20.1 (C₁₈), 19.2 (C₁₆), 17.0 (C₁₅).

FTIR (thin film, NaCl): 2928, 1707, 1631, 1448, 1212, 1151, 1033, 917, 705 cm⁻¹. HRMS (TOF, ES+): calc'd for C₄₁H₄₈O₄Na [M+Na]⁺ 627.3450, found 627.3453. $[\alpha]_D^{23}$: -60.1° (c = 0.355, CHCl₃). Preparation of alcohol (11-epi-S6):

A 100 mL round bottom flask equipped with a stir bar was charged with MOM ether **11**-*epi*-**S5** (150 mg, 0.248 mmol, 1 equiv). Thereafter, a freshly prepared solution of formic acid (98%, 1.56 mL) and Et₂O (1.56 mL) was rapidly added, and within 5 min, the reaction was judged to be complete by TLC analysis. We found it critical to stop this reaction immediately after full conversion was achieved. Prolonged times afforded copious quantities of formate ester product. The reaction was diluted with Et₂O (5 mL) and quenched via slow addition of NaHCO₃ (25 mL). The aqueous layer was extracted with Et₂O (4 x 10 mL) and washed with H₂O (10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford a viscous yellow residue.

Purification was achieved via flash column chromatography on SiO₂ [Et₂O/hexanes = $70\% \rightarrow 90\%$] to afford alcohol **11-***epi***-S6** (80.0 mg, 0.221 mmol, 89% yield) as a viscous, colorless oil.

TLC (40% Et₂O/hexanes): $R_f = 0.09$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 6.05 (dd, J = 17.7, 10.9 Hz, 1H, C₁₉), 5.54 (s, 1H, C₁₇), 5.11 (dd, J = 10.9, 1.2 Hz, 1H, C₂₀), 5.04 (dd, J = 17.7, 1.2 Hz, 1H, C₂₀), 4.98 (s, 1H, C₁₇), 4.63 (d, J = 7.0 Hz, 1H, OCH₂OCH₃), 4.55 (d, J = 7.0 Hz, 1H, OCH₂OCH₃), 3.94 (s, 1H, C₁₁), 3.67 (tt, J = 7.2, 3.8 Hz, 2H, C₁₄), 3.39 (s, 3H, OCH₂OCH₃), 2.44 (dd, J = 13.0, 7.7 Hz, 1H, C₂), 2.28 – 2.05 (m, 7H, C₁, C₆, C₈, C₁₅), 1.88 (t, J = 7.0 Hz, 2H, C₁₃), 1.60 – 1.45 (m, 2H, C₂, C₇), 1.28 – 1.18 (m, 2H, C₇, C₈), 1.12 (s, 3H, C₁₈), 1.08 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.4 (C₃=*O*), 151.0 (C₅), 149.2 (C₁₀), 144.1 (C₁₉), 137.1 (C₄), 122.8 (C₁₇), 114.0 (C₂₀), 95.6 (O*C*H₂OCH₃), 82.2 (C₁₁), 59.8 (C₁₄), 56.3 (OCH₂O*C*H₃), 51.3 (C₉), 45.2 (C₁₂), 39.9 (C₁₃), 37.5 (C₆), 35.6 (C₁), 33.3 (C₈), 32.3 (C₂), 28.7 (C₇), 20.1 (C₁₈), 19.2 (C₁₆), 17.0 (C₁₅).

FTIR (thin film, NaCl): 3424, 2932, 1707, 1629, 1460, 1212, 1145, 1038, 916, 730 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{22}H_{34}O_4Na [M+Na]^+$ 385.2355, found 385.2347.

 $[\alpha]_{D}^{23}$: -138.9° (*c* = 0.29, CHCl₃).

Stahl Oxidation:⁶

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol **11**-*epi*-**S6** (69.0 mg, 0.190 mmol, 1 equiv) and MeCN (1.9 mL). Thereafter, added 377 μ L of the [Cu]/bpy stock solution, 377 μ L of the NMI stock solution, and 377 μ L of the ABNO stock solution, in that order. The orange reaction was stirred at 960 rpm open to the atmosphere for 90 min. Subsequently, the resulting light blue solution was diluted with Et₂O (1 mL), passed through a short pad of SiO₂ using Et₂O as the eluent, and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [10 g SiO₂, Et₂O/hexanes = $30\% \rightarrow 60\%$] to afford aldehyde **11**-*epi*-**14** (66.4 mg, 0.184 mmol, 97% yield) as a viscous, colorless oil that solidified to a white solid upon standing in the freezer.

Preparation of stock solutions: See page S15.

TLC (40% Et₂O/hexanes): $R_f = 0.59$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 9.75 (dd, J = 3.7, 2.3 Hz, 1H, C₁₄), 6.11 (dd, J = 17.6, 10.9 Hz, 1H, C₁₉), 5.46 (s, 1H, C₁₇), 5.17 (dd, J = 10.9, 0.8 Hz, 1H, C₂₀), 5.10 (dd, J = 17.7, 0.8 Hz, 1H, C₂₀), 5.03 (s, 1H, C₁₇), 4.57 (d, J = 7.1 Hz, 1H, OCH₂OCH₃), 4.47 (d, J = 7.1 Hz, 1H, OCH₂OCH₃), 4.03 (s, 1H, C₁₁), 3.37 (s, 3H, OCH₂OCH₃), 2.61 (dd, J = 15.0, 3.7 Hz, 1H, C₁₃), 2.55 (dd, J = 15.0, 2.3 Hz, 1H, C₁₃), 2.43 (dd, J = 13.0, 6.5 Hz, 1H, C₂), 2.26 – 2.03 (m, 7H, C₁, C₆, C₈, C₁₅), 1.64 – 1.46 (m, 3H, C₂, C₇), 1.31 (s, 3H, C₁₈), 1.27 – 1.12 (m, 2H, C₇, C₈), 1.08 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.2 (C₃=*O*), 202.9 (C₁₄=*O*), 151.2 (C₅), 148.8 (C₁₀), 141.9 (C₁₉), 136.9 (C₄), 123.3 (C₁₇), 114.8 (C₂₀), 94.7 (OCH₂OCH₃), 80.6 (C₁₁), 56.3 (OCH₂OCH₃), 51.2 (C₉), 50.5 (C₁₃), 45.5 (C₁₂), 37.5 (C₆), 35.6 (C₁), 33.2 (C₈), 32.2 (C₂), 28.8 (C₇), 22.1 (C₁₈), 19.2 (C₁₆), 17.0 (C₂₀).

