
SUPPLEMENT TO “NON-LOCAL PRIORS FOR
HIGH-DIMENSIONAL ESTIMATION”

1. Walker’s conditions

Conditions A1-A5 and B1-B4 are adapted from Walker (1969) and Johnson and Rossell
(2010), retaining the original numbering system to facilitate comparison. In what follows
y denotes the collection of random elements of interest, f(y | θ) with θ ∈ Θ their
Radon-Nikodym density with respect to a dominating measure µ.

A1: Θ is a closed set of points in Rs, where s is finite.
A2: The sample space Y = {y : f(y | θ) > 0} is independent of θ.
A3: If θ1,θ2 are distinct points of Θ,

µ{y : f(y | θ1) 6= f(y | θ2)} > 0.

A4: Let y ∈ Y , θ′ ∈ Θ. Then for all θ such that |θ − θ′| < δ, with δ sufficiently small,

| log f(y | θ)− log f(y | θ′)| < Hδ(y,θ
′),

where
lim
δ→0

Hδ(y,θ
′) = 0,

and, for any θ0 ∈ Θ,

lim
δ→0

∫
Y
Hδ(y,θ

′)f(y | θ0)dµ = 0.

A5: If Θ is not bounded, then for any θ0 ∈ Θ, and sufficiently large ∆,

log f(y | θ)− log f(y | θ0) < K∆(y,θ0)

whenever |θ| > ∆, where

lim
δ→0

∫
Y
K∆(y,θ0)f(y | θ0)dµ < 0.

For the remaining conditions, let θ0 be an interior point of Θ.

B1: log f(y | θ) is twice differentiable with respect to θ in some neighborhood of θ0.
B2: The matrix J(θ0) with elements

Jij(θ0) =

∫
Y
f0

(
∂ log f0

∂θ0,i

)(
∂ log f0

∂θ0,j

)
dµ,

where f0 denotes f(y | θ0), is finite and positive definite. In the scalar case, this
condition becomes 0 < J(θ0) <∞, where

J(θ0) =

∫
Y
f0

(
∂ log f0

∂θ0

)2

dµ.
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B3: ∫
Y

∂f0,i

∂θ0,i

dµ =

∫
Y

∂2f0

∂θ0,i∂θ0,j

dµ = 0

B4: If |θ − θ0| < δ, where δ is sufficiently small, then∣∣∣∣∂2 log f(y | θ)

∂θi∂θj
− ∂2 log f(y | θ0)

∂θ0,i∂θ0,j

∣∣∣∣ < Mδ(y,θ0),

where

lim
δ→0

∫
Y
Mδ(y,θ0)f(y | θ0)dµ = 0.

2. Proofs

2.1. Proof of Proposition 1, Parts (i)-(ii). We start by stating two useful lemmas.
Lemma 1 states that the pMOM, peMOM and piMOM priors under a given Mk can
be written as the product of a local prior times a bounded constant ck, which will be
useful later on to exchange limits and integration (e.g. via the Dominated Convergence
Theorem). Lemma 2 establishes that EL(d(θk, φk) | yn), which is the extra complexity
penalty induced by NLPs, converges either to 0 or to a positive constant when Mk adds
spurious parameters to a true model Mt or is missing parameters from Mt (respectively).

Lemma 1. Let π(θk, φk) = d(θk, φk)π
L(θk, φk) be either the pMOM, peMOM or piMOM

prior, where d(θk, φk)→ 0 as θki → 0 for any i = 1, . . . , dim(θk) and πL(θk, φk) is a local

prior. Then π(θk, φk) = d̃(θk, φk)π̃
L(θk, φk), where d̃(θk, φk) ≤ ck for some constant ck

and π̃L(θk, φk) is a local prior.

Proof. The result for the peMOM is direct with d̃k(θki, φk) =
∏pk

i=1 e
√

2e−τφ/θ
2
ki ≤ e

√
2pk

and π̃L(θ, φ) = N(θ;0, τφI)π(φ). For the piMOM prior we multiply and divide the
density by a Cauchy kernel, obtaining

πIk(θki | φk) =

√
τφk√
πθ2

ki

e−τφk/θ
2
kiπ

(
1 +

θ2
ki

τφk

)
Cauchy(θki; 0, φkτ)

= d̃k(θki, φk)Cauchy(θki; 0, φkτ),(1)

where d̃k(θki, φk) =
√
π
√
τφk
θ2ki

e−τφk/θ
2
ki (1 + θ2

ki/(τφk)). By performing a change of variables

ηi = θki/
√
τφk we obtain the implied prior πIk(ηi | φk) =

√
π

1+η2i
η2i

e−1/η2i πL(ηi | φk).

Now, h(ηi) =
√
π

1+η2i
η2i

e−1/η2i is continuous, has positive derivative for all ηi > 0 and

negative for ηi < 0, lim
ηi→0

h(ηi) = 0 and lim
ηi→±∞

h(ηi) =
√
π, and hence h(ηi) ≤

√
π. In

summary, ck = e
√

2pk for the product eMOM and c = πpk/2 for the product iMOM, where
pk = dim(θk).



The pMOM prior density has an unbounded term
∏

i∈Mk

θ2rki
(2r−1)!!φrτr

, but it can be

rewritten as πMk (θk | φk) =

∏
i∈Mk

θ2r
ki

(2r − 1)!!φrkτ
r

N(θki; 0, τφkI)

N(θki; 0, (1 + ε)τφkI)
N(θki; 0, (1 + ε)τφkI) =

∏
i∈Mk

θ2r
ki

(2r − 1)!!φrkτ
r
exp

{
−1

2

θ2
ki

φkτ(1 + ε−1)

}
N(θki; 0, (1 + ε)τφkI) =

=
∏
i∈Mk

d̃(θki, φk)N(θki; 0, (1 + ε)τφkI)(2)

for some ε ∈ (0, 1), where it is straightforward to see that d̃(θki, φk) is now bounded. �

Lemma 2. Let d(θ) be a continuous and differentiable function satisfying 0 ≤ d(θ) < c
for all θ ∈ Θ. Define

g(yn) =

∫
d(θ)π(θ | yn)dθ,

where lim
n→∞

∫
θ∈Nε(A)

π(θ | yn) = 1 almost surely for any fixed ε > 0, some set A and

a corresponding suitably defined ε-neighborhood Nε(A). If d(θ) = 0 for all θ ∈ A then
g(yn) −→ 0. Likewise, if d(θ) > c′ for all θ ∈ A and some c′ > 0 then
P (g(yn) ≥ c′) −→ 1 almost surely as n −→∞. In particular, if A = {θ0} is a singleton,
then g(yn) −→ g(θ0).

Proof. Consider

g(yn) =

∫
θ∈Nε(A)

d(θ)π(θ | yn)dθ +

∫
θ 6∈Nε(A)

d(θ)π(θ | yn)dθ =(3)

≤ δεP (θ ∈ Nε(A)) + cP (θ 6∈ Nε(A)) ≤ δε + cP (θ 6∈ Nε(A)) ,

where δε = maxθ∈Nε(A)d(θ) and the second term can be made arbitrarily small. Because
d(θ) is continuous, if d(θ) = 0 for all θ ∈ A then δε can also be made arbitrarily small
a.s. as n −→∞, and hence g(yn) −→ 0. Suppose now that d(θ) > c′ for all θ ∈ A, then
from (3)

g(yn) >

∫
θ∈Nε(A)

d(θ)π(θ | yn)dθ ≥ δ′ε

∫
θ∈Nε(A)

π(θ | yn)dθ,(4)

where due to continuity δ′ε = minθ∈Nε(A)d(θ) can be made arbitrarily close to c′ for small
enough ε and the integral on the right hand side of (4) can be made arbitrarily close to
1 as n −→∞. The proof for when A = {θ0} follows as an immediate implication. �



Proof of Proposition 1, Part (i) The result follows from direct algebraic manipu-
lation

mk(yn) =

∫ ∫
fk(yn | θk, φk)dk(θk, φk)πL(θk, φk |Mk)dθkdφk =∫ ∫

dk(θk, φk)
fk(yn | θk, φk)πL(θk, φk |Mk)

mL
k (yn)

mL
k (yn)dθkdφk =

mL
k (yn)

∫ ∫
dk(θk, φk)π

L(θk, φk | yn,Mk)dθk, φk = mL
k (yn)gk(yn),

as desired. In a slight abuse of notation, in the derivation above dθk and dφk indicate
integration with respect to the corresponding σ-finite dominating measures.

Proof of Proposition 1, Part (ii) We use Lemma 1, which states that piMOM and

peMOM priors can be written as dk(θk, φk)π
L(θk, φk) with bounded dk(θk, φk), so that

gk(yn) =

∫ ∫
dk(θk, φk)

fk(yn | θk, φk)πL(θk, φk)

mL
k (yn)

dθkdφk(5)

where by assumption fk(yn | θ∗k, φ∗k)/fk(yn | θ̃k, φ̃k) → ∞ almost surely as n → ∞ for

any (θ∗k, φ
∗
k) ∈ A and (θ̃k, φ̃k) 6∈ A. See e.g. Redner (1981) for such MLE consistency

under general settings. We note that πL(θk, φk) associated to either pMOM, piMOM or
peMOM priors are products of independent Normal or Cauchy kernels assigning strictly
positive density to any θk ∈ Θk, which combined with MLE consistency guarantee that
the limiting posterior concentrates arbitrarily large probability on any ε neighborhood of
A as n→∞ (Ghosal, 2002). Part (ii) follows from Lemma 2. For the pMOM prior, from
Lemma 1 gk(yn) =∫ ∫

d̃k(θk, φk)
fk(yn | θk, φk)N(θk;0, τφk(1 + ε)I)

mL
k,τ (yn)

dθkdφk =

mL
k,τ(1+ε)(yn)

mL
k,τ (yn)

∫ ∫
d̃k(θk, φk)πτ(1+ε)(θk, φk | yn)dθkdφk,(6)

where ε ∈ (0, 1), d̃k(θk, φk) is bounded and mk,τ (yn) is the integrated likelihood under a
N(θk;0, (1+ε)τφkI) prior. Part (ii) follows from Lemma 2, which guarantees convergence
for the integral in (6), and that by assumption mL

k,τ(1+ε)(yn)/mL
k,τ (yn) → c ∈ (0,∞)

almost surely as n→∞. We note that from Bayes theorem

mL
k,τ(1+ε)(yn)

mL
k,τ (yn)

=
πL(1+ε)τ (θk, φk | yn)

πLτ (θk, φk | yn)

πLτ (θk, φk)

πL(1+ε)τ (θk, φk)
(7)

for any (θk, φk), where the second term in the right hand side is bounded (e.g. for
θk = 0). The first term is the ratio of posterior densities under N(θ;0, (1 + ε)τφkI) and
N(θ;0, τφkI), which for limiting normal posterior distributions with bounded covariance
eigenvalues as in Condition D2 converges in probability to a bounded constant.

