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Approximate Bayesian Computation

In order to test different divergence hypotheses between G. aculeatus and G. nipponicus, we used Approx-
imate Bayesian Computation (ABC). This flexible estimation framework allowed us to evaluate posterior
probability values amongst models and also to estimate demographic parameters under each divergence
scenario.

Sampling observed data

For population genomic data, full sequence loci provide highly accurate estimation using ABC (Robinson et
al. 2014). In order to obtain loci suitable for our ABC analysis, we randomly sampled putatively neutral
nuclear loci from across the genome. Using a custom R script we produced a BED file of reference genome
coordinates for 2 kb loci randomly sampled at 125 kb intervals; resulting in 2378 potential loci for each
of the 20 individuals included in the analysis (i.e. G. nipponicus and Pacific G. aculeatus only). The
consensus sequence from each locus was then called from our consensus vcf using a custom python script.
This script created two haplotypes for each locus, randomly assigning heterozygous variants to one of the
two haplotypes to account for unphased data (Robinson et al. 2014). Loci were then screened to include
only those occurring on autosomes, > 1000 bp sequence and a minimum of 70% coverage (i.e. > 70% bases
called within a locus) for all 20 individuals. This resulted in a final dataset of 1874 loci. Functions and
scripts for generating coordinates and extracting and filtering consensus sequences are available on GitHub
(https://github.com/markravinet/genome_sampler).

Divergence models with a hierarchical approach

To test our hypotheses on the evolutionary history of G. aculeatus and G. nipponicus, we constructed five
divergence models – isolation (I), isolation with migration, isolation-with-ancient-migration (IAM), isolation-
with-recent-migration (IRM) and isolation-with-ancient-and-recent-migration (IARM; see Fig A1 and Table
A1 for a list of parameters estimated in each model). Since the results of our PSMC analyses clearly
indicate effective population size has varied throughout divergence (Fig 1D in main text), we also constructed
three population size change models – constant population size, population growth, and a bottleneck in G.
nipponicus following divergence (see Fig A1 and Table A2). With three population size models for each of
the five divergence scenarios, a total of 15 demographic models were tested.

With the exception of I, all models incorporated gene flow. Assuming a uniform migration rate when genome-
wide migration is heterogeneous (as is the case in this system) can significantly impair the accuracy of ABC
approaches (Roux et al. 2013; Roux et al. 2014). To account for this, we allowed heterogeneous gene flow
by drawing per-locus migration parameters from a scaled β distribution defined by α, β and a scalar, c
(Roux et al. 2013; Roux et al. 2014). Prior distributions for all parameters are shown in Tables A1 and A2.
As is required when using ms, all parameters for the simulation step were scaled to an arbitrary reference
population size – N0 – set to 50,000 here.

To properly evaluate demographic models, we used a hierarchical ABC approach (Nadachowska-Brzyska et
al. 2013; Fagundes et al. 2007). We first performed a model selection step on the different population
size models within each divergence scenario. Then using the best-supported population size model for each
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Figure A1: Models used for Approximate Bayesian Computation. (A) main divergence scenarios and (B)
population growth models nested within divergence scenarios.

divergence scenario, we performed a final round of model selection to determine which of the five divergence
hypotheses best fit our observed data.

Simulation step

For each of the 15 models, we simulated 1 x 106 datasets, resulting in a total of 15 million simulations.
Following Robinson et al. (2014), we used a custom R based control script and msABC (Pavlidis, Laurent, and
Stephan 2010) to perform simulations, calculate summary statistics and quantify their distribution across
the genome in a single step. This approach offers considerable flexibility in establishing prior probability
distributions for each of the estimated parameters. Furthermore given the large size of our dataset (i.e.
~1900 loci for 20 individuals) each simulation produces a large amount of data, making storage a challenge.
Using R to interface with msABC allowed us to greatly reduce the required data storage. Initial calculations
suggested that for the most complex models, 1 x 106 simulations would take over 365 days to complete
in a single run. Therefore we used a combination of GNU Parallel (Tange 2011) and independent runs
across multiple computing cores to reduce analysis speed to just 2 days per model (scripts and additional
instructions available on Github: https://github.com/markravinet).