FTIR (thin film, NaCl): 2931, 1706, 1628, 1457, 1268, 1210, 1144, 1095, 1030, 917 cm⁻¹.

HRMS (TOF, ES+): calc'd for C₂₂H₃₂O₄Na [M+Na]⁺ 383.2198, found 383.2202.

 $[\alpha]_{D}^{23}$: -108.9° (*c* = 0.05, CHCl₃).

Preparation of 11-epi Dowd-Beckwith rearrangement tricycle (11-epi-26):

A 2 dram vial equipped with a stir bar was charged with a solution of aldehyde **11**-*epi*-**14** (30 mg, 0.083 mmol, 1 equiv) in 4.1 mL of THF that had been submitted to five freeze-pump-thaw cycles and H₂O/THF (2.3 mL). The solution was cooled to 0 °C and stirred at this temperature for 5 min. Thereafter, SmI₂/THF (2.52 mL, 0.252 mmol, 3 equiv) was added dropwise over 8 min. The deep blue color of SmI₂ was immediately quenched upon addition of each drop. The first drop afforded a yellow solution, fading to a pale yellow and almost clear by the time 1.6 equiv SmI₂ had been added. When 2.2 equiv SmI₂ had been added, the blue color became increasingly persistent and upon addition of 2.6 equiv SmI₂, the reaction was dark blue/green. After stirring an additional 10 min at 0 °C, TMSCI/THF (762 µL, 0.415 mmol, 5 equiv TMSCI) was added dropwise over 2 min, and the reaction was stirred an additional 10 min. Throughout this time, the deep blue color was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred open to the atmosphere for 5 min.

The resulting pale yellow solution was diluted with Et_2O (2 mL), and washed with H_2O (2 x 1 mL). The aqueous layer was back-extracted with Et_2O (2 x 1 mL), and the combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure to afford a dark orange oil.

Purification was achieved via flash column chromatography on SiO₂ [3 g SiO₂, Et₂O/hexanes = 20%] to afford tricycle **11**-*epi*-**26** (5.8 mg, 0.0169 mmol, 20 % yield) as a white solid.

Preparation of SmI₂: See page S16.

Stock solution of TMSCI: See page S16.

Stock solution of H₂O/THF: See page S29.

TLC (50% Et₂O/hexanes): $R_f = 0.77$ (*p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** 6.06 (dd, J = 17.5, 10.7 Hz, 1H, C₁₉), 5.49 (dd, J = 9.0, 5.7 Hz, 1H, C₁₄), 5.13 (s, 1H, C₁₇), 5.12 (dd, J = 17.5, 1.3 Hz, 1H, C₂₀), 5.06 (s, 1H, C₁₇), 5.02 (dd, J = 10.7, 1.3 Hz, 1H, C₂₀), 4.61 (d, J = 6.7 Hz, 1H, OCH₂OCH₃), 4.46 (d, J = 6.7 Hz, 1H, OCH₂OCH₃), 4.34 (s, 1H, C₁₁), 3.33 (s, 3H, OCH₂OCH₃), 2.51 – 2.35 (m, 3H, C₁, C₂), 2.26 (td, J = 14.0, 13.6, 5.4 Hz, 1H, C₈), 2.15 (dd, J = 13.7, 5.7 Hz, 1H, C₁₃), 2.07 – 1.97 (m, 1H, C₆), 1.99 – 1.88 (m, 1H, C₁), 1.79 (dd, J = 13.8, 9.0 Hz, 1H, C₁₃), 1.77 – 1.66 (dq, J = 14.1, 4.7 Hz, 1H, C₇), 1.43 – 1.35 (m, 1H, C₇), 1.08 (s, 4H, C₈, C₁₅), 1.02 (s, 3H, C₁₈), 0.90 (d, J = 7.0 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 219.2 (C₃), 155.2 (C₁₀), 145.6 (C₁₉), 141.6 (C₄), 120.0 (C₁₄), 111.6 (C₂₀), 107.2 (C₁₇), 93.3 (O*C*H₂OCH₃), 77.7 (C₁₁), 56.9 (C₅), 55.4 (OCH₂O*C*H₃), 45.6 (C₉), 44.9 (C₁₂), 38.8 (C₆), 38.5 (C₂), 37.3 (C₈), 36.5 (C₁₃), 29.7 (C₁), 27.9 (C₇), 19.8 (C₁₅), 18.3 (C₁₈), 13.7 (C₁₆).

FTIR (thin film, NaCl): 2930, 1712, 1632, 1454, 1369, 1213, 1147, 1101, 1042, 908 cm⁻¹.

HRMS (FAB+): calc'd for $C_{22}H_{32}O_3$ [M]⁺ 344.2352, found 344.2381.

 $[\alpha]_{D}^{23}$: -276.7° (*c* = 0.27, CHCl₃).