Now consider the particular case where the data-generating density f ∗(yn) belongs to
the set of considered models, i.e. f ∗(yn) = ft(yn | θ∗t , φ∗t ) for some t ∈ {1, . . . , K} of



smallest dim(θt) amongst all such models. By definition of NLP if Mt ⊂ Mk then the
values (θ∗k, φ

∗
k) minimizing KL to ft under Mk satisfy dk(θ

∗
k, φ

∗
k) = 0; further if Mk ⊂Mt

then (θ∗k, φ
∗
k) satisfy dk(θ

∗
k, φ

∗
k) > 0. Therefore, Mt ⊂ Mk implies that gk(yn)

P−→ 0
and Mk ⊆ Mt implies P (gk(yn) ≥ c) −→ 1 for some constant c > 0. We note that
for non-identifiable models the set A is no longer a singleton, but when Mt ⊂ Mk by

definition dk(θk, φk) = 0 for all (θk, φk) ∈ A, hence we still obtain gk(yn)
P−→ 0. Also by

NLP definition, when Mk ⊂ Mt then dk(θk, φk) > 0 for all (θk, φk) ∈ A, which implies

gk(yn)
P−→ c > 0.

2.2. Proof of Proposition 1, Part (iii). We start by stating two lemmas. Lemma 3
shows that for linear models satisfying D1-D2 and NLPs where dk(θk, φk) takes a product

form the complexity penalty gk(yn) is a continuous function of (mk,n, X
′
k,nXk,n, φ̂k,n). This

allows us to use the Continuous Mapping Principle, which is useful given that under the
proposition’s assumptions mk,n converges to θ̂k,n, and (θ̂k,n, φk) is strongly consistent to
(θ∗k, φ

∗
k) minimizing KL to the data-generating truth. Lemma 4 shows that the mean

dk(θk, φk) under a posterior distribution centered on (θ∗k, φ
∗
k) converges to the penalty

under the limiting posterior (essentially a point mass at (θ∗k, φ
∗
k)), which is a partial

result needed in the proof of Proposition 1, Part (iii).

Lemma 3. Let yn ∼ N(Xk,nθk, φk) be a linear model satisfying D1-D2, and consider a
NLP π(θk | φk) = dk(θk, φk)π

L(θk | φk). Assume that the NLP penalty takes the product

form dk(θk, φk) =
∏

i∈Mk
d(θki, φk), where dk(θki, φk) =

θ2rki
(2r−1)!!(τφk)r

is either the MOM

penalty or dk(θki, φk) ≤ c for all (θki, φk) and some constant c, as in the eMOM or iMOM

penalties. Then gk(yn) is a continuous function of sk,n = (mk,n, X
′
k,nXk,n, φ̂k,n).

Proof. To prove the result for bounded penalties d(θki, φk) ≤ c recall that sk,n is sufficient
under Mk and hence we may write gk(yn) = gk(sk,n) =

∫ ∫ ∏
i∈Mk

dk(θki, φk)π
L(θk |mk,n, X

′
k,nXk,n, φk,Mk)

πL(φk |mk,n, X
′
k,nXk,n, φ̂k,n,Mk)dθkdφk ≤∫ ∫

cpkπL(θk |mk,n, X
′
k,nXk,n, φk,Mk)

πL(φk |mk,n, X
′
k,nXk,n, φ̂k,n,Mk)dθkdφk = cpk .(8)



Now, letting z = (z1, X
′
k,nXk,n, z2) → (mk,n, X

′
k,nXk,n, φ̂k,n) and using the Dominated

Convergence Theorem we obtain

lim
z→sk,n

gk(z)c−pk =

∫ ∫ ∏
i∈Mk

c−1dk(θki, φk)π
L(θk | z1, X

′
k,nXk,n, φk,Mk)

πL(φk | z1, X
′
k,nXk,n, z2,Mk)dθkdφk =∫ ∫ ∏

i∈Mk

c−1dk(θki, φk)π
L(θk |mk,n, X

′
k,nXk,n, φk,Mk)

πL(φk |mk,n, X
′
k,nXk,n, φ̂k,n,Mk)dθkdφk,(9)

and hence

lim
z→sk,n

gk(z) =

∫ ∫ ∏
i∈Mk

dk(θki, φk)π
L(θk |mk,n, X

′
k,nXk,n, φk,Mk)

πL(φk |mk,n, X
′
k,nXk,n, φ̂k,n,Mk)dθkdφk,(10)

showing that gk(sk,n) is continuous.
Consider now the MOM prior case. For the particular prior choice φk ∼ IG(α, λ), John-

son and Rossell (2012) showed that gk(sk,n) = E
(∏

i∈Mk
θ2r
ki

)
where θk ∼ Tν(mk,n, Vk,n),

with ν = 2rpk + n + α and Vk,n = Sk,nν/(λ + y′nyn − y′nXk,nmk,n. Kan (2008) gave ex-
plicit expressions for such products as a sum of continuous functions, and hence gk(sk,n)
is continuous. Lemma 1 ensures that the pMOM penalty is also bounded for more general
priors πk(φk). Therefore, gk(sk,n) =∫ ∫ ∏

i∈Mk

d(θki, φk)
N(yn;Xk,nθk;φkI)N(θk;0, 2τφkI)

mL
k,τ (yn)

πk(φk)dθkdφk =

mL
k,2τ (yn)

mL
k,τ (yn)

∫ ∫ ∏
i∈Mk

d(θki, φk)π
L
k,2τ (θk | φk, sn)πk(φk)dθkdφk(11)

where mL
k,τ (yn) is the integrated likelihood with respect to N(θk;0, τφkI) and πLk,2τ (θk |

φk, sn) is the Normal posterior implied by the N(θk;0, 2τφI) prior. Because d(θki, φk) ≤ c
for some constant c, the Dominated Convergence Theorem gives that

lim
z→sk,n

gk(z)
mL
k,τ (yn)

mL
k,2τ (yn)

=

∫ ∫ ∏
i∈Mk

d(θki, φk)π
L
k,2τ (θk | φk, sn)πk(φk)dθkdφk,(12)

so that direct algebraic manipulation after adding the integrated likelihood terms delivers

lim
z→sk,n

gk(z) =

∫ ∫ ∏
i∈Mk

θ2r
ki

(2r − 1)!!φrτ r
πLk,τ (θk | φk, sn)πk(φk)dθkdφk,(13)

which proves that gk(sk,n) is continuous. �



Lemma 4. Let dk(θk, φk) be as in Lemma 3 and cn =∫ ∫
dk(θk, φk)π

L
k (θk | θ∗k, X ′k,nXk,n, φk)π

L
k (φk | θ∗k, X ′k,nXk,n, φ

∗
k)dθkdφk(14)

as in (24). Then

lim
n→∞

cn =

∫ ∫
dk(θk, φk) lim

n→∞
πLk (θk | θ∗k, X ′k,nXk,n, φk)

πLk (φk | θ∗k, X ′k,nXk,n, φ
∗
k)dθkdφk(15)

Proof. The proof runs analogous to that in Lemma 3, except that now the limit is taken
with respect to n and the c−pk term may grow as n → ∞. That is, for bounded
d(θki, φk) the argument proceeds by using the Dominated Convergence Theorem to obtain
lim
n→∞

cnc
−pk = ∫ ∏

i∈Mk

c−1dk(θki, φk) lim
n→∞

πLk (θk | θ∗k, X ′k,nXk,n, φk)π
L
k (φk)dφk,(16)

so that

lim
n→∞

cn =

∫ ∏
i∈Mk

dk(θki, φk) lim
n→∞

πLk (θk | θ∗k, X ′k,nXk,n, φk)π
L
k (φk)dφk.(17)

For the MOM prior we adjust the argument slightly. From (26) we obtain cn =∫ ∫ ∏
i∈Mk

θ2r
ki

(2r − 1)!!τ 2φ2
N(θk;θ

∗
k, φk(X

′
k,nXk,n)−1)IG

(
φk;

n

2
,
nφ∗k

2

)
c∗φ(Xk,n, τ)N(θk; 0, τφkI)πk(φk)dθ

∗
kdφk,(18)

where c∗φ(Xk,n, τ) = cφ(sk,n) in (23) plugging in θk,n = θ∗k, φ̂k = φ∗k. Following the same
argument as in the proof of Lemma 3, we divide and multiply by a N(θk;0, 2τ) kernel to
obtain

cn =

∫ ∫ ∏
i∈Mk

d(θki, φk)N(θk;θ
∗
k, φk(X

′
k,nXk,n)−1)N(θk; 0, 2τφkI)

c∗φ(Xk,n, τ)IG

(
φk;

n

2
,
nφ∗k

2

)
πk(φk)dθ

∗
kdφk =

c∗φ(Xk,n, τ)

c∗φ(Xk,n, 2τ)

∫ ∫ ∏
i∈Mk

d(θki, φk)
N(θk;m2τ , S2τ )

c∗θ(φ,Xk,n, 2τ)

c∗φ(Xk,n, 2τ)IG

(
φk;

n

2
,
nφ∗k

2

)
πk(φk)dθ

∗
kdφk,(19)



where d(θki, φk) =
θ2rkiN(θki;0,τφk)

(2r−1)!!τ2φ2N(θki;0,2τφk)
≤ c for some constant c, S2τ = X ′n,kXn,k+(2τ)−1I,

m2τ = S−1
2τ (X ′k,nXk,n)θ∗k, and

1/c∗θ(φ,Xk,n, 2τ) =
∫
N(θk;θ

∗
k, φk(X

′
k,nXk,n)−1)N(θk; 0, 2τφkI)dθk. Now, because d(θki, φk)

is bounded and the remaining expression in (19) is a probability density function on
(θk, φk), the Dominated Convergence Theorem gives

lim
n→∞

cn
c∗φ(Xk,n, 2τ)

c∗φ(Xk,n, τ)
c−pk/2 =

∫ ∫
lim
n→∞

∏
i∈Mk

d(θki, φk)
N(θk;m2τ , S2τ )

c∗θ(φ,Xk,n, 2τ)

c∗φ(Xk,n, 2τ)IG

(
φk;

n

2
,
nφ∗k

2

)
πk(φk)dθ

∗
kdφk,(20)

which after rearranging terms gives

lim
n→∞

cn =

∫ ∫
lim
n→∞

∏
i∈Mk

θ2r
ki

τ 2φ2
k(2r − 1)!!

N(θk;mk,n, φkS
−1
k,n)

cφ(Xk,n, τ)IG

(
φk;

n

2
,
nφ∗k

2

)
πk(φk)dθ

∗
kdφk,(21)

concluding the proof.
�

We now proceed to prove Proposition 1(iii). The argument is slightly tedious but the
main idea is to use MLE consistency and the previous lemmas to exchange limits and
integration and obtain the desired result. We note that the eigenvalue conditions D2 an <
l1(X ′k,nXk,n) < lk(X

′
k,nXk,n) < bn give ||(X ′k,nXk,n)−1||22 ≤ 1/an→ 0 for fixed a, which in

turn guarantees θ̂k,n
a.s.−→ θ∗k (Lai et al., 1979). This implies φ̂k,n = n−1(yn−Xk,nθ̂k,n)′(yn−

Xk,nθ̂k,n)
a.s.−→ n−1(yn − Xk,nθ

∗
k)
′(yn − Xk,nθ

∗
k)

a.s.−→ φ∗k, given that V (Y − Xk,nθ
∗
k) =

φ∗k < ∞ by assumption. Hence, dk(θ̂k,n, φ̂k,n)
a.s.−→ dk(θ

∗
k, φ

∗
k). Since mk,n

P−→ θ̂k,n as
n → ∞ and dk(θk, φk) is assumed continuous, the Continuous Mapping Principle gives

dk(mk,n, φk)
a.s.−→ dk(θ

∗
k, φ

∗
k).