Sensitivity analysis using pseudo-observed datasets

Before beginning this model selection step, we performed a thorough sensitivity analysis to investigate the
efficacy of our ABC approach. This sensitivity analysis had two main aims; 1) to test the ability of our
ABC framework to successfully distinguish different demographic models and 2) to evaluate the reliability
of our demographic parameter estimates under each model. In order to perform this investigation of our
ABC framework, we used pseudo-observed datasets (PODs). PODs are generated by randomly selecting a
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Description Prior Models
θ Scaled mutation rate 0.2-40, uniform All
T Divergence time Mean = 1.5 myr, SD = 0.8, lognormal All
m12 Migration rate PO>JS rate = 0.1, exponential IM, IAM, IRM, IARM
m21 Migration rate JS>PO rate = 0.1, exponential IM, IAM, IRM, IARM
Tam Timing of ancient migration T/2 - T, uniform IAM, IARM
Trm Timing of recent migration 0 - T/2, uniform IRM, IARM
α Hyperprior - α parameter 0-5, uniform Heterogenous migration models
β Hyperprior - β parameter 0-200, uniform Heterogenous migration models
c1 Scalar for β distribution 0-15, uniform Heterogenous migration models
c2 Scalar for β distribution 0-15, uniform Heterogenous migration models

Table A1: Parameters and priors used in divergence scenarios for ABC estimation. N.B. Migration param-
eters are expressed backwards in time. Abbreviations are: IM – isolation with migration, IAM – isolation
with ancient migration, IRM – isolation with recent migration, IARM – isolation with ancient and recent
migration.

Symbol Description Prior Models
NJS JS population size 0-3, uniform CV, SPG, RPG, JSB
NP O PO population size 0-3, uniform CV, SPG, RPG, JSB
TSCJS Timing of JS growth 0-T/2, uniform RPG, JSB
TSCP O Timing of PO growth 0-T/2, uniform RPG, JSB
x Fraction of population size 0-0.5, uniform APG, RPG, JSB
EJS Exponential JS growth rate 1/TSCJS*log(Nt/N0)† APG, RPG, JSB
EP O Exponential PO growth rate 1/TSCP O*log(Nt/N0)† APG, RPG, JSB

Table A2: Parameters and priors used in growth models for ABC estimation. Abbreviations are: CI –
constant identical, CV – constant variation, APG – ancient population growth, RPG – recent population
growth and JSB – Japan Sea bottleneck. †Where N0 is derived from 4N0 and Nt is N0*x

simulated dataset from the reference table and then rerunning estimation steps in the ABC pipeline using
it as the observed dataset (hence pseudo-observed). Since PODs are generated under a known model with
known parameters, they can be used to estimate the rate of selecting the true model in a model selection
step and also the precision error on demographic parameter estimates.

To assess the accuracy of our hierarchical model selection we used the cv4postpr function from the R abc
package to generate PODs. For each round of POD analysis we varied three parameters that influence model
selection: the number of summary statistics, the rejection method used to accept simulated datasets close to
the observed, and the tolerance level (i.e. the proportion of accepted simulated datasets). For each simulation,
we generated a maximum of 29 summary statistics using msABC and then subsequently subsampled these
summary statistics to examine the effects of dimensionality in the data; thus we tested analyses with 12, 20
and 29 summary statistics (see Table A3 for statistics used). Numerous methods exist for the rejection step
of ABC and all perform differently depending on dimensionality in the data. To account for this, we used the
simple rejection method, multinomial regression (Nielsen and Beaumont 2009) and a neural network approach
(Blum and François 2010). Tolerance levels varying between 1-3% can also influence model selection and
parameter estimation (Robinson et al. 2014). Therefore we performed all analyses using 0.01%, 0.05%, 1%
or 3% tolerance to assess how this influenced model selection (i,e, 1,000, 5,000, 10,000 and 30,000 retained
datasets respectively). For each round of model selection, 1000 PODs were estimated for each of the models
assessed (the three growth models in the first hierarchical step and all five divergence scenarios in the second
step) and the model with the highest posterior probability selected.