Preparation of MOM protected 11,12-bis-epi crotylation adduct (11,12-bis-epi-S5):

A flame-dried, 25 mL round bottom flask equipped with a stir bar was charged with alcohol **13b** (20 mg, 0.036 mmol, 1 equiv), CH_2Cl_2 (594 µL), and freshly distilled ^{*i*}Pr₂NEt (163 µL, 0.936 mmol, 26 equiv). To the homogeneous solution was added chloromethyl methyl ether (68 µL, 0.900 mmol, 25 equiv) dropwise over 10 min, taking care to vent HCl fumes formed via the use of a needle. The reaction was stirred at ambient temperature for 36 h. The resulting viscous, orange mixture was quenched via addition of sat. aq. NaHCO₃ (2 mL) and stirred at ambient temperature for 30 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 1 mL). The combined organic layers were washed with H_2O (1 mL), brine (1 mL), dried over Na₂SO₄, and concentrated via distillation to afford a viscous, dark orange residue.

Purification was achieved via flash column chromatography on SiO₂ [5 g SiO₂, Et₂O/hexanes = $16\% \rightarrow 35\%$] to afford MOM ether **11,12-bis**-*epi*-**S5** (12 mg, 0.020 mmol, 79% yield) as a puffy white solid.

TLC (40% Et₂O/hexanes): $R_f = 0.44$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 7.47 – 7.38 (m, 6H, **Ph**₃CO), 7.33 – 7.18 (m, 9H, **Ph**₃CO), 5.74 (dd, *J* = 17.5, 10.8 Hz, 1H, C₁₉), 5.41 (s, 1H, C₁₇), 4.98 (s, 1H, C₁₇), 4.84 (d, *J* = 10.8 Hz, 1H, C₂₀), 4.80 (d, *J* = 17.6 Hz, 1H, C₂₀), 4.50 (d, *J* = 6.9 Hz, 1H, OC*H*₂OCH₃), 4.40 (d, *J* = 7.0 Hz, 1H, OC*H*₂OCH₃), 3.92 (s, 1H, C₁₁), 3.32 (s, 3H, OCH₂OC*H*₃), 3.08 (d, *J* = 22.2 Hz, 2H, C₁₃), 2.38 (s, 1H, C₂), 2.11 (d, *J* = 9.5 Hz, 8H, C₁, C₂, C₆, C₈, C₁₃, C₁₅), 1.85 (s, 1H, C₁₃), 1.47 (m, 2H, C₂, C₇), 1.11 (m, 2H, C₇, C₈), 1.06 (d, *J* = 7.1 Hz, 3H, C₁₆), 0.97 (s, 3H, C₁₈).

¹³C NMR (101 MHz, CDCl₃): δ 208.5 (*C*₃=O), 150.98 (C₅), 149.2 (C₁₀), 144.4 (OC*Ph*₃), 143.1 (C₁₉), 137.3 (C₄), 128.6 (OC*Ph*₃), 127.6 (OC*Ph*₃), 126.8 (OC*Ph*₃), 123.2 (C₁₇), 113.4 (C₂₀), 94.6 (O*C*H₂OCH₃), 86.6 (O*C*Ph₃), 80.3 (C₁₁), 60.7 (C₁₄), 56.3 (OCH₂O*C*H₃), 51.0 (C₉), 44.8 (C₁₂), 38.1 (C₁₃), 37.4 (C₆), 35.6 (C₁), 33.2 (C₈), 32.1 (C₂), 28.6 (C₇), 19.1 (C₁₆), 18.0 (C₁₈), 17.0 (C₁₅). FTIR (thin film, NaCl): 2928, 1708, 1630, 1448, 1211, 1146, 1040, 916 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{41}H_{48}O_4Na [M+Na]^+ 627.3450$, found 627.3445. $[\alpha]_D^{23}: -86.2^{\circ} (c = 0.43, CHCl_3).$

Preparation of alcohol (11,12-bis-epi-S6):

A 2 dram vial equipped with a stir bar was charged with MOM ether **11,12-bis**-*epi*-**S5** (12 mg, 0.020 mmol, 1 equiv). Thereafter, a freshly prepared solution of formic acid (98%, 125 μ L) and Et₂O (125 μ L) was rapidly added, and within 5 min, the reaction was judged to be complete by TLC analysis. We found it critical to stop this reaction immediately after full conversion was achieved. Prolonged times afforded copious quantities of formate ester product. The reaction was diluted with Et₂O (1 mL) and quenched via slow addition of NaHCO₃ (4 mL). The aqueous layer was extracted with Et₂O (4 x 1 mL). The combined organic layers were washed with H₂O (1 mL), brine (1 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford a viscous yellow residue.

Purification was achieved via flash column chromatography on SiO₂ [Et₂O/hexanes = $70\% \rightarrow 90\%$] to afford alcohol **11,12-bis**-*epi*-S6 (5.3 mg, 0.015 mmol, 73% yield) as a viscous, colorless oil.

TLC (70% Et_2O /hexanes): $R_f = 0.13$ (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 5.97 (dd, J = 17.5, 10.9 Hz, 1H, C₁₉), 5.48 (s, 1H,C₁₇), 5.07 – 4.99 (m, 3H, C₁₇, C₂₀), 4.56 (d, J = 7.0 Hz, 1H, (OCH₂OCH₃), 4.45 (d, J = 7.0 Hz, 1H, OCH₂OCH₃), 4.07 (s, 1H, C₁₁), 3.67 (qdd, J = 10.9, 7.7, 6.4 Hz, 2H, C₁₄), 3.38 (s, 3H, OCH₂OCH₃), 2.47 (dd, J = 13.0, 7.0 Hz, 1H, C₂), 2.27 – 2.11 (m, 4H, C₁, C₆, C₈), 2.11 (s, 3H, C₁₅), 1.96 (ddd, J = 13.6, 7.6, 6.0 Hz, 1H, C₁₃), 1.86 (dt, J = 13.7, 7.2 Hz, 1H, C₁₃), 1.56 – 1.40 (m, 2H, C₂, C₇), 1.19 – 1.11 (m, 2H, C₇, C₈), 1.11 (s, 3H, C₁₈), 1.07 (d, J = 7.1 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.4 (C₃=O), 151.1 (C₅), 149.2 (C₁₉), 143.7 (C₄), 137.3 (C₄), 123.5 (C₁₇), 113.8 (C₂₀), 94.4 (O*C*H₂OCH₃), 80.2 (C₁₁), 60.0 (C₁₄), 56.3 (OCH₂O*C*H₃), 51.1 (C₉), 45.0 (C₁₂), 41.4 (C₁₃), 37.5 (C₆), 35.7 (C₁), 33.3 (C₈), 32.1 (C₂), 28.6 (C₇), 19.1(C₁₆), 17.5 (C₁₈), 17.1 (C₁₅).