To show that gk(yn)
P−→ dk(mk,n, φk), we note that sk,n = (mk,n, X

′
k,nXk,n, φ̂k,n) is a

one-to-one function with the sufficient statistic (θ̂k,n, X
′
k,nXk,n, φ̂k,n) under Mk. Hence

sk,n is also sufficient and gk(yn) depends only on sk,n, so that we may write gk(sk,n) =∫ ∫
dk(θk, φk)π

L
k (θk |mk,n, X

′
k,nXk,n, φk)π

L
k (φk | sk,n)dθkdφk,(22)

where straightforward algebra shows that πLk (θk |mk,n, X
′
k,nXk,n, φk) =

cθ(φk, sk,n)N(θk; θ̂k,n, φk(X
′
k,nXk,n)−1)πLk (θk | φk)

πLk (φk | sk,n) =
cφ(sk,n)

cθ(φk, sk,n)
φ
−(n−k)/2
k e

− 1
2φk

(y′nyn−θ̂′k,nX
′
k,nXk,nθ̂k,n)

,(23)

where cθ(φk, sk,n) is the normalization constant for θk (which may depend on φk) and
cφ(sk,n) that for the marginal posterior of φk.



Lemma 3 gives that gk(sk,n) is continuous in sk,n = (mk,n, X
′
k,nXk,n, φ̂k,n), hence by the

Continuous Mapping Principle

gk(sk,n)
P−→
∫ ∫

dk(θk, φk)π
L
k (θk | θ∗k, X ′k,nXk,n, φk)

πLk (φk | θ∗k, X ′k,nXk,n, φ
∗
k)dθkdφk = cn,(24)

where πLk (φk | θ∗k, X ′k,nXk,n, φ
∗
k) ∝ cθ(φk,θ

∗
k, X

′
k,nXk,n)−1φ

−(n−k)/2
k e

−nφ
∗
k

2φk . For a fixed se-
quence of Xk,n (24) is just a sequence in n. To complete the proof we just need to show
that lim

n→∞
cn → dk(θ

∗
k, φ

∗
k) for any sequenceXk,n satisfying the theorem assumptions, which

combined with dk(mk,n, φ
∗
k)

P−→ dk(θ
∗
k, φ

∗
k) would give that gk(sk,n)

P−→ dk(mk,n, φ
∗
k). By

Lemma 4,

lim
n→∞

cn =

∫ ∫
dk(θk, φk) lim

n→∞
πLk (θk | θ∗k, X ′k,nXk,n, φk)

πLk (φk | θ∗k, X ′k,nXk,n, φ
∗
k)dθkdφ

∗
k =∫ ∫

dk(θk, φk) lim
n→∞

hn(θk, φk)dθkdφ
∗
k.(25)

Now, from (22)-(24) we obtain hn(θk, φk) ∝

N(θk;θ
∗
k, φk(X

′
k,nXk,n)−1)IG(φk;n/2, nφ

∗
k/2)πLk (θk | φk)πLk (φk),(26)

where IG denotes the inverse gamma density function.
Informally, given the assumptions on πLk (θk | φk), for (26) to converge to a point mass at

(θ∗k, φ
∗
k) we need the trace of (X ′k,nXk,n)−1 to converge to 0. Note that tr((X ′k,nXk,n)−1) ≤

k/l1, which is satisfied as long as l1 grows faster with n than k does, and that under our
assumptions k/l1 < k/(an)→ 0. Formally, Condition D2 on the eigenvalues of X ′k,nXk,n

imply that for n > n0,

hn(θk) ≤ IG(φk;n/2, nφ
∗
k/2)πL(φk)×

×
(
b

a

)pk/2 (na)pk/2

(2π)pk/2φ
pk/2
k

exp

{
− na

2φk
(θk − θ∗k)

′(θk − θ∗k)

}
πLk (θk | φk)(27)

We first study the second line in (27). Given that pk = o(n), for bounded πL we have
πL(θk | φk) <∞ for all θk the second line in (27) converges to 0 as n→∞ for any given
φk and all θk 6= θ∗k, i.e. πL(θk | θ∗k, X ′k,nXk,n, φk) converges to a point mass at θ∗k.

Now suppose that πL(θk | φk) is unbounded in a 0 Lebesgue measure set Θ̃k. In this
case it also holds that

lim
θk→θ̃k

exp

{
− na

2φk
(θk − θ∗k)

′(θk − θ∗k)

}
πLk (θk | φk) = 0(28)

for any θ̃k ∈ Θ̃k. This can be seen by contradiction, i.e. assume that for ||θk − θ̃k||2 < ε
and an arbitrary small ε there exists some δ > 0 such that



exp
{
− na

2φk
(θk − θ∗k)

′(θk − θ∗k)
}
πLk (θk | φk) > δ for some arbitrarily large values of n.

Then the prior probability of ||θk − θ̃k||2 < ε∫
||θk−θ̃k||2<ε

πLk (θk | φk)dθk > δ

∫
||θk−θ̃k||2<ε

exp

{
na

2φk
(θk − θ∗k)

′(θk − θ∗k)

}
,(29)

but the integrand is positive and increasing with n and hence by the Monotone Conver-
gence Theorem (29) converges to ∞ as n → ∞, which would imply that πLk (θk | φk) is
improper.

Finally, we note that given that πLk (φk) is bounded and continuous the first line in
(27) converges to 0 as n→∞ for any φk 6= φ∗k, hence (25) converges to d(θ∗k, φ

∗
k), which

completes the proof.
The assertion that when Mt 6⊂ Mk we have c = 0 if and only if (X ′kXk)

−1X ′kXt has a
column converging to 0 arises from the fact that (θ∗k, φ

∗
k) minimizing KL to

N(yn | Xtθ
∗
t , φ

∗
t I) has a zero element in θ∗k if and only if its corresponding linear pro-

jection of Xk onto the space generated by Xt has zero coefficients, i.e. all entries in the
corresponding column of (X ′kXk)

−1X ′kXt are 0.

2.3. Proof of Proposition 2, Part (i). The proof is analogous to that in (Johnson
and Rossell, 2010) for MOM and iMOM priors with additive penalties (as opposed to the
multiplicative penalties of the product MOM and product iMOM considered here, which
induce a significantly different asymptotic behaviour). The basic idea is to use that under
W69 the log-likelihood can be asymptotically approximated by a quadratic function, the
MLE is consistent and Op(n

−1/2) from the data-generating truth and the observed Fisher
information matrix converges to a positive-definite matrix. These facts allow finding an
asymptotic expression for the system of equations giving the posterior modes from which
we can deduce their probabilistic order.

For ease of notation we drop the subindex k indicating the model and we denote
dim(θk) = pk as before. Consider first the pMOM prior and take τ = 1 without loss of
generality. The log-posterior density is

Ln(θ, φ) +

pk∑
i=1

log(θ2
i )− plog(φ)− 1

2φ

pk∑
i=1

θ2
i + logπ(φ),(30)

where Ln(θ, φ) is the log-likelihood and π(φ) is the prior density on φ. Suppose that the
sampling model satisfies the conditions in Walker (1969), then Ln(θ, φ) can be approxi-

mated by a second order Taylor expansion around an MLE (θ̂, φ̂) maximizing Ln(θ, φ).
Performing this expansion and setting the partial derivative with respect to θi to 0 delivers
that all posterior modes θ̃ must satisfy for their ith component

pk∑
j=1

hij(θ̃j − θ̂j) +
2

θ̃i
− θ̃i
φ

= 0,(31)



where hij is the (i, j) element of the Hessian of Ln(θ, φ) evaluated at (θ, φ) = (θ̂, φ̂).
Rearranging terms we obtain

θ̃i

(
θ̃i
nφ
− hii

n
(θ̃i − θ̂i)

)
− θ̃i

∑
j 6=i

hij
n

(θ̃j − θ̂j) =
2

n
(32)

We note that the Taylor approximation to (30) is a quadratic form in θ, which is convex
in θ, plus

∑pk
i=1 log(θ2

i ) which is symmetric around the origin and convex in each quadrant
of Rpk (i.e. for fixed sign of θ1, . . . , θpk) and converges to −∞ as any θi −→ 0. Therefore

(30) has a global maxima at the quadrant where θ̂ occurs and a local maxima in each

other quadrant. Consider first the two modes for θi occurring when sign(θ̃j) = sign(θ̂j)

for j 6= i. Under Walker’s conditions θ̃j− θ̂j
P−→ 0, hij/n

P−→ Jij with finite Jij (condition

B4), and φ̃
P−→ φ∗, where (θ∗, φ∗) minimizes KL to the data-generating model and we

assume that φ∗ > 0. Incorporating these facts into (32) gives that the left hand side in

(32) converges in probability to −Jiiθ̂i(θ̃i − θ̂i), and hence both posterior modes must
satisfy

nθ̃i(θ̃i − θ̂i)
P−→ c(33)

with 0 < c < ∞. We note that (33) remains valid for linear models satisfying the
eigenvalue conditions D2 given that then Ln(θ, φ) is exactly quadratic and the condition

ensures almost sure convergence of the MLE, which implies θ̃j − θ̂j
P−→ 0 and φ̃

P−→
φ∗. The two roots of the quadratic equation given by (33) are given by θ̃

(1)
i = θ̂i +

0.5

(√
θ̂2
i + 4c/n−

√
θ̂i

)
θ̃

(2)
i = −0.5

(√
θ̂2
i + 4c/n−

√
θ̂i

)
, which using a first order

Taylor expansion of g(z) =
√
z around z = θ̂i gives that θ̃

(1)
i = θ̂i + O(c/n)θ̂−1

i , θ̃
(2)
i =

O(c/n)θ̂−1
i . Suppose first that θ∗i = 0, then the MLE θ̂i = Op(n

−1/2) and hence θ̂i− θ̃(1)
i =

O(c/n)θ̂−1
i = Op(n

−1/2), θ̃
(2)
i = Op(n

−1/2). Now suppose that θ∗i = an where an >> n−1/2,

then θ̂i = Op(an) and hence θ̂i − θ̃(1)
i = Op(1/(nan)), θ̃

(2)
i = Op(1/(nan)). In particular, if

θ∗i is fixed then θ̂i − θ̃(1)
i = Op(1/n), θ̃

(2)
i = Op(1/n). To summarize, the modes θ̃i when

sign(θ̃j) = sign(θ̂j) for j 6= i are either Op(n
−1) from the MLE (and are hence Op(an)

when θ∗i = an >> n−1/2 and Op(n
−1/2) when θ∗i = 0) or Op(n

−1/2) from 0. The modes in
other quadrants are given by the intersection of the contours of an ellipse that is centered
at θ̂ and has all axis lengths shrinking at rate O(n−1) (from boundedness of eigenvalues)
and the contours

∑pk
i=1 log(θi) = c for some 0 < c < ∞ (which do not depend on n).