Each analysis round produced a POD confusion matrix - i.e. a matrix with rows representing each true model
and columns representing the chosen model. From this we calculated proportion of PODs correctly identified
as the true model (‘true rate’ hereafter) and the type I and type II error rates. Error rates estimated from
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Statistic ss29 ss20 ss12
Segregating sites PO x x x
Segrating sites JS x x x
Segrating sites both x x x
Nucleotide diversity PO x x x
Nucleotide diversity JS x x x
Theta (π) x x -
Watterson’s Theta PO x x -
Watterson’s Theta JS x x -
Watterson’s Theta (both) x x -
Tajima’s D x x x
Tajima’s D PO x x x
Tajima’s D JS x x x
ZnS PO x - -
ZnS JS x - -
ZnS both x - -
PO v JS FST x x x
Perc. Shared sites x x x
Perc. Private sites x x x
Perc. Fixed diffs x x x
Fay & Wu’s H PO x - -
Fay & Wu’s H JS x - -
Fay & Wu’s H both x - -
Haplotype diversity PO x x -
Haplotype diversity JS x x -
Haplotype diversity both x x -
Haplotype number PO x - -
Haplotype number JS x - -
Haplotype number x - -

Table A3: Summary statistics used in each ABC analysis round.

PODs are analogous to false positive and false negative rates with some caveats (Robert et al. 2011). Here,
type I error represents false negative rate – i.e. the number of PODs modelled under a given scenario that
are misclassified; type II error represents false positive rates – i.e. the number of PODs produced under a
different scenario that are mistaken for the true scenario.

Figure A2 shows the mean true rate at the hierarchical selection step for each divergence scenario under
all combinations of summary statistics and methods. Clearly the neural network and multinomial logistic
methods outperform basic rejection at all tolerances and all summary statistics. With 20 summary statistics
and 1% tolerance, mean true rate (± SD) for all scenarios was 0.83±0.06 for neural network rejection
versus 0.75±0.06 for multinomial logistic regression (Fig A2). Furthermore, 20 summary statistics and
1% tolerance showed low Type I and Type II error for both these methods while basic rejection remained
extremely unreliable (Figs A3 & A4). Although using 29 summary statistics marginally improved true
rate for neural network rejection (0.84±0.06), PCA indicated that the increased dimensionality meant that
simulated datasets no longer properly reflected the observed data (Fig A5). Therefore hierarchical model
selection within divergence scenarios was performed using 20 summary statistics, neural network rejection
and 1% tolerance. Posterior probabilities for different growth models are shown in Table A4.

Final model selection

POD analysis of final model selection showed a similar pattern to the hierarchical analyses – i.e. a marked
improvement of both the multinomial logistic regression and neural network methods over standard rejection
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Figure A2: Mean probability (per divergence scenario) of true model being chosen under different summary
statistic and rejection method comparisons.
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Figure A3: Mean Type I error rate for each divergence scenario under different summary statistic and
rejection method comparisons. Here Type I error is the proportion of PODs simulated under a scenario
mistaken for an alternative scenario.
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Figure A4: Mean Type II error rate for each divergence scenario under different summary statistic and
rejection method comparisons. Here Type II error is the proportion of PODs simulated under a different
scenario mistaken for the true scenario.
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Figure A5: Principal component analysis of summary statistics from observed and simulated datasets for
the IM model; observed dataset denoted by large red point. (NB. PCA was performed separately in both
cases, hence the reason for the different position of the observed dataset in the two panels).
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Model Bottleneck Constant Growth
I 0.286 0.444 0.270
IM 0.867 0.008 0.125
IAM 0.161 0.599 0.240
IARM 0.643 0.003 0.354
IRM 0.556 0.000 0.444

Table A4: Posterior probability estimates from hierarchical model selection within divergence scenarios with
20 summary statistics, 1% tolerance and neural network rejection.

(Fig A6). Of the two, neural network rejection was superior with higher probability of the true model being
chosen - although the power of the analysis varied with divergence scenarios (Fig A6). Selection using 20
summary statistics, instead of 12 performed slightly more efficiently.