FTIR (thin film, NaCl): 3407, 2931, 1706, 1628, 1442, 1211, 1146, 1034, 915 cm⁻¹.

HRMS (TOF, ES+): calc'd for C₂₂H₃₄O₄Na [M+Na]⁺ 385.2355, found 385.2353.

 $[\alpha]_{D}^{23}$: -177.9° (c = 0.135, CHCl₃).

Stahl Oxidation:⁶

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol **11,12-bis-***epi***-S6** (210 mg, 0.580 mmol, 1 equiv) and MeCN (1.5 mL). Thereafter, added 1.1 mL of the [Cu]/bpy stock solution, 1.1 mL of the NMI stock solution, and 1.1 mL of the ABNO stock solution, in that order. The orange reaction was stirred at 960 rpm open to the atmosphere for 90 min. Subsequently, the resulting light blue solution was diluted with Et_2O (5 mL), passed through a short pad of SiO_2 using Et_2O as the eluent, and concentrated under reduced pressure to afford a pale yellow oil.

Purification was achieved via flash column chromatography on SiO₂ [10 g SiO₂, Et₂O/hexanes = $30\% \rightarrow 60\%$] to afford aldehyde **22** (196 mg, 0.544 mmol, 92% yield) as a viscous, colorless oil that solidified to a white solid upon standing in the freezer.

Preparation of stock solutions: See page S15.

TLC (40% Et₂O/hexanes): $R_f = 0.59$ (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CDCl₃):** δ 9.74 (dd, J = 3.5, 2.2 Hz, 1H, C₁₄), 6.02 (dd, J = 17.7, 10.7 Hz, 1H, C₁₉), 5.45 (d, J = 1.2 Hz, 1H, C₁₇), 5.15 – 5.02 (m, 3H, C₁₇, C₂₀), 4.52 (d, J = 7.1 Hz, 1H, OC*H*₂OCH₃), 4.37 (d, J = 7.1 Hz, 1H, OC*H*₂OCH₃), 4.16 (d, J = 1.1 Hz, 1H, C₁₁), 3.33 (s, 3H, OCH₂OC*H*₃) 2.57 (dd, J = 15.6, 3.5 Hz, 1H, C₂, C₁₃), 2.53 – 2.41 (m, 2H, C₂, C₁₃), 2.28 – 2.11 (m, 4H, C₁, C₆, C₈), 2.11 (s, 3H, C₁₅), 1.59 – 1.50 (m, 1H, C₂), 1.50 – 1.42 (m, 1H, C₇), 1.28 (s, 3H, C₁₈), 1.22 – 1.08 (m, 2H, C₇, C₈), 1.07 (d, J = 7.1 Hz, 3H, C₁₆).

¹³C NMR (101 MHz, CDCl₃): δ 208.3 (C₃=O), 202.2 (C₁₄=O), 151.3 (C₅), 148.6 (C₁₀), 142.9 (C₁₉), 137.1 (C₄), 123.7 (C₁₇), 114.3 (C₂₀), 93.8 (OCH₂OCH₃), 78.7 (C₁₁), 56.5 (OCH₂OCH₃), 52.6 (C₁₃), 51.0 (C₉), 45.2 (C₁₂), 37.5 (C₆), 35.6 (C₁), 33.2 (C₈), 32.0 (C₂), 19.2 (C₁₆), 18.7 (C₁₈), 17.1 (C₁₅).

FTIR (thin film, NaCl): 2930, 1709, 1629, 1443, 1372, 1211, 1147, 1096, 1038, 917 cm⁻¹.

HRMS (TOF, ES+): calc'd for $C_{22}H_{32}O_4Na [M+Na]^+ 383.2198$, found 383.2190.

 $[\alpha]_{D}^{23}$: -164.5° (*c* = 0.393, CHCl₃).

Preparation of 11,12-bis-epi Dowd-Beckwith rearrangement tricycle (26)

A 2 dram vial equipped with a stir bar was charged with a solution of aldehyde **22** (35 mg, 0.097 mmol, 1 equiv) in 4.8 mL of THF that had been submitted to five freeze-pump-thaw cycles and H₂O/THF (2.7 mL). The solution was cooled to 0 °C and stirred at this temperature for 5 min. Thereafter, SmI₂/THF (2.9 mL, 0.294 mmol, 3 equiv) was added dropwise over 8 min. The deep blue color of SmI₂ was immediately quenched upon addition of each drop. The first drop afforded a yellow solution, fading to a pale yellow and almost clear by the time 1.6 equiv SmI₂ had been added. When 2.2 equiv SmI₂ had been added, the blue color became increasingly persistent and upon addition of 2.6 equiv SmI₂, the reaction was dark blue/green. After stirring an additional 10 min at 0 °C, TMSCI/THF (889 μ L, 0.490 mmol, 5 equiv TMSCI) was added dropwise over 2 min, and the reaction was stirred an additional 10 min. Throughout this time, the deep blue color was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred open to the atmosphere for 5 min.

The resulting pale yellow solution was diluted with Et_2O (2 mL), and washed with H_2O (2 x 1 mL). The aqueous layer was back-extracted with Et_2O (2 x 1 mL), and the combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure to afford a dark orange oil.

Purification was achieved via flash column chromatography on SiO₂ [3 g SiO₂, Et₂O/hexanes = 20%] to afford tricycle **26** (7 mg, 0.020 mmol, 21% yield) as a white solid.