Hence modes θ̃ occurring at quadrants other than that of θ̂ shrink towards 0 at the same

rate than θ̃
(1)
i and θ̃

(2)
i above, and in particular θ̃i = Op(n

−1/2) given that an >> n−1/2.
The proof for the piMOM and peMOM priors follows in an analogous fashion. Per-

forming a second order Taylor approximation to the piMOM posterior around an MLE
θ̂ and setting the partial derivative with respect to θi to 0 delivers that θ̃i and φ̃i must



satisfy
pk∑
j=1

hij(θ̃i − θ̂i) + hi,pk+1(φ̃− φ̂)− 2

θ̃i
+

2φ̃

θ̃3
i

= 0,(34)

where as before hij indicates the Hessian of Ln(θ, φ) evaluated at (θ̂, φ̂). Rearranging
terms delivers

hii
n
θ̃3
i (θ̃i − θ̂i) + θ̃3

i

(∑
j 6=i

hij
n

(θ̃i − θ̂i) +
hi,pk+1

n
(φ̃− φ̂)

)
− 2

n
θ̃2
i +

2φ

n
= 0.(35)

We again consider the modes for θ̃i when sign(θ̃j) = sign(θ̂j) for j 6= i. Either W69 or

the eigenvalue conditions D2 for linear models guarantee that hij/n
P−→ Jij for all i, j,

whereas MLE consistency gives that (θ̃i− θ̂i)
P−→ 0, and φ̃− φ̂ P−→ 0. Therefore, θ̃i must

satisfy

nθ̃3
i (θ̃i − θ̂i)

P−→ c,(36)

where 0 < c <∞. The two roots in (36) must satisfy either (θ̃i − θ̂i)
P−→ 0 (Mode 1) or

θ̃3
i

P−→ 0 (Mode 2). Consider first the case of a fixed true parameter value θ∗i 6= 0, then

θ̂i
P−→ θ∗i and thus for Mode 1 θ̃3

i
P−→ (θ∗i )

3 6= 0, so that n(θ̃i− θ̂i)
P−→ c′ with 0 < c′ <∞.

For Mode 2, which in particular satisfies sign(θ̃i) 6= sign(θ̂i) and hence θ̃i− θ̂i
P−→ θ∗i 6= 0,

we obtain nθ̃3
i

P−→ c′.
Now consider the case when θ∗i = 0, here we shall first see that the posterior mode

shrinks to 0 at a rate strictly slower than the MLE, i.e. θ̃i = Op(bn) with bn >> n−1/2,

and then show that this implies n−1/4θ̃i
P−→ c. To see that bn >> n−1/2, let us assume

that bn = O(n−1/2) and see that this leads to a contradiction. Under this assumption

θ̃i − θ̂i = op(n
−1/2) so nθ̃4

i (1 − θ̂i/θ̃i) = Op(1/n)(1 − θ̂i/θ̃i) does not converge to a finite
constant as required by (36), leading to a contradiction. Therefore bn >> n−1/2, which

means that 1− θ̂i/θ̃i
P−→ 0 and from (36) we obtain n−1/4θ̃i

P−→ c.
Finally consider the case with vanishing θ∗i = an 6= 0. First focus on the mode with

sign(θ̃i) = sign(θ̂i). If n−1/2 << an << n−1/4, a similar argument to the θ∗i = 0 gives

that bn >> an and hence n−1/4θ̃i
P−→ c. If an >> n−1/4 we shall show that assuming

bn >> an leads to a contradiction and that hence bn � an. If bn >> an then we would
have θ̃i − θ̂i � bn (since θ̂i � an) and nθ̃3

i (θ̃i − θ̂i) � nb4
n, which given that bn >> n−1/4

cannot converge to a finite constant as required by (36), leading to a contradiction. That
is, the primary mode is of order an when an >> n−1/4 and of order n−1/4 otherwise,
as desired. Now consider the mode with sign(θ̃i) 6= sign(θ̂i). If an >> n−1/4 we have

θ̃i − θ̂i = an + op(an) and hence nanθ̃
3
i

P−→ c. Note that by assumption an >> n−1/4,

hence θ̃i = Op(n
−1/4) as desired.

Recall that these asymptotic rates apply to the modes with sign(θ̃j) = sign(θ̂j) for
j 6= i. Similarly to the pMOM proof, all axes corresponding to the quadratic expansion



contract exactly at rate n−1, hence modes in all other quadrants are also θ̃i = Op(n
−1/4).

The proof for the peMOM case proceeds identically, with the only difference that term

−2θ̃2
i /n in (35) changes for −θ̃4

i /(nφ)
P−→ 0, hence one obtains the same convergence in

probability for θ̃i.

2.4. Proof of Proposition 2, Part (ii). We first state a lemma regarding the deriva-
tives of the univariate log-MOM, eMOM and iMOM prior densities with prior dispersion
τ = 1, which are useful in characterizing the asymptotic behaviour of Laplace approxi-
mations to integrated likelihoods and posterior means. We do not prove the lemma, as
it follows from straightforward algebra.

Lemma 5. Let l(θi, φ) = log (π(θi | φ)).

(i) Let π(θi | φ) ∝ φ−3/2θ2
i exp{−1

2
θ2
i /φ} be the MOM density, then

∂2l

∂θ2
i

= − 2

θ2
i

− 1

φ
;
∂2l

∂θi∂φ
=
θi
φ2

;
∂2l

∂φ2
=

3

2φ2
− θ2

i

φ3
;
∂3l

∂θ3
i

=
4

θ3
i

.

(ii) Let π(θi | φ) ∝ exp{−φ/θ2
i }φ−1/2exp{−1

2
θ2
i /φ} be the eMOM density, then

∂2l

∂θ2
i

= −6φ

θ4
i

− 1

φ
;
∂2l

∂θi∂φ
=

2

θ3
i

+
θi
φ2

;
∂2l

∂φ2
=

1

2φ2
− θ2

i

φ3
;
∂3l

∂θ3
i

=
24φ

θ5
i

.

(iii) Let π(θi | φ) ∝ φ1/2θ−2
i exp{−φ/θ2

i } be the iMOM density, then

∂2l

∂θ2
i

=
2

θ2
i

− 6φ

θ4
i

;
∂2l

∂θi∂φ
=

2

θ3
i

;
∂2l

∂φ2
= − 1

2φ2
;
∂3l

∂θ3
i

= − 4

θ3
i

+
24φ

θ5
i

.

We now proceed to prove Proposition 2(ii) for models satisfying W69. For ease of
notation we drop the subindex k and the conditioning on model Mk. The posterior mean
of interest is E(θi | yn) =∫ ∫

θiexp {log(π(θ | φ)) + Ln(θ, φ) + log(π(φ))} dθdφ∫ ∫
exp {log(π(θ | φ)) + Ln(θ, φ) + log(π(φ))} dθdφ

=∫ ∫
θie
−nhn(θ,φ)dθdφ∫ ∫

e−nhn(θ,φ)dθdφ
,(37)

where Ln(θ, φ) is the log-likelihood function. We shall use Theorem 4 in Kass et al.
(1990) to obtain a Laplace approximation to (37) by expanding hn(θ, φ) around its main

posterior mode (θ̃, φ̃). We note that when the true parameter value θ∗i = 0 the posterior
multi-modality does not vanish even as n → ∞, but defer discussion of this point to
later in the proof. We note that W69 ensure that the model is Laplace regular and hence
Theorem 4 in Kass et al. (1990) can be used. To use the theorem we set g(θ, φ) = θi,
b(θ, φ) = 1 and γ(θ, φ) = π(θ | φ)π(φ) and note that g(θ, φ) are four times γ(θ, φ) and
six times differentiable. We also note that when π(θ | φ) is either the eMOM or iMOM

prior density, it is infinitely differentiable but not analytical at θi = 0, but θ̃i cannot occur
at 0 (the prior density is 0) and hence we may ignore this set with 0 Lebesgue measure.
Direct application of Theorem 4 in Kass et al. (1990) gives



E(θi | yn) = θ̃i +
1

n

pk+1∑
j=1

hij

(
−1

2

∑
r,s

hrshrsj

)
+O

(
n−2
)

(38)

where pk = dim(θ), hij denotes the (i, j) element of the Hessian of hn(θ, φ) evaluated at

(θ̃, φ̃), hij that of the inverse Hessian and hrsj are third derivatives. That is,

hii =
1

n

∂2

∂θ2
i

Ln(θ, φ) +
1

n

∂2

∂θ2
i

log(π(θi | φ)),

hij =
1

n

∂2

∂θi∂θj
Ln(θ, φ),

hi,pk+1 =
1

n

∂2

∂θi∂φ
Ln(θ, φ) +

1

n

∂2

∂θi∂φ
log(π(θi | φ)).(39)

From the Normal approximation to the likelihood we obtain that hrsj
P−→ 0 unless

r = s = j, in which case hjjj
P−→ ∂3

∂θ3j
log(π(θ̃j | φ)). Hence,

E(θi | yn)
P−→ θ̃i −

1

2n

(
pk+1∑
j=1

hijh
jjhjjj

)
(40)

W69 ensure that hij for i 6= j converge in probability to a finite Jij. Regarding hii, the first
term converges to Jii whereas the second term is Op(n

−1) when θ∗i 6= 0 is fixed, and Op(1)
when θ∗i = 0 for either the MOM, eMOM or iMOM prior (Proposition 2(i) and Lemma
5), hence hii = Op(1). When θ∗i = an the second term in hii becomes Op(1/(na

2
n)) = op(1)

(pMOM, an >> n−1/2) or Op(1/(na
4
n)) = op(1) (peMOM and piMOM, an >> n−1/4).

This in turn implies that the Hessian converges in probability to J plus diagonal terms
that either converge to 0 or are Op(1), and hence the elements in its inverse hjj = Op(1).
Finally consider hjjj. From Lemma 5 when θ∗j 6= 0 we obtain hjjj = Op(1/n) for either

the MOM, eMOM or iMOM priors. When θ∗j = 0 for the MOM prior hjjj
P−→ 4n−1θ̃−3

i =

n−1Op(n
3/2) = Op(n

1/2) for j = 1, . . . , pk and hjjj
P−→ Op(1) for j = pk + 1. For the

eMOM and iMOM priors hjjj
P−→ 24n−1φ̃θ̃−5

i = n−1Op(n
5/4) = Op(n

1/4) for j = 1, . . . , pk

and again hjjj
P−→ Op(1) for j = pk + 1. Similarly when θ∗i = an we get hjjj = op(

√
n)

(pMOM) and hjjj = op(n
1/4) (peMOM, piMOM).

Putting these results together from (38) we obtain that if θ∗j 6= 0 is fixed for j = 1, . . . , pk

then E(θi | yn)
P−→ θ̃i +Op(n

−2) if θ∗j = an 6= 0 for j = 1, . . . , pk then θ̃i +Op(n
−2a−3

n ) =

θ̃i + op(n
−1/2) (pMOM) or θ̃i + Op(n

−2a−5
n ) = θ̃i + op(n

−1/4) (peMOM, piMOM) , and

finally if θ∗j = 0 for any j = 1, . . . , pk then E(θi | yn)
P−→ θ̃i +Op(n

−1/2) In particular, in
cases of parameter orthogonality where hij = 0 for all i 6= j then the difference between
the posterior mean and posterior mode of θi is Op(n

−1) whenever θ∗i 6= 0. To conclude the
proof, we recall that the posterior is multi-modal and hence approximate E(θi | yn) by

adding (38) across the 2pk modes. Proposition 2 gives that for such modes θ̃i = Op(n
−1/2)



for pMOM and θ̃i = Op(n
−1/4) for peMOM and piMOM, hence E(θi | yn) = θ̂i +

Op(n
−1/2) = θ∗i + Op(n

−1/2) for MOM and E(θi | yn) = θ̂i + Op(n
−1/4) = θ∗i + Op(n

−1/4)
for eMOM or iMOM.