Although identifying the correct divergence scenario is a key aim of our study, we are primarily interested
in determining whether divergence has occurred with or without gene flow. Therefore we calculated the
probability of our ABC framework identifying a scenario of pure isolation when migration has in fact occurred.
The probability of this was generally low across all rejection methods, tolerance rates and summary statistic
combinations, but was lowest for the neural network method (Fig A7).

Surprisingly however the probability for the opposite scenario, i.e. falsely detecting gene flow when none
has occurred, was high irrespective of the method, summary statistic or tolerance rate used (red lines, Fig
A7). Closer inspection of confusion matrices among models indicated that the reason for this is that our
ABC approach has difficulty distinguishing the isolation and isolation with ancient migration models (Fig A8
shows the frequency of confusion for different rejection methods). In other words, these two models produce
very similar summary statistics.

To account for this, we recalculated false detection probabilities with the IAM model removed (blue lines, Fig
A7). This clearly shows that the neural network method minimises both false detection probabilities across
all tolerance rates - however the rejection method still has trouble distinguishing isolation and migration
scenarios, even at low tolerance rates.

We conducted final model selection using the five models chosen during hierarchical selection, the neural
network rejection method and 20 summary statistics. Posterior probability estimates overwhelmingly sup-
ported a model of isolation with migration with a bottleneck in the Japan Sea across all tolerance values (see
Table 2 in the main text). Comparing the distribution of the summary statistics from the accepted datasets
with our observed data confirmed our framework produced realistic estimates of these statistics (Fig A9).

Parameter estimation accuracy

We additionally used PODs approach to assess how well we were able to estimate parameters under the
chosen model using the neural network and standard rejection methods. Using the R abc cv4abc function,
we produced 100 PODs for the IM model using two different tolerance levels (1 and 3% of the simulated
data) and both 12 and 20 summary statistic subsets. This allowed us to compare estimated vs. the true
parameter values used to perform the simulations. For the theta and divergence time parameters shown in
Figure A10, the number of summary statistics did not appear to influence parameter estimates. However,
increasing tolerance did increase the deviation of estimated parameters from their true valus. Conservatively,
we chose to use the neural network, 20 summary statistics and 1% tolerance.

Examining introgression in more detail

Overlap between introgression and loci used in ABC

Our study finds evidence of introgression at small, localised regions throughout the genome. If these intro-
gressed regions are overrepresented in the observed loci used for our ABC analysis, they may bias our model
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Figure A6: Mean probability (per divergence scenario) of true model being chosen under different summary
statistic and rejection method comparisons for the final model selection step
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Figure A7: Probability of falsely detecting gene flow or no gene flow for different combinations of summary
statistics, rejection methods and tolerance values.
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Figure A9: Distributions of accepted summary statistics from the simulation step of the final chosen model
(IM). Values of observed summary statistics are indicated by the dashed vertical lines.
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Figure A11: Barplot of proportions of f d peaks or GMIN valleys among ABC loci vs the genome background

selection towards those with gene flow. In order to assess whether this is the case, we examined whether
the 1874 ABC loci fell in a higher proportion of introgressed regions than expected, given that they are a
random sample from the genome.

As Figure A11 shows, the proportion of ABC loci falling in either f d peaks or GMIN valleys is equivalent
to the genome background. For both types of introgression region, 95% of the genome is background -
i.e. showing no evidence of increased gene flow; this proportion is identical in the ABC loci (proportional
tests, GMIN: χ = 0.037, df = 1, P = 0.845; f d: χ = 0.165, df = 1, P = 0.684).

Figure A12 also clearly shows no difference between the distribution of GMIN estimated from the genome
and from the windows only containing ABC loci. This suggests our observed dataset does not introduce bias
into the analysis.