Preparation of SmI₂: See page S16.

Stock solution of TMSCI: See page S16.

Stock solution of H₂O/THF: See page S29.

TLC (30% Et₂O/hexanes): $R_f = 0.33$ (*p*-anisaldehyde).

¹**H NMR** (400 MHz, CDCl₃): δ 6.11 (dd, J = 17.6, 10.9 Hz, 1H, C₁₉), 5.53 (dd, J = 9.0, 5.5 Hz, 1H, C₁₄), 5.10 (dd, J = 11.0, 1.4 Hz, 1H, C₂₀), 5.07 (d, J = 0.8 Hz, 1H, C₁₇), 5.03 (d, J = 0.8 Hz, 1H, C₁₇), 5.00 (dd, J = 17.7, 1.5 Hz, 1H, C₂₀), 4.63 (d, J = 6.8 Hz, 1H, OCH₂OCH₃), 4.49 (d, J = 6.7 Hz, 1H, OCH₂OCH₃), 4.21 (s, 1H, C₁₁), 3.38 (s, 3H, OCH₂OCH₃), 2.49 – 2.36 (m, 3H, C₁, C₂), 2.35 – 2.18 (m, 2H, C₈, C₁₃), 2.02 (tq, J = 9.4, 3.6, 2.4 Hz, 1H, C₆), 1.92 (ddd, J = 11.7, 9.0, 6.1 Hz, 1H, C₂), 1.81 – 1.65 (m, 1H, C₇), 1.61 (dd, J = 13.6, 9.0 Hz, 1H, C₁₃), 1.45 – 1.36 (m, 1H, C₇), 1.26 (d, J = 0.9 Hz, 3H, C₁₈), 1.10 (s, 3H, C₁₅), 1.10 – 1.01 (m, 1H, C₈), 0.92 (d, J = 7.0 Hz, 3H, C₁₆). ¹³C NMR (101 MHz, CDCl₃): δ 219.1 (C₃=*O*), 155.2 (C₁₀), 142.3 (C₁₉), 141.8 (C₁₀), 119.8 (C₁₇), 112.3 (C₂₀), 106.7 (C₁₄), 93.1 (OCH₂OCH₃), 79.9 (C₁₁), 56.9 (C₅), 55.4 (OCH₂OCH₃), 45.1 (C₉), 45.0 (C₁₂), 38.7 (C₆), 38.5 (C₁), 37.1 (C₈), 35.6 (C₁₃), 29.6 (C₂), 27.8 (C₇), 23.1 (C₁₈), 19.8 (C₁₅), 13.7 (C₁₆). FTIR (thin film, NaCl): 2923, 2853, 1711, 1461, 1378, 1261, 1142, 1101, 1040 cm⁻¹. HRMS (TOF, ES+): calc'd for C₂₂H₃₃O₃ [M+H]⁺ 345.2430, found 345.2409. [α]²³: -78.7° (c = 0.045, CHCl₃).

3. Single Crystal X-ray Diffraction Data

Low-temperature diffraction data (φ - and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu-K_a radiation ($\lambda = 1.54178$ Å) from a I_µS HB micro-focus sealed X-ray tube. All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEXII software.¹² Absorption corrections were applied using SADABS.¹³ The structure was solved by intrinsic phasing using SHELXT¹⁴ and refined against F² on all data by full-matrix least squares with SHELXL-2014¹⁵ using established refinement techniques.¹⁶ All non-hydrogen atoms were refined anisotropically. Unless otherwise noted, all hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl and hydroxyl groups). Crystallographic data for **16**, **17**, and **26** can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif under CCDC deposition numbers 1589653-1589655. Graphical representation of the structure with 50% probability thermal ellipsoids was generated using Mercury visualization software.¹⁷

	16	17	26
CCDC Number	1589655	1589654	1589653
Empirical formula	$C_{22}H_{34}O_{6}$	$C_{22}H_{34}O_4$	$C_{22}H_{32}O_{3}$
Formula weight	394.49	362.49	344.47
Т (К)	100	100	100
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	P212121	P212121	P212121
a, Å	7.2336(4)	8.8601(3)	7.4344(9)
b, Å	16.5583(8)	11.6560(4)	11.7916(15)
c, Å	34.6198(18)	37.8871(14)	21.810(3)
α, °	90	90	90
β, °	90	90	90
γ, °	90	90	90
Volume, Å ³	4146.6(4)	3912.7(2)	1912.0(4)
Z	8	8	4
$d_{\rm calc}, {\rm g/cm}^3$	1.264	1.231	1.197
Abs. coeff. (mm^{-1})	0.738	0.658	0.609
θ range, °	2.552 to 79.430	3.968 to 79.461	4.054 to 78.898
Abs. correction	Semi-empirical	Semi-empirical	Semi-empirical
GOF	1.066	1.097	1.064
R_{I} , ^a wR_{2} , ^b [I>2 σ (I)]	0.0345, 0.0897	0.0339, 0.0877	0.0291, 0.0764
Flack parameter	0.04(3)	0.06(2)	0.00(4)
Extinction coefficient	n/a	0.00096(12)	0.0103(7)

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]^{1/2}.$

Figure S1: Structure of **16** with 50% probability anisotropic displacement ellipsoids. The second molecule of **16** is omitted for clarity.

Special Refinement Details for 16

Compound **16** crystallizes in the orthorhombic space group $P2_12_12_1$ with two molecules in the asymmetric unit. The coordinates for the hydrogen atoms bound to O2A, O4A, O2B, and O4B were located in the difference Fourier synthesis and refined using a riding model. No hydrogen bond acceptor was found for O2B. Absolute configuration was determined by anomalous dispersion (Flack = 0.04(3)).¹⁶

Figure S2: Structure of **17** with 50% probability anisotropic displacement ellipsoids. The second molecule of **17** is omitted for clarity.