2.5. Proof of Proposition 2, Part (iii). The proof proceeds analogously to that of
Part (ii). We consider linear models of growing dimensionality, again dropping the model
subindex k for ease of notation. Although we assume that X ′nXn is a diagonal matrix, we
state part of the argument for general X ′nXn (subject to the eigenvalue conditions in D2)
and make explicit where the orthogonality assumption is needed. As argued during the
proof of Proposition 2(i), the rates for posterior modes remain valid for linear models with
such bounded eigenvalues. Regarding the posterior mean, the Condition D2 guarantees
Laplace regularity (Kass et al., 1990) and hence the expansion (38) remains valid, where
now hn(θ, φ) =

1

2
log(φ) +

1

2φ
(θ − θ̂)′

X ′nXn

n
(θ − θ̂)− 1

n

pk∑
i=1

log(π(θi | φ))− 1

n
log(π(φ))(41)

Therefore hij is given by the (i, j) element in X′X
nφ̃

for i = 1, . . . , pk, i 6= j, which is

Op(1). For hii we add 1
n
∂2

∂θ2i
log(π(θi | φ), which from Lemma 5 and Proposition 2 is

Op(n
−1) for the main mode θ̃i when θ∗i is fixed, op(1) when θ∗i = an (for pMOM with

an >> n−1/2 or peMOM/piMOM with an >> n−1/4), and Op(1) when θ∗i = 0 or for any
other mode (pMOM, peMOM and piMOM), hence in all cases hii = Op(1). The elements
h1,pk+1, . . . , hpk,pk+1 are given by the vector

− 1

φ̃2

X ′nXn

n
(θ̃ − θ̂)− 1

n
g(θ̃, φ̃),(42)

where g(θ̃, φ̃) contains ∂2

∂θi∂φ
log(π(θi | φ)) for i = 1, . . . , pk. Given that the eigenvalues of

X ′nXn/n are bounded the first term in (42) converges in probability to 0 for the main mode

where θ̃− θ̂
P

−→ 0 and is Op(1) for all other modes. From Lemma 5 and Proposition 2(i)

it is straightforward to see that n−1g(θ̃, φ̃)
P−→ 0, hence hi,pk+1 = Op(1) for i = 1, . . . , pk.

Similarly, hpk+1,pk+1 =

− 1

2φ2
+

1

φ3
(θ̃ − θ̂)′

X ′nXn

n
(θ̃ − θ̂)− 1

n

pk∑
i=1

∂2

∂φ2
log(π(θi, φ))

+
1

n

∂2

∂φ2
log(π(φ)),(43)

which from Proposition 2(i) and Lemma 5 is Op(1).
Regarding the elements in the inverse Hessian hij, the Hessian is positive definite with

hij = Op(1) and hence hij = Op(1) for i, j = 1, . . . , pk + 1.
Finally we obtain third derivatives hrsj. Because hrs is given by the corresponding

element X ′nXn/(nφ̃), hrsj = 0 for r, s, j ∈ {1, . . . , pk}. Consider now the term hjjj
corresponding to r = s = j. As in the proof of Proposition 2(i) (either with fixed



θ∗i or θ∗i = an, an >> n−1/2 for pMOM, an >> n−1/4 for peMOM/piMOM), for the
main mode hjjj = Op(1) (Lemma 5) whereas for other modes hjjj = Op(n

1/2) under a
pMOM or Op(n

1/4) under a peMOM or piMOM priors (Proposition 2(i)). From (38), the
contribution to E(θi | yn) from each mode is

θ̃i −
1

2n

pk+1∑
j=1

hijh
jjhjjj(44)

plus a lower order term.
Consider now that X ′nXn is orthogonal. In that case hij = 0 for i 6= j and the two

values θ̃
(1)
i , θ̃

(2)
i maximizing the posterior are independent of θj for j 6= i. Therefore under

a pMOM prior

E(θi | y) = θ̃
(1)
i + θ̃

(2)
i −

1

2n
Op(n

1/2) = θ∗i +Op(n
−1/2)(45)

whereas

E(θi | y) = θ̃
(1)
i + θ̃

(2)
i −

1

2n
Op(n

1/4) = θ∗i +Op(n
−1/4)(46)

under either a peMOM or piMOM prior, which concludes the proof.

2.6. Proof of Proposition 3, Part (i). The strategy is to show that Bayes factors
between any Mk and the true model Mt can be approximated by ratios of Laplace ap-
proximations to the corresponding integrated likelihoods plus a negligible term, and then
use the probabilistic order of the posterior modes obtained in Proposition 2 to obtain
asymptotic Bayes factor rates.

Consider models Mk for k = 1, . . . , K, all satisfying the W69 conditions. Let Mt be the
true model and let k be such that Mt ⊂ Mk. Consider first the pMOM prior. We shall
first characterize the asymptotic behaviour of the Bayes factor when Mt ⊂ Mk for fixed
θ∗t , then consider Mt ⊂ Mk with vanishing θ∗t = θ0an where throughout we assume that
lim
n→∞

an = 0 with an >> n−1/2 for pMOM and an >> n−1/4 for peMOM and piMOM.

The marginal likelihood mt(yn) under Mt can be approximated by a Laplace expansion

around each posterior mode (θ̃
(m)
t , φ̃

(m)
t ) for m = 1, . . . , 2pt , obtaining for each mode

eLn(θ̃
(m)
t ,φ̃

(m)
t )
∏
i

(θ̃
(m)
ti )2

τ φ̃(m)
N(θ̃

(m)
t ;0, τ φ̃

(m)
t I)π(φ̃

(m)
t )

∣∣∣H(θ̃
(m)
t , φ̃

(m)
t )

∣∣∣−1/2

,(47)

where Ln(·) is the log-likelihood and H(θ̃
(m)
t , φ̃

(m)
t ) the Hessian of the log-likelihood

plus the log-prior density evaluated at (θ̃
(m)
t , φ̃

(m)
t ). Expressions for the elements in

H(θ̃
(m)
t , φ̃

(m)
t ) are given in the proof of Proposition 2 for pMOM, peMOM and piMOM

priors.

Without loss of generality denote by (θ̃
(1)
t , φ̃

(1)
t ) the mode located in the same quadrant

as the MLE (θ̂, φ̂). As seen in Proposition 2, under Walker’s conditions



(θ̃
(1)
t , φ̃

(1)
t )

P−→ (θ∗t , φ
∗
t ) and n−1H(θ̃

(m)
t , φ̃

(m)
t )

P−→ J for a positive-definite J , hence (47)
converges in probability to

eLn(θ̃
(1)
t ,φ̃

(1)
t )c1n

−pt/2c2,(48)

where c1, c2 > 0. For modes in any other quadrant eLn(θ̃
(m)
t ,φ̃

(m)
t )−Ln(θ̃

(1)
t ,φ̃

(1)
t ) P−→ e−nc3 ,

where c3 > 0 is the KL between the data-generating density ft(θ
∗
t , φ

∗
t ) and that where

some elements in θt are set to 0 (which is positive by assumption). Further, in such

quadrants
∏

i
(θ̃

(m)
ti )2

τφ̃(m) = Op(n
−pt) so that the sum of (47) across all modes m = 1, . . . , 2pt

gives that the marginal likelihood mt(yn) ≈

eLn(θ̃
(1)
t ,φ̃

(1)
t )

(
Z1Z2n

−pt/2 +
∑
m

eLn(θ̃
(m)
t ,φ̃

(m)
t )−Ln(θ̃

(1)
t ,φ̃

(1)
t )Op(n

−pt)Z3

)
P−→ n−pt/2eLn(θ̃

(1)
t ,φ̃

(1)
t )Z4,(49)

where Zj
P−→ cj > 0 for j = 1, . . . , 4.

Now consider Mk such that Mt ⊂ Mk with θ∗t 6= 0. Denote by θk1 the subset of θk
such that θ∗ki = 0 and θ∗k2 that for θ∗ki 6= 0, where θ∗k minimizes KL to the data-generating
ft(yn | θt, φt) and dim(θk1) = pk − pt. Following the same argument as for Mt, it suffices

to focus on modes for which θ̃k2 lies in the same quadrant as θ∗k2. Adding up the Laplace
approximations across all 2pk−pt such modes delivers the Bayes factor

BFkt = mk(yn)
mt(yn)

P−→

2pk−pt∑
m=1

eLn(θ̃
(m)
k ,φ̃

(m)
k )

eLn(θ̃
(1)
t ,φ̃

(1)
t )
×

∏pk
i=1

(θ̃
(m)
ki )2

τφ̃
(m)
k∏pt

i=1
(θ̃

(1)
ti )2

τφ̃
(1)
t

× π(φ̃
(m)
k )

π(φ̃
(1)
t )
× n−pk/2

n−pt/2
×

∣∣∣n−1H(θ̃
(m)
k , φ̃

(m)
k )

∣∣∣∣∣∣n−1H(θ̃
(1)
t , φ̃

(1)
t )
∣∣∣ ,(50)

where the first term is Op(1), the second term converges in probability to n−(pk−pt)Z5 for
some random variable Z5 = Op(1), the third and fourth terms converge in probability
to a positive constant (π(φ) is bounded by assumption). Therefore each summand in

(50) is Op(n
− 3

2
(pk−pt)), and given that we are adding up a finite number of terms BFkt =

Op(n
− 3

2
(pk−pt)).

Next consider that Mt ⊂ Mk and θ∗t = θ0an with an vanishing an as above. As

seen in Proposition 2 in this case θ̃t is of order an, from W69 n−1H(θ̃
(m)
t , φ̃

(m)
t )

P−→ J as

before and for the primary mode (47) converges in probability to eLn(θ̃
(1)
t ,φ̃

(1)
t )c1a

2pt
n n−pt/2c2.

For other modes using that under W69 Ln can be asymptotically approximated by a

quadratic expansion we obtain that KL
(
ft(θ̃

(1)
t , φ̃

(1)
t ), ft(θ̃

(m)
t , φ̃

(m)
t )

)
is of order (θ̃

(1)
t −

θ̃
(m)
t )′(θ̃

(1)
t − θ̃

(m)
t ). Now, θ̃

(1)
t is of order an and each element in θ̃(m) is Op(n

−1/2) or

Op(an), hence Ln(θ̃
(1)
t , φ̃(1)) − Ln(θ̃

(m)
t , φ̃(m))

P−→ −na2
nc3. Adding across all modes we

obtain mt(yn) = a2pt
n n−pt/2eLn(θ

(1)
t ,φ

(1)
t )Z4. Similarly to the fixed θ∗t case we obtain the



Bayes factor

2pk−pt∑
m=1

eLn(θ̃
(m)
k ,φ̃

(m)
k )

eLn(θ̃
(1)
t ,φ̃

(1)
t )
×

∏pk
i=1

(θ̃
(m)
ki )2

τφ̃
(m)
k∏pt

i=1
(θ̃

(1)
ti )2

τφ̃
(1)
t

× π(φ̃
(m)
k )

π(φ̃
(1)
t )
× n−pk/2

n−pt/2
×

∣∣∣n−1H(θ̃
(m)
k , φ̃

(m)
k )

∣∣∣∣∣∣n−1H(θ̃
(1)
t , φ̃

(1)
t )
∣∣∣ ,(51)

where now the first term is op(1), the second term is of order n−(pk−pt) and the remaining

terms are as before, hence BFkt = Op(n
− 3

2
(pk−pt)).