Posterior distribution of migration hyperpriors

In addition to the posterior estimates of migration rates given in the main text, we provide further detail here
on the posterior distributions of the migration hyperpriors. These were used to ensure that genome-wide
migration is heterogeneous (Roux et al. 2013; Roux et al. 2014). Fig A13 shows the posterior distributions for
the β distribution parameters and the unscaled distribution itself. Note that the two individual migration
rate parameters m12 and m21 (i.e. JS>PO and PO>JS - see Table A1) are scaled by a scalar c, drawn
independently for both rates - see Figure 2 in the main text for the scaled posterior β distributions.

From this figure, we can see that under our IM model, a large number of loci experience a small amount of
gene flow.
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Figure A13: Examination of migration hyperpriors and the unscaled beta distribution; upper panels are
posterior distributions for α and β, the hyperprior distribution parameters used to estimate the unscaled
beta distribution; lower panel is unscaled β distribution, based on 1800 samples of a β distribution with
the posterior estimates of α and β. Individually scaled distributions for JS>PO and PO>JS can be seen in
Figure 2 of the main text. Dashed vertical lines denote distribution means.
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Demographic estimation using the site-frequency spectrum

In addition to our ABC analysis of demographic inference, we used a maximum likelihood method approach
based on the site-frequency spectrum implemented in fastsimcoal2 (Excoffier et al. 2013). For this, we used
RAD-seq data from the Japan Sea and Pacific Ocean individuals (n = 51). To account for missing data, we
resampled 20 genotypes per species at each site, resulting in calls for all 20 ‘pseudo-individuals’ at 22,065
SNP loci. We converted genotype calls to a folded joint site-frequency spectrum using arlequin.

Description Prior Models
NP O JS effective population size loguniform; 10,000 - 1,000,000 All
NJS PO effective population size loguniform; 10,000 - 1,000,000 All
TDIV Divergence time loguniform; 10,000 - 2,000,000 years All
Tam Timing of end of ancient migration (proportion) loguniform; 0.01-0.3 IAM, IARM
Trm Timing of onset of recent migration (proportion) loguniform; 0.7-1 IRM, IARM
m12 Migration rate JS>PO loguniform; 1 x 10−1 - 0.01 All except isolation
m21 Migration rate PO>JS loguniform; 1 x 10−1 - 0.01 All except isolation

Table A5: Parameters and parameter search ranges used in divergence scenarios for maximum likelihood
SFS estimation.

We used the same models as used for ABC (see Fig A1); however in order to simplify this analysis, we used
only two models of growth - constant population size and a bottleneck in the Japan Sea. Since maximum-
likelihood analysis does not make use of priors (in comparison to the Bayesian approach in our ABC analysis),
we instead provided loguniform parameter search ranges for each model to fastsimcoal2 (see Table A5) and
assumed a SNP mutation rate of 7.1 x 10-9 per site per year (Guo et al. 2013). For each model we performed
100 independent runs of 100,000 coalescent simulations. Model selection was carried out on the run with
the highest likelihood using AIC. However, following Meier et al. (2017), we also calculated the likelihood
distribution for each model using 100 expected site frequency spectra and 1,000,000 coalescent simulations.

Model Growth logLikelihood N parameters AIC deltaAIC deltaLL
IARM bottleneck -18032.835 15 36095.670 0.000 1418.999
IRM bottleneck -18360.822 12 36745.644 649.974 1746.986
isolation_migration bottleneck -18703.335 10 37426.670 1331.000 2089.499
IAM bottleneck -19019.648 12 38063.296 1967.626 2405.812
isolation bottleneck -19021.768 8 38059.536 1963.866 2407.932
IRM constant -18700.429 9 37418.858 1323.188 2086.593
IARM constant -18704.933 12 37433.866 1338.196 2091.097
IAM constant -19010.365 9 38038.730 1943.060 2396.529
isolation constant -19013.523 5 38037.046 1941.376 2399.687
isolation_migration constant -19018.089 7 38050.178 1954.508 2404.253

Table A6: Model selection using AIC and logLikelihood.