Special Refinement Details for 17

Compound 17 crystallizes in the orthorhombic space group $P2_12_12_1$ with two molecules in the asymmetric unit. The coordinates for the hydrogen atoms bound to O2A and O2B were located in the difference Fourier synthesis and refined using a riding model. Absolute configuration was determined by anomalous dispersion (Flack = 0.06(2)).¹⁶

Figure S3: Structure of 26 with 50% probability anisotropic displacement ellipsoids.

Special Refinement Details for 26

Compound **26** crystallizes in the orthorhombic space group $P2_12_12_1$ with one molecule in the asymmetric unit. Absolute configuration was determined by anomalous dispersion (Flack = 0.00(4)).¹⁶

4. References

- 1. White, J. D.; Grether, U. M.; Lee, C-S. Org. Synth. 2005, 82, 108 114.
- Singh, D.; Paddon, C. J.; Cherry, J.; Maurya, G.; Mahale, G.; Patel, Y.; Kumar, N.; Singh, S.; Sharma, B.; Kushwaha, L.; Singh, S.; Kumar, A. Org. Process. Dev. 2017, 21, 551 – 558.
- 3. Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 497 500.
- 4. Dauben, W. G.; Michno, D. M. J. Org. Chem. 1977, 42, 682 685.
- 5. Alam, R.; Vollgraff, T.; Eriksson, L.; Szabó, K. J. J. Am. Chem. Soc. 2015, 137, 11262–11265.
- 6. Stahl, S. S.; Steves, J. E. J. Am. Chem. Soc. 2013, 135, 15742 15745.
- 7. Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 1300.
- 8. Fazakerley, N. J.; Helm, M. D.; Procter, D. J. Chem. Eur. J. 2013, 19, 6718.
- 9. Hasler, H. Neue aspekte der biosynthese von pleuromutilin. Ph.D. Dissertation, Eidgenössische Technische Hochschule Zürich, **1979**.
- 10. 10. Schulz, G.; Berner, H. Tetrahedron 1984, 40, 905-917.
- 11. Mulzer, J.; Berger, M. J. Org. Chem. 2004, 69, 891 898.
- 12. APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006.
- 13. Sheldrick, G.M. "SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector Frames", University of Göttingen, 2008.
- 14. Sheldrick, G. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
- 15. Müller, P. Crystallogr. Rev. 2009, 15, 57.
- 16. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler M.; van de Streek, J. J. Appl. Cryst. 2006, 39, 453.
- 17. Parsons, S; Flack, H. D; Wagner, T. Acta Crystallogr. 2013, B69, 249.

Parameter	Value		S62
Data File Name	/ Volumes/ nmrdata-3/ sfeng/ nmr/ trisubstituted cyclohexenone/ 2/ fid		
Title	trisubstituted cyclohexenone.2.fid		\sim
Origin	Bruker BioSpin GmbH		
Solvent	CDCI3		
Temperature	294.9		
Pulse Sequence	zgpg30		•
Number of Scans	1024		
Receiver Gain	78.7		9
Relaxation Delay	2.0000		
Pulse Width	10.0000		
Acquisition Time	1.3631		
Acquisition Date	2017-02-15T22:02:57		
Spectrometer Frequency	/ 100.62		
Spectral Width	24038.5		2.226 5.71.85 9.28 9.28
Lowest Frequency	-1960.9 ⁸⁰ / ₆₁ ⁴² / ₄	g	15.0 22
Nucleus	13C 1	- 77.0	
Acquired Size	32768	DCl3 -	
Spectral Size	65536	ŭ	
210 200 190			

Parameter	Value						S64
Data File Name	Z:/ sfeng/ nmr/ SSF-II-268-characterization/ 5/ fid						
Title	SSF-II-268-characterization.5.fid						
Origin	Bruker BioSpin GmbH				\sim	Me	
Solvent	CDCI3				/ ···./	\sim	
Temperature	295.0						
Pulse Sequence	zgpg30				م_ن ک	Me	
Number of Scans	512					ő	
Receiver Gain	87.8				\sim		
Relaxation Delay	1.0000			0.01	10)	
Pulse Width	10.0000						
Acquisition Time	1.3631						
Acquisition Date	2017-08-09T17:14:41						
Spectrometer Frequency	100.62	(N		85 85	4.80 4.48 5.76 5.76 8.89 4.49	
Spectral Width	24038.5	16.05	02.3		- 49 - 44 - 44		
Lowest Frequency	-1958.4	\ \ \ \ \ \ _		8			
Nucleus	13C			- 77.(
Acquired Size	32768			DC			
Spectral Size	65536 ² ² ⁴ ¹			5			

210 200 190 180

170

160

150

140

130 120 110 ppm

100 90

80

70

60 50 40

20 10

C

30

Parameter	Value			S68
Data File Name	/ Volumes/ nmrdata-1/ fscha/ nmr/ fes-1-106-c-data/ 2/ fid			
Title	fes-1-106-c-data 2 fid			
Origin	Bruker BioSpin GmbH			1
Solvent	CDCI3			
Temperature	295.0		o∕~o √∕	Me
Pulse Sequence	zgpg30			
Number of Scans	512		· · · ·	
Receiver Gain	72.0			
Relaxation Delay	1.0000		S1	
Pulse Width	10.0000		88. 9	
Acquisition Time	1.3631			
Acquisition Date	2017-10-23T22:43:49			
Spectrometer Frequenc	y 100.62			
Spectral Width	24038.5	1.90	128 128 128 128 128 128 128 128 128 128	35
Lowest Frequency	-1961.9 0.	110	0 0 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1	- 14.
Nucleus	13C ¹			
Acquired Size	32768			
Spectral Size	65536		8	
1.61	03			
-21	145			
	المراجع والمراجع	وسيوال وجموعته الجام بعام المعام المعالية الم	ի, ուսանակուս, է մարչու կին լել այս ավելվերվե	
a na mana ang ang ang ang ang ang ang ang ang	արվել երկերությունը կերերությունը հետությունը։ Դերեր հիմենակությունը կերերությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետությունը հետո	ta na manana manana ang kanana na manana na manana Na manana mana	n na maninan ang kanang ka Tang mang kanang kan	
والطراء ياميل بطادهم وأطرفه مامليا طاعمانهم المعاف طاء مشيقا ملاله فالمنطق مرديدي	ياضي وقطرهل ملاغت بترغيب لأرش أوران أداها أسلام المقاليط فلمنا وخالو أسادينا ماليس أأفرا للمقدرا ومعلقة معلوما فالماد يسترمعان	أيام والحاديا بالادان والاراصان والدينا بلديا الأبار المروان والالبالية والمرابعة المرابع والادالية ومراق	فالملألية في على مرتقة لا فلغينام الول ، هي بلنامينيا منا يعيم بلن المشاهمية فرينية بالمستقل بالمستقل المعيمية ،	an tea an
210 200 100				
210 200 190	100 170 100 100 140 130 120	ppm 100 90 80		20 IU L