Let us now consider models Mk that do not contain Mt and that θ∗t is fixed. By
assumption, the minimum Kullback-Leibler divergence KL(Mt,Mk) between ft(θ

∗
t , φ

∗
t )

and any fk(θ
∗
k, φ

∗
k) with (θk, φk) ∈ (Θk,Φ) is strictly positive. Hence by the law of large

numbers eLn(θ̃
(m)
k ,φ̃

(m)
k )−Ln(θ̃

(1)
t ,φ̃

(1)
t ) a.s.−→ e−nKL(ft(yn|θt,φt),fk(yn|θk,φk)) and BFkt = Op(e

−n).
In the case where θ∗t = θ0an then the KL is of order na2

n(θ∗0t− θ∗0k)
′(θ∗0t− θ∗0k) and hence

BFkt = Op(e
−na2n).

The proof for the peMOM and piMOM are largely analogous. When θ∗t is fixed the
marginal likelihood for Mt is mt(yn) ≈

eLn(θ̃
(1)
t ,φ̃

(1)
t )π(φ̃

(1)
t )
∣∣∣H(θ̃

(1)
t , φ̃

(1)
t )
∣∣∣−1/2

Z1

∏
i

e−τφ̃
(1)/(θ̃

(1)
ti )2

P−→ n−pt/2eLn(θ̃
(1)
t ,φ̃

(1)
t )Z2(52)

where Z1 = Op(1) for the peMOM under any model, whereas for the piMOM Z1 = Op(1)
under Mt and Z1 = op(1) under any other Mk, and consequently Z2 = Op(1). Consider k

such that Mt ⊂Mk, then from Proposition 2(i) for all modes with spurious θ̃k2 in the same

quadrant as θ∗k2 we have
∏pk

i=1 exp{−
√
nτφ̃(1)/(n1/4θ̃

(1)
ki )2} =

∏
i exp{−

√
nZ3i} = e−

√
nZ4 ,

where Z4 = Op(1). Thus the Bayes factor

BFkt
P−→
∑
m

eLn(θ̃
(m)
k ,φ̃

(m)
k )

eLn(θ̃
(1)
t ,φ̃

(1)
t )

e−
√
nZ4n−pk/2

n−pt/2Z2

= Op(e
−
√
n).(53)

When θ∗t = θ0an an analogous argument gives that BFkt
P−→ Op(e

−
√
n).

The proof for the Mt 6⊂ Mk case proceeds in the same manner as for the pMOM,
obtaining that if θ∗t is fixed then BFkt = O(e−n) whereas if θ∗t = θ0an then BFkt =

O(e−na
2
n).

2.7. Proof of Proposition 3, Part (ii). The idea is to combine the rates for posterior
model probabilities stemming from the Bayes factor rates from Part (i) with a Laplace
approximation to the posterior mean conditional on a variable being in a model (which
is asymptotically valid under W69).

We start by using the Bayes factor rates from Part (i) to derive rates for posterior
model probabilities. Consider a model Mk such that Mt ⊂Mk and note that



P (Mk | yn) < (1 + BFtkP (Mt)/P (Mk))
−1. Under a pMOM prior

P (Mk | yn) <
1

1 +Op(1)n
3
2

(pk−pt) P (Mt)
P (Mk)

=

n−
3
2

(pk−pt) P (Mt)
P (Mk)

n−
3
2

(pk−pt) P (Mt)
P (Mk)

+Op(1)
= n−

3
2

(pk−pt)P (Mk)

P (Mt)
Op(1),(54)

where the last equality follows from the assumption that P (Mk)/P (Mt) = o(n
3
2

(pk−pt))
and hence the denominator is Op(1). The same argument applies under a peMOM or

piMOM prior, where now BFkt = e−
√
n and hence P (Mk | yn) < e−

√
n P (Mk)
P (Mt)

Op(1). Finally,

for models Mk such that Mt 6⊂Mk, from Proposition 3(i)

P (Mk | yn) <
(
1 + enOp(1)P (Mt)/P (Mk)

)−1
= e−nOp(1)P (Mk)/P (Mt) if θ∗ is fixed, and

e−na
2
nOp(1)P (Mk)/P (Mt) if θ∗ = θ0an with an as in C4.

The BMA posterior mean is E(θi | yn) =

E(θi |Mt,yn)P (Mt | yn) +
∑

k:Mt⊂Mk

E(θi |Mk,yn)P (Mk | yn)+

∑
k:Mt 6⊂Mk

E(θi |Mk,yn)P (Mk | yn).(55)

Suppose first that θ∗i 6= 0 is fixed. From Proposition 2(ii), E(θi |Mt,yn) = θ̂i+Op(n
−1) for

pMOM, peMOM and piMOM, where θ̂i is the MLE. Also, E(θi | Mk,yn) in the second

term of (55) is Op(1) and P (Mk | yn) is either Op(n
− 3

2
(pk−pt)) (pMOM) or Op(e

−
√
n)

(peMOM, piMOM). Further, P (Mk)/P (Mt) = o(npk−pt) by assumption and hence the
whole second term in (55) is Op(n

−1). Regarding the third term in (55), E(θi |Mk,yn) =
Op(1) and P (Mk | yn) = Op(e

−n). Summarizing, when θ∗i 6= 0 for the pMOM we have
that E(θi | yn) =(

θ̂ti +Op(n
−1)
) (

1 + n−1Op(1)
)−1

+Op(n
−1) +Op(e

−n) = θ̂ti +Op(n
−1)(56)

= θ∗i +Op(n
−1/2)(57)

and for the peMOM or piMOM E(θi | yn) =(
θ̂ti +Op(n

−1)
)(

1 + e−
√
nOp(1)

)−1

+Op(e
−
√
n) +Op(e

−n) = θ̂ti +Op(n
−1)(58)

= θ∗i +Op(n
−1/2).(59)

Next consider that θ∗i = θ∗0ian with fixed θ0i and an as in C4. Then from Proposition
2(ii) E(θi | Mt,yn) = θ∗i + Op(n

−1/2) for pMOM and θ∗i + Op(n
−1/4) for peMOM and

piMOM. The second term in (55) has E(θi | Mk,yn) = Op(an) and P (Mk | yn) is

either Op(n
−3/2(pk−pt)) (pMOM) or Op(e

−
√
n) (peMOM,piMOM), hence the whole term is

Op(ann
−1). Regarding the third term, E(θi |Mk,yn) = Op(1) and



P (Mk | yn) = e−na
2
nOp(1). Summarizing for vanishing coefficients under a pMOM we

obtain E(θi | yn) =(
θ∗i +Op(n

−1/2)
) (

1 + n−1Op(1)
)−1

+Op(n
−1) +Op(e

−na2n) = θ∗i +Op(n
−1/2)(60)

since an << n by assumption, and for the peMOM or piMOM E(θi | yn) =(
θ∗i +Op(n

−1/4)
) (

1 + e−
√
nOp(1)

)−1

+Op(e
−
√
n) +Op(e

−na2n) = θ∗i +Op(n
−1/4)(61)

Finally consider the case θ∗i = 0. Obviously, Mt only includes non-zero coefficients and
hence E(θi |Mt,yn) = 0. In the second term of (55), from Proposition 2(ii) we have that
E(θi | Mk,yn) is Op(n

−1/2) for pMOM and Op(n
−1/4) for peMOM and piMOM. Thus

the whole second term is Op(n
−2)πpt+1/P (Mt) for pMOM and Op(e

−
√
n)πpt+1/P (Mt) for

peMOM and piMOM, where πpt+1 = maxk:pk=pt+1P (Mk) for Mt ⊂Mk. As in the θ∗i 6= 0
case, the third term is Op(e

−n). Summarizing, when θ∗i = 0 we obtain E(θi | yn) =

Op(n
−2)

πpt+1

P (Mt)
(62)

and for the peMOM or piMOM E(θi | yn) =

Op(e
−
√
n)
πpt+1

P (Mt)
,(63)

as desired. The probabilistic orders of SSE0 and SSE1 are straightforward, since a
random variable Zn = Op(bn) implies that Z2

n = Op(b
2
n) and Z1n = Op(bn), . . . Zpn =

Op(bn) imply that
∑p

i=1 Zin = Op(bn) for finite p.

2.8. Proof of Proposition 3, Part (iii). We first determine the probabilistic order of
the BMA posterior mean θ̄i = E(θi | yn, φ) and subsequently proceed to characterize the
(asymptotic) frequentist expectation of SSE0 =

∑
θ∗i =0(θ̄i − θ∗i )2 and SSE1 =

∑
θ∗i 6=0(θ̄i −

θ∗i )
2 under repeated sampling from yn ∼ N(Xnθ

∗, φI). As stated in the proposition
conditions we assume X ′nXn to be orthogonal and φ to be known.

2.8.1. Proposition 3(iii). Probabilistic order of E(θi | yn, φ). The strategy is to find sim-

ple expressions for E(θi | yn, φ) taking advantage of the fact that both the likelihood and
prior factor across θ1, . . . , θn and then use a Laplace expansion as in Part (ii) to derive
its probabilistic order for peMOM and piMOM (for pMOM a closed-form expression is
available).

We adjust the notation of the previous sections slightly to ease the exposition. Let θi for
i = 1, . . . , p (where p < n) be the coefficient corresponding to variable i and δi = I(θi 6= 0)
variable inclusion indicators. We aim to characterize E(θi | yn) = E(θi | yn, δi = 1)P (δi =
1 | yn). We first derive P (δi | yn). Let δ = (δ1, . . . , δp) and δ−i be the result from
removing δi from δ, and note that P (δi = 1 | yn) =

∑
δ−i

P (δi = 1 | δ−i,yn)P (δ−i | yn).

Because X ′nXn is orthogonal the likelihood factors across i = 1, . . . , p, and given that
the pMOM, peMOM and piMOM priors also factor straightforward algebra shows that



P (δi = 1 | δ−i,yn) =

ρ1m−i(yn)
∫
di(θi, φ)N(θi;mi, φvi)dθi

ρ1m−i(yn)
∫
di(θi, φ)N(θi;mi, φvi)dθi +N(0;mi, φvi)m−i(yn)(1− ρ1)

=

ρ1

∫
di(θi, φ)N(θi;mi, φvi)dθi

ρ1

∫
di(θi, φ)N(θi;mi, φvi)dθi +N(0;mi, φvi)(1− ρ1)

(64)

where m−i(yn) = ∏
j 6=i,δj=1

∫
dj(θj, φ)N(θj;mj, φvj)dθj

∏
j 6=i,δj=0

mj0(yn),(65)

and ρ1 = P (δi = 1 | δ−i). For the pMOM prior di(θi, φ) = θ2
i /φτ , vi = τ/(1 + τ

∑n
l=1 x

2
il)

and mi = vi
∑n

l=1 xilyl. For the peMOM prior di(θi, φ) = e−τφ/θ
2
i and again

vi = τ/(1 + τ
∑n

l=1 x
2
il) mi = vi

∑n
l=1 xilyl and for piMOM di(θi, φ) =

√
τφθ−2

i e−τφ/θ
2
i ,

vi = (
∑n

l=1 x
2
il)
−1 mi = vi

∑n
l=1 xilyl. Assumption D2 gives that an ≤

∑n
l=1 x

2
il ≤ bn for

n > n0 and some finite a, b, n0, hence without loss of generality we assume that∑n
l=1 x

2
il = n (i.e. covariates have mean 0 and variance 1), so that vi = τ/(nτ + 1) for

pMOM and peMOM and vi = 1/n for piMOM. From de Finetti’s theorem the assumption
that δ1, . . . , δp are exchangeable a priori gives