Model selection using AIC and log likelihood values showed strongest support for an IARM model with a
population expansion in the Japan Sea lineage following a bottleneck (Table A6). It should be noted that
since we did not use independent polymorphic sites to generate our SFS, AIC results must be interpreted
with caution (Excoffier et al. 2013). However, likelihood distributions for each of the models confirm that
the IARM bottleneck model is best supported by the data. Furthermore, inclusion of a more realistic
population growth model clearly improved our ability to distinguish between demographic scenarios (Figure
A14). Parameter estimates from the IARM bottleneck model are shown in Table A7. Our SFS analysis
suggests an ancient divergence of ~1.2 million years for the Japan Sea and Pacific, older than our ABC
analyses. Ancient migration ceased 3 Kyr after divergence and then recent migration began around 13 kyr
BP concordant with contact after the LGM, whereas a bottleneck occured 0.66 million years ago (Table A7).
As with our ABC analysis, the SFS based inference suggests the migration rate from the Japan Sea into the
Pacific Ocean (m12) is lower than migration from the Pacific Ocean into the Japan Sea (m21; Table A7).
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Some discrepancy between our ABC analyses and SFS estimation is expected given the different nature of
the methods, the priors/parameter search ranges used and the use of datasets derived from different sources
(whole genome-resequencing vs RAD-seq). One major difference is that our SFS analysis assumes a mutation
rate of 7.1 x 10-9 per site per year whereas our ABC analysis does not estimate mutation rate and instead
scales parameter estimates to an arbitary value of N e - set at 50,000. An additional difference between
the two approaches is that for ABC, we assumed heterogeneous migration rates - i.e. we allowed migration
rate to vary among loci, as might be expected in a situation of speciation-with-gene-flow (Roux et al. 2013;
Roux et al. 2014). In contrast, our SFS approach assumed only a single, uniform migration rate across the
genome. Not incorporating migration rate heterogeneity can substantially alter parameter estimates between
otherwise equivalent models (Roux et al. 2013; Roux et al. 2014) and this likely explains why migration
rate is greater in the SFS analysis. Importantly however, divergence time etimates from the SFS analysis
are within the 95% CI of divergence times from our ABC analysis (0.18-4.1 million years); this is also true
for the timing of the bottleneck (0.03 - 2 million years).

Model NP O NJS TDIV Tam Trm TBOT NBOT m12 m21
bottleneck 1137659 1147457 1216225 1213496 13103 660304 56270 4.21 × 10−5 4.84 × 10−5

Table A7: Parameters and priors used in divergence scenarios for maximum likelihood SFS estimation.

Effect of phasing and altering missing data thresholds

An important point for our introgression analysis is to ensure that missing base calls or insufficient filtering
cannot account for the observed patterns (using GMIN & f d) we see in our data. For both phased and
unphased datasets (see main text for more details on these datasets), we performed GMIN & f d analyses
using a minimum of 5000 sites per 10 Kb window. The average number of useable sites (i.e. passing all
quality filtering and depth thresholds) was 6677 for the phased dataset and 8732 for the unphased data.
These differences can be accounted for by the fact that more stringent filtering is necessary for statistical
phasing to be accurate.

From the joint distribution of our introgression statistics with the number of sites per analysed window (see
Fig A15), there is no clear relationship in either phased or unphased datasets. Therefore it seems unlikely
that missing data can explain the presence of GMIN valleys or f d peaks in our ananlysis.

We also examined how both statistics varied along an example chromosome (chrIV) using phased and un-
phased datasets and also with different filtering threshold. For GMIN, it is clear that unphased data has a
tendency to produce more windows with a lower value of the statistic but remains robust to increasing miss-
ing data filters (Fig A16). In contrast, phased data appears to be somewhat more conservative, most likely
because of the need to apply more stringent filters (Fig A16). Nonetheless, phased data clearly identifies
similar extreme GMIN valleys - irrespective of increased data filtering. Therefore, it is reasonable to conclude
that the recent introgression we detect with our GMIN approach is not an artefact of dating handling.

We also examined the robustness of f d, a different measure of introgression on chrIV to phasing and filtering.
There are few quantative differences between phased and unphased data for f d, with peaks clear in both
datasets. In fact, phasing data appears to increase the extent of f d peaks (Fig A17), suggesting our unphased
approach may be more conservative.
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