Parameter	Value		
e Name	Z:/ sfeng/ nmr/ SSF-II-265-characterization/ 5/ fid		
	SSF-II-265-characterization.5.fid		
n	Bruker BioSpin GmbH		
rent	CDCI3		
nperature	294.9		
se Sequence	zgpg30		
mber of Scans	512	////	37.72 35.67 33.18 33.18 28.20 5.91
ceiver Gain	87.8		
laxation Delay	1.0000		
lse Width	10.0000		8 0 1
quisition Time	1.3631	O Me	- 77.6
quisition Date	2017-08-03T16:00:34		DCI
ectrometer Frequen	ncy 100.62	12	0
ectral Width	24038.5		
west Frequency	-1960.9		
cleus	13C		
quired Size	32768		0.58
ectral Size	65536		

210 200 190 180 170

160

150

140

130

120 110 ppm 100 90 80

60 50 40

70

10

20

C

30

Parameter	Value	S100
Data File Name	Y:/ efarney/ vnmrsys/ data/ EPF3256 Pdt FINAL/ CARBON01.fid/ fid	
Title	CARBON01	
Origin	Varian	
Solvent	cdcl3	Me ¹ ·1-\H,H
Temperature	25.0	
Pulse Sequence	s2pul	Me
Number of Scans	1024	
Receiver Gain	30	
Relaxation Delay	1.0000	
Pulse Width	4.6125	\vec{n} (1) plauramutilin (1)
Acquisition Time	1.0420	
Acquisition Date	2017-08-17T07:26:33	
Spectrometer Frequenc	/ 125.65	
Spectral Width	31446.5	226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57 226.57
Lowest Frequency	-1907.2	9.71
Nucleus	13C	
Acquired Size	32768	
Spectral Size	65536 ^{°°} _N _°	
na na kana kana kana kana kana kana kan		
230 220 210 20	0 190 180 170 160 150 140 130 120 110 100 90 80	70 60 50 40 30 20 10 C

SSF-III-78-characterization.1.fid

110 ppm

Parameter	Value		S112
Data File Name	/ Volumes/ nmrdata/ sfeng/ nmr/ SSF-III-33-flashed/ 5/	ïd	
Title	SSF-III-33-flashed.5.fid		MOMO
Origin	Bruker BioSpin GmbH		Me
Solvent	CDCI3		H→((
Temperature	294.9		FE."H
Pulse Sequence	zgpg30		T OH
Number of Scans	512		T C Me
Receiver Gain	87.8		
Relaxation Delay	1.0000		0. 22
Pulse Width	10.0000		່ 0
Acquisition Time	1.3631		8 12 -00-17
Acquisition Date	2017-10-30T17:14:01		12-epi-17
Spectrometer Frequence	y 100.62		× + +
Spectral Width	24038.5 o o		66.9 55.95 5
Lowest Frequency	-1961.0 0.00	4 N	
Nucleus	13C	11.3	
Acquired Size	32768	-92	
Spectral Size	65536		
210 200 190	180 170 160 150 140 130 120	110 100 90 80 ppm	70 60 50 40 30 20 10 C

Parameter	N	/alue							S122
Data File Name	Z:/ sfeng/ nmr/ SSF-II-	248-characteriza	ation/ 1/ fid						
Title	SSF-II-248-characteriz	ation.1.fid	62 13						
Origin	Bruker BioSpin GmbH		128. 127. 127.						
Solvent	CDCI3								
Temperature	295.0								
Pulse Sequence	zgpg30								
Number of Scans	512								
Receiver Gain	55.5								
Relaxation Delay	1.0000			EtO、					
Pulse Width	10.0000			Υ					
Acquisition Time	1.3631			ő					
Acquisition Date	2017-07-27T21:24:54			Ū.	60				
Spectrometer Frequency	100.62				30				
Spectral Width	24038.5								
Lowest Frequency	-1958.4								
Nucleus	13C								
Acquired Size	32768								
Spectral Size	65536								
		22				77.00			
		- 143				i ő			
						CD	C N		
							61.90 61.07		0.32
					90		Y		7
		3.67			80.9	4.00			
		- 153			Y li				
· · · · · ·						1 1	- <u> </u>		· · · · · · · · · · · · · · · · · · ·
210 200 190	180 170 160	150 140) 130 120	110 100 ppm	90 8	30 70	60 50) 40 30	20 10 C