P (δi = 1 | δ−i) =

∫
P (δi = 1 | δ−i, w)P (w)dw =

∫
P (δi = 1 | w)P (w)dw = P (δi = 1),

and hence from (64) P (δi = 1 | δ−i,yn) = P (δi = 1 | yn). Thus P (δi = 1 | yn) =∫
di(θi, φ)N(θi;mi, φvi)dθiP (δi = 1)∫

di(θi, φ)N(θi;mi, φvi)dθiP (δi = 1) +N(0;mi, φvi)P (δi = 0)
.(66)

Following the same argument as in Proposition 3(ii), if θ∗i 6= 0 is fixed then P (δi =
1 | yn) =

(
1− e−nOp(1)P (δi = 0)/P (δi = 1)

)
under either a pMOM, peMOM or piMOM

prior. If θ∗i = θ∗0ian with an as in C4 then P (δi = 1 | yn) =
(

1− e−na2nP (δi = 0)/P (δi = 1)
)

for pMOM, peMOM and piMOM. If θ∗i = 0 then P (δi = 1 | yn) = n−
3
2

(pk−pt)P (δi =
1)/P (δi = 0) for pMOM and P (δi = 1 | yn) = e−

√
nOp(1)P (δi = 1)/P (δi = 0) for peMOM

and piMOM.
We now characterize E(θi | δi = 1,yn, φ). Again, because of orthogonality this posterior

mean is the same under any model with δi = 1, giving

E(θi | δi = 1,yn, φ) =

∫
θidi(θi, φ)N(θi;mi, φvi)dθi∫
di(θi, φ)N(θi;mi, φvi)dθi

,(67)

As before for the pMOM prior di(θi, φ) = θ2
i /(φτ) and hence by using Normal moments of

up to order 3 (67) becomesmi

(
1 + 2φvi

m2
i+φvi

)
, where vi = τ/(nτ+1) andmi = vi

∑n
i=1 xjiyi.

If θ∗i 6= 0 is fixed then n−1m2
i /vi

P−→ θ∗i and hence
E(θi | δi = 1,yn, φ) = mi +Op(n

−1) = θ∗i +Op(n
−1/2). If θ∗i = θ∗0ian then

n−1a−2
n m2

i /vi
P−→ θ∗i and hence



E(θi | δi = 1,yn, φ) = mi(1 + Op(n
−1a−2

n )) = mi(1 + op(1)) = θ∗i + Op(n
−1/2), since

an >> n−1/2 by assumption. If θ∗i = 0 then m2
i /vi = Op(1) and hence

E(θi | δi = 1,yn, φ) = mi + miOp(1) = Op(n
−1/2). For the peMOM and piMOM, using

a Laplace approximation (Kass et al., 1990) around the two modes as in Proposition 2

gives that if θ∗i 6= 0 is fixed then E(θi | δi = 1,yn, φ) = θ̂i + Op(n
−1) (where θ̂i is the

MLE), if θ∗i = θ∗0ian then E(θi | δi = 1,yn, φ) = θ∗i + Op(n
−1/4) and if θ∗i = 0 then

E(θi | δi,yn, φ) = Op(n
−1/4).

Combining the rates derived above if θ∗i 6= 0 is fixed then

E(θi | yn, φ) = E(θi | δi = 1,yn, φ)P (δi = 1 | yn, φ) = θ̂i + Op(n
−1) for pMOM, peMOM

and piMOM. If θ∗i = θ∗0ian with an as in C4 then

E(θi | yn, φ) = (θ∗i + Op(n
−1/2))

(
1− e−na2nP (δi = 1)/P (δi = 0)

)
= θ∗i + Op(n

−1/2) for

pMOM and E(θi | yn, φ) = θ∗i +Op(n
−1/4) for peMOM and piMOM. If θ∗i = 0 then

E(θi | yn, φ) = Op(n
−2)P (δi = 1)/P (δi = 0) for pMOM and

E(θi | yn, φ) = e−
√
nOp(1)P (δi = 1)/P (δi = 0) for peMOM and piMOM.

2.8.2. Proposition 3(iii). Sum of squared errors.. We now characterize

Eθ∗(SSE0) =
∑

θ∗i =0 Eθ∗((θ̄i − θ∗i )
2) and Eθ∗(SSE1) =

∑
θ∗i 6=0Eθ∗((θ̄i − θ∗i )

2), where

the expectation is with respect to the data-generating truth N(yn;Xθ∗, φI). Although
we already characterized the probabilistic order of (θ̄i− θ∗i )2, unfortunately this does not
imply that its expectation Eθ∗((θ̄i−θ∗i )2) is of the same order. Our strategy is to introduce
Lemma 6, which under a stronger condition does bound the order of the expectation, and
then show in Lemma 7 that the stronger condition is satisfied by pMOM, peMOM and
piMOM. This will imply that Eθ∗((θ̄i − θ∗i )

2) = O(an) for some sequence an satisfying
lim
n→∞

an = 0. Finally, Lemma 8 will guarantee that
∑

θ∗i =0Eθ∗((θ̄i−θ∗i )2) = o(p0bn) for any

bn satisfying an � bn, where p0 =
∑p

i=1 I(θ∗i = 0) is the number of truly inactive variables,
and similarly for

∑
θ∗i =1Eθ∗((θ̄i − θ∗i )2). We start by stating and proving Lemmas 6, 7

and 8.

Lemma 6. Let Un ∈ [0, 1] be a random variable such that P (Un > an) = O(an) where
lim
n→∞

an = 0. Then E(Un) = O(an).

Proof. of Lemma 6. Denote by P the probability measure of Un. Then

E(Un) =

∫ an

0

UndP (Un) +

∫ 1

an

UndP (Un) ≤ anP (Un < an) + P (Un > an)(68)

≤ an + P (Un > an)

and therefore

lim sup
n→∞

E(Un)

an
≤ lim sup

n→∞
1 +

P (Un > an)

an
≤ 1 + c

for some c > 0, where the last inequality follows from the assumption that
P (Un > an) = O(an). �



Lemma 7. Let P (δi = 1 | yn, φ) where δi = I(θi 6= 0) be the posterior inclusion probability
under the sampling model yn ∼ N(Xnθ, φI) with diagonal X ′nXn and known φ satisfying
the conditions in Proposition 3(iii). Suppose that conditional on (δ1, . . . , δp) the prior on
the non-zero elements in θ has independent components.

Denote by Pθ∗(·) the probability under the true data-generating distribution
yn ∼ N(Xnθ

∗, φI), and suppose that θ∗i = 0. Then if the prior on θi is a pMOM prior,

Pθ∗

(
P (δi = 1 | yn, φ) >

r

n3/2−ε

)
= O

(
exp{−nε}n−ε/2

)
(69)

for any fixed ε ∈ (0, 3/2). Further, if the prior on θi is a peMOM or piMOM prior then

Pθ∗

(
P (δi = 1 | yn, φ) > re−n

1/2−ε
)

= O
(
e−n

1/2
)

(70)

for any fixed ε ∈ (0, 1/2).
Now suppose that θ∗i 6= 0. If the prior on θi is a pMOM, peMOM or piMOM prior then

Pθ∗

(
P (δi = 0 | yn, φ) >

1

r
e−n

ε

)
= O

(
e−n(θ∗i )2

)
(71)

for any ε ∈ (0, 1) if θ∗i is fixed. If θ∗i = θ∗0ian where lim
n→∞

an = 0 with an � n−1/2 (pMOM)

or an � n−1/4 (peMOM, piMOM) then (71) holds for any ε satisfying n1/2an � nε/2 (in
particular, if an = n−α then ε < 1− 2α).

Proof. of Lemma 7. Denote by xi = (x1i, . . . , xni)
′ the ith column in Xn, mi = vix

′
iyn,

vi = τ/(1 + τx′ixi) and note that under the eigenvalue conditions D2 we have vi � n−1.
We start by proving the result when θ∗i = 0. Consider first the pMOM prior, under which

P (δi = 1 | yn) = (1 + r−1BF01(yn))
−1

, where

BF01(yn) =
τ√
2πφ

1

v
3/2
i

e
− m2

i
2viφ

1

(1 +
m2
i

viφ
)
.(72)

Trivially,

Pθ∗
(
P (δi = 1 | yn) >

r

n3/2−ε

)
= Pθ∗

(
1

r
BF01(yn) + 1 <

n3/2−ε

r

)
(73)

≤ Pθ∗
(
BF01(yn) < n3/2−ε) .(74)

Now, we are looking for Pθ∗ (P (δi = 1 | yn) > t) where t → 0, which from monotonicity
of BF01(yn) as a function of mi implies that mi → 0. For any fixed c1 ∈ (0, 1) there is a

small enough mi such that e−m
2
i /(2viφ) > c1, implying that (74)

≤ Pθ∗

 τ√
2πφ

1

v
3/2
i

c1
1

(1 +
m2
i

viφ
)
< n3/2−ε

 = Pθ∗

(
m2
i

viφ
> c2n

ε

)
(75)

where c1, c2 > 0 are constants and we used the fact that vi � n−1. If truly θ∗i = 0 then
m2
i

viφ
∼ N

(
0,

τx′ixi
1+τx′ixi

)
, from which (75) becomes 2Φ

(
−√c3n

ε/2
)

with bounded c3 > 0.



Using the bound that for any z < 0 the Normal cdf satisfies Φ(z) ≤ e−z
2/2 1√

2π|z| , we

obtain that

Pθ∗
(
P (δi = 1 | yn) >

r

n3/2−ε

)
≤ c5

1

nε/2
exp {−nεc4/2} = O

(
n−ε/2e−n

ε)
,(76)

as desired.
Consider now the peMOM prior. Rossell et al. (2013) found that the integrated likeli-

hood under δi = 1 is

e
√

2− 1
2φ

y′nyn(φvi)
1
4

(2πφ)n/2τ
1
4

2
3
4

∞∑
l=0

(√
τm2

i /(2φvi)
3
2

)l
Γ(l + 1/2)l!

Kl+ 1
2

(√
2τ

φvi

)
,(77)

where K(·) is the modified Bessel function of the second kind. Thus the Bayes factor is
BF01(yn) =

τ
1
4

e
√

2(φvi)
1
4 2

3
4

 ∞∑
l=0

(√
τm2

i /(2φvi)
3
2

)l
Γ(l + 1/2)l!

Kl+ 1
2

(√
2τ

φvi

)
−1

.(78)

Let ε ∈ (0, 1/2) be an arbitrary fixed constant, then

Pθ∗
(
P (δi = 1 | yn) > r exp{−n1/2−ε}

)
≤ Pθ∗

(
BF01(yn) < exp{n1/2−ε}

)
=

Pθ∗

exp{n1/2−ε}
∞∑
l=0

(√
τm2

i /(2φvi)
3
2

)l
Γ(l + 1/2)l!