Parameter	Value		28.69 27.69 26.84					S
Data File Name	Z:/ sfeng/ nmr/ SSF-II-251-c	characterizatio	n/ 1½fie					
Title	SSF-II-251-characterization	.1.fid						
Origin	Bruker BioSpin GmbH							
Solvent	CDCI3			C C	OTrt	OTrt	OTrt	OTrt
Temperature	295.0							
Pulse Sequence	zgpg30			EtO	EtO ^r Me	EtO' Me	EtO' Me	EtO' Me
Number of Scans	512							
Receiver Gain	78.7				<i>Z</i> -S9	<i>Z</i> -S9	<i>Z</i> -S9	<i>Z</i> -S9
Relaxation Delay	1.0000							
Pulse Width	10.0000							
Acquisition Time	1.3631							
Acquisition Date	2017-07-27T22:09:13							
Spectrometer Frequency	/ 100.62							
Spectral Width	24038.5							
Lowest Frequency	-1960.8							
Nucleus	13C				77.00	00.77		00'22
Acquired Size	32768	2						
Spectral Size	65536	144.2			CD	Ö	ð	CO
		Ì						
								8
				17.47	74.71	17.47	17.47 17.47 9.47 68 68	17.47 17.47 - 26.
				Ì	Ī			
	i6.24 – 157				36.59	98 98		
	<u> </u>				Ĩ	Ĩ		Ĩ IIIII
~						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	

Parameter		Value					S131
Data File Name	/ Volumes/ nmrdata-1/ fso	cha/ nmr/ FES-1-152-2	-data/ 1/ fid				
Title	FES-1-152-2-data.1.fid	28.6	25.1				
Origin	Bruker BioSpin GmbH						
Solvent	CDCI3						
Temperature	294.9						
Pulse Sequence	zgpg30						
Number of Scans	512						
Receiver Gain	78.7					Me	
Relaxation Delay	1.0000						
Pulse Width	10.0000				но	$\sim\sim\sim_{c}$	DTrt
Acquisition Time	1.3631						
Acquisition Date	2017-12-04T21:36:26				2.00	E-S10	
Spectrometer Frequency	100.62				1 ₃ – 7		
Spectral Width	24038.5				CDC		
Lowest Frequency	-1963.5						
Nucleus	13C						
Acquired Size	32768						
Spectral Size	65536						
		4.28					
		- 14					
					33.66	Ν	
		•			62.2	39.8	6.56
		37.09		2 L		Ť	- 16
		- 13		86.4			
				Ĩ			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
· · · · · · ·	· · · · · · · ·	· _ · _ · _ · _ · _ · _ ·	· · · · ·		· · · · · ·		
210 200 190	180 170 160	150 140 130	120 110 ppm	100 90 80	0 70 60	50 40 30	20 10


























Parameter	Value Mo S145	
Data File Name	/ Volumes/ nmrdata/ sfeng/ nmr/ SSF-III-76-characterization/ 1/ fid	
Title	SSF-III-76-characterization.1.fid	
Origin	Bruker BioSpin GmbH	
Solvent	CDCI3	
Temperature	294.9	
Pulse Sequence	zgpg30	
Number of Scans	512	
Receiver Gain	72.0 B O'	
Relaxation Delay		
Pulse Width	10.0000	
Acquisition Time	1.3631	
Acquisition Date	2017-11-27T15:00:32 m g g g 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Spectrometer Frequency		
Spectral Width		
Lowest Frequency	-1960.9	
Nucleus		
Acquired Size	32768	
Spectral Size	65536	
208		
والمتحافة وريته وألواء أوروانين الإيرانية فمنتجرين وطرحه وتشريقهم والمتلالة ويترجله فاست		والمثل المتع
טיאר אין איז און איז איז איז און איז		(Print)
210 200 190	180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm	



















Parameter		Value			1.	S155
Data File Name	/ Volumes/ nmrdata/ sfeng/ r	nmr/ SSF-III-27-character	rization/ 5/ fid			
Title	SSF-III-27-characterization.	5.fid			н/	
Origin	Bruker BioSpin GmbH				i/-M	e
Solvent	CDCI3			N I	иомо—қ (	
Temperature	294.9				FE-	•
Pulse Sequence	zgpg30					0
Number of Scans	500					7 ma
Receiver Gain	64.2			0		<i>L</i> we
Relaxation Delay	1.0000			.77.0	Me	
Pulse Width	10.0000			DCI3 -	0	
Acquisition Time	1.3631			5	00	
Acquisition Date	2017-11-26T13:12:34				22	
Spectrometer Frequency	y 100.62					7.47 3.16 8.75 8.75 .70 .70
Spectral Width	24038.5	8	9	e 8	1.00	
Lowest Frequency	-1960.9	142.	29	78.6	5 7	
Nucleus	13C	23.6	14.2		-45	
Acquired Size	32768	1	Ī			
Spectral Size	65536 S	144				
08.2						
5		137				
والمراجع	said day hay pur dan minist hair all and all in dan tim hay yon, dada a hada adigi purlakkan day na ya	and a set of a more a line of the line of the start of the	والمتحدية والمتعادية والمردة ومرافقة والمتعرب والمراطع فاحد وراوي والمتعالية والمع	an I details of a life in the state of the s	Albertin, by hill a write party and a state a relation of the state of the state is a survey of state of the st	
्यः । त्राः मुन्द्रकन्त्रीकर्ता करत्व व कर्त्तकरत्वः वर्त्ता स्वत्रकृतन्त्र कर्त्त क्षेत्र वर्त्तन्त्र वर्त्तन्त स	16.2 र प्रदर्भी स्वरूपिति में सिल्ला- 1919 कर सीरत्वी के गरी- 1914 सिंह स्वरूप कर स्वरूपवित्र , 1926 र	ւլը, իրերում, անձառանություն, գողին գունի անչափորությանը անգանը։ անգանը	ىلى يەربىيە بىلەر يەربىيە يەربىيە يەربىيە يىلىرى يەربىيە يەربىيە يەربىيە يەربىيە يەربىيە يەربىيە يەربىيە يەربىي يەربىيە يەربىيە	سللماند ب _ا مبرا معامية معر المالية المالية.	ער איז ער איז	ים איז איז עריין איז
			· · · · · ·			
210 200 190	180 170 160 1	50 140 130 1	20 110 100 ppm	90 80	70 60 50	40 30 20 10 0