Kl+ 1
2

(√
2τ

φvi

)
>

τ
1
4 e
√

2

2
3
4 (φvi)

1
4

 ≤
Pθ∗

(
c1 exp

{
n1/2−ε −

√
2τ

viφ

} ∞∑
l=0

(m2
i /(4φvi))

l

l!
>

τ
1
4 e
√

2

2
3
4 (φvi)

1
4

)
,(79)

where the last inequality follows from the modified Bessel function of the second kind
bound Kl+1/2(z)/Γ(l+ 1/2) ≤ c1e

−z(1/z)l for all l ≥ 1, z ≥ 5 and some c1 > 0. Now, the
sum on the right hand side of (79) corresponds to the series expansion of the exponential
function, giving

Pθ∗

(
exp

{
m2
i

4φvi

}
> exp

{√
2τ

viφ
− n1/2−ε

}
τ

1
4 e
√

2

c12
3
4 (φvi)

1
4

)

= Pθ∗

(
m2
i

φvi
>

√
2τ

viφ
− n1/2−ε − 1

4
log(φvi) +

1

4
log(τ) + c2

)
(80)

where c2 =
√

2 − log(c1) − 3
4

log(2). Analogously to the MOM case when truly θ∗i = 0

then
m2
i

viφ
∼ N(0,

τx′ixi
1+τx′ixi

) and since for z < 0 the Normal cdf satisfies Φ(z) ≤ e−z
2/2 1√

2π|z|
we obtain that (80) is



≤ 2 exp

{
−2

(√
2τ

viφ
− n

1
2
−ε
)
− 1

2
log(φvi/τ)− c3

}
(81)

for fixed c3 ∈ R. Since
√

1/vi � n1/2 we obtain that (81) is O
(
exp{−n1/2}

)
, as desired.

The proof for the piMOM is analogous. Intuitively, its penalty term behaves in the
same exponential fashion as the eMOM’s as θi → 0, hence the same limiting rates
apply. More formally, from (66) we have that the iMOM’s P (δi = 1 | yn, φ) only
differs from the eMOM’s due to its marginal likelihood under δi = 1 depending on∫

1
θ2i
e−τφ/θ

2
iN(θi;mi, φvi)dθi rather than

∫
e−τφ/θ

2
iN(θi;mi, φvi)dθi. Briefly, using inte-

gration by parts shows and the Normal cdf bound Φ(z) ≤ e−z
2/2 1√

2π|z| it can be shown

that

∫
1

θ2
i

e−τφ/θ
2
iN(θi;mi, φvi)dθi ≤

1

2τφ2v

(∫
e−τφ/θ

2
iN(θi;mi, φvi)dθi + g(m, v)

)
(82)

for a certain function g(m, v) = O(e−n) for any m < 1/2. From (82) it can then be shown

that the term g(m, v) can be ignored (as it has smaller order than e−n
1/2−ε

), hence a

derivation analogous to that for the eMOM shows that Pθ∗
(
P (δi = 1 | yn) > e−n

1/2−ε
)

=

O
(
exp{−n1/2}

)
.

We now prove the result for the case θ∗i 6= 0. Clearly,

Pθ∗

(
P (δi = 0 | yn, φ) >

1

r
e−n

ε

)
= Pθ∗

(
rBF10(yn) + 1 < ren

ε) ≤ Pθ∗
(
BF10(yn) < en

ε)
.

(83)

For the pMOM prior from (72) we obtain that (83) is equal to

Pθ∗

(√
2πφ

τ
v

3
2
i e

m2
i

2viφ

(
1 +

m2
i

viφ

)
< en

ε

)
≤ Pθ∗

(√
2πφ

τ
v

3
2
i e

m2
i

2viφ < en
ε

)
≤ Pθ∗

(
m2
i

viφ
< 2nε − 3

2
log(vi)− log

(
τ√
2πφ

))
,(84)

where for simplicity we may ignore the terms −3
2

log(vi) − log
(

τ√
2πφ

)
, as they are of

smaller order than nε since vi � 1/n. From basic sampling theory we know that mi =

vix
′
ixiθ̂i ∼ N(vix

′
ixiθ

∗
i , φx

′
ixiv

2
i ) where θ̂i is the least squares estimator, implying that

mi/(
√
φx′ixivi) ∼ N

(
θ∗i
√
x′ixi/φ, 1

)
and thus (84) is

≤ Φ

(√
2

x′ixivi
nε −

√
x′ixi
φ
θ∗i

)
≤ exp

−1

2

(
√
c1nε −

√
x′ixi
φ
θ∗i

)2
 ,(85)

where the right hand side follows from the fact that x′ixivi = τx′ixi/(1+τx′ixi) is bounded
from below by eigenvalue assumption D2 and the Normal cdf inequality



Φ(z) ≤ e−
1
2
z2/(
√

2π|z|). Given that x′ixi � n we obtain that if θ∗i is fixed then
x′ixi
φ
θ∗i � nε

for any ε ∈ [0, 1), so that (85) is O(e−n(θ∗i )2). If θ∗i = θ∗0ian with fixed θ∗0i and an � n−
1
2

then for any ε ≥ 0 satisfying n
1
2an � nε/2 we again obtain that (85) is

O(e−n(θ∗i )2) = O(e−na
2
n), as we wished to prove.

Consider now the peMOM prior, again under the case θ∗i 6= 0. The modified Bessel

function of the second kind satisfies Kl+ 1
2
(z)/Γ(l+ 1/2) ≥ c1e

−z1+α/z
l
2 for any α > 0, all

l ≥ 1 and z ∈ R+, and some fixed finite c1 > 0, hence from (78) we obtain that (83) is

≤ Pθ∗

(
e
√

2(φvi2
3)

1
4

τ
1
4

e
−
(

2τ
φvi

) 1+α
2

∞∑
l=0

c1

l!

(
m2
i

4φvi

)l
< en

ε

)
= Pθ∗

(
c2e
−
(

2τ
φvi

) 1+α
2 +

m2
i

4φvi < en
ε

)

≤ Pθ∗

(
m2
i

φvi
< nε + c3n

(1+α)
2

)
≤ exp

−1

2

(
√
nε̃ −

√
x′ixi
φ
θ∗i

)2
(86)

where c2 = c1(φvi)
1
4 e
√

22
3
4/τ

1
4 is of smaller order than en

ε
and for simplicity is dropped

from the second line of (86), c3 = 2τ/(φvin) is bounded since vi � n by assumption,
ε̃ = max{ε, 1+α

2
}, and the last inequality was obtained from the sampling distribution of

m2
i /(φvi) and the Normal cdf bound as in (84). If θ∗i 6= 0 is fixed then (86) is O(−n(θ∗i )

2)

for any ε ∈ (0, 1). If θ∗i = θ∗0ian with fixed θ∗0i and an � n−
1
4 then n

1
2an � nε̃/2 for small

enough α (recall that α > 0 is an arbitrary positive constant used to bound the modified
Bessel function), again giving that (86) is O(−n(θ∗i )

2) for any ε ∈ (0, 1), as desired.
To finalize the proof consider the piMOM prior when θ∗i 6= 0, for which we obtain

Pθ∗
(
BF10(yn) < en

ε)
= Pθ∗

∫ √τφθ2i e−τφ/θ2iN(θi;mi, viφ)dθi

(φvi)
− 1

2 e
−

m2
i

2φvi

< en
ε

 .(87)

The strategy will be to lower bound the integral in (87). Analogously to the proof in
Supplementary Section 4 for any fixed τ it is possible to find a fixed small enough τ ′ > 0

such that d̃(θi, φ) = e
− τφ
θ2
i /(θ2

iN(θi; 0, τ ′φ) is convex in θi. Hence (87) becomes

Pθ∗

(
(φvi)

1
2 e

m2
i

2φvi

∫
d̃(θi, φ)N(θi; 0, τ ′φ)N(θi;mi, viφ)dθi < en

ε

)
≤ Pθ∗

(
(φvi)

1
2

√
τφ

m2
i

e
m2
i

2φ
( 1
vi

+ 1
τ ′ )d̃(m̃i, φ) < en

ε

)
,(88)

where the right hand side follows from Jensen’s inequality, straightforward integration
and setting 1

ṽi
= 1

vi
+ 1

τ ′
, m̃i = mi

ṽi
vi

. Since vi � 1/n, for any fixed mi as n → ∞ we

obtain that (88) converges to

Pθ∗

(
(φvi)

1
2

√
τφ

m2
i

e
m2
i

2φvi < en
ε

)
,(89)



�

which following the same argument as in (86) is O(e−n(θ∗i )2) when θ∗i is fixed for any

ε ∈ (0, 1). If θ∗i = θ∗0ian with fixed θ∗0i and an � n−
1
4 then (89) is O(−n(θ∗i )

2) for any
ε ∈ (0, 1), as desired.

Lemma 8. Let bin = o(an) for i = 1, . . . , qn be a set of sequences, where qn may grow
with n, and an > 0. Then

∑qn
i=1 bin = O (qnan) as n→∞.

Proof. of Lemma 8. We need to show that

lim
n→∞

∑qn
i=1 bin
qnan

= lim
n→∞

qn∑
i=1

bin
an

1

qn
= lim

n→∞

qn∑
i=1

rin <∞,

where rin = bin/(anqn). To see that the series converges we shall use the ratio test.
Redefining the series index to m = qn we want to prove that lim

m→∞

∑m
i=1 rim <∞, where

we note that the terms of the series change with m. The increase in the series between
m and m+ 1 is

m+1∑
i=1

ri,m+1 −
m∑
i=1

rim = rm+1,m+1 + rm,m+1 − rmm +
m−1∑
i=1

(ri,m+1 − rim)

< rm+1,m+1 + rm,m+1 − rmm =
bm+1,m+1

cm+1(m+ 1)
+

bm,m+1

cm+1(m+ 1)
− bmm
cmm

,(90)

the inequality following from the fact that rim decrease with m. The assumption that
bim = o(cm) implies that the three terms on the right hand side of (90) go to 0 faster
than 1/m, i.e. the series increases at a rate strictly slower than 1/m and hence by the
ratio test lim

m→∞
rim <∞. �

Now that we stated Lemmas 6-8 we proceed to characterize Eθ∗((θ̄i − θ∗i )
2), which

depends only on θ∗ through θ∗i given that as seen earlier the posterior distribution of θ
under pMOM, peMOM or piMOM has independent components. Consider first the case
θ∗i = 0. Clearly,

Eθ∗((θ̄i − θ∗i )2) = Eθ∗(θ̄
2
i ) = Eθ∗

(
E(θi | δi = 1,yn, φ)2P (δi = 1 | yn, φ)2

)
≤ Var

1/2
θ∗

(
E(θi | δi = 1,yn, φ)2

)
Var

1/2
θ∗

(
P (δi = 1 | yn, φ)2

)
≤ Var

1/2
θ∗

(
E(θi | δi = 1,yn, φ)2

)
E

1/2
θ∗

(
P (δi = 1 | yn, φ)4

)
(91)

the first inequality given by the Cauchy-Schwartz inequality. Under a pMOM prior
E(θi | yn, δi = 1, φ) = mi(1 + 2/(1 + m2

i (φvi)
−1) ≤ 3mi where recall that mi =

vix
′
iyn, hence from the eigenvalue conditions D2 we obtain Var

1/2
θ∗ (E(θi | δi = 1,yn, φ)2) ≤

3Var
1
2
θ∗(m

2
i ) � 1/n. Regarding the second term, Lemma 7 gives

Pθ∗ (P (δi = 1 | yn, φ)4 > r4/n6−ε) = Pθ∗

(
P (δi = 1 | yn, φ) > rn−

3
2

+ε̃
)

= O
(
e−n

ε̃
n−ε̃/2

)



for any ε̃ = ε/4 ∈ (0, 3
2
). Thus from Lemma 6 Eθ∗(P (δi = 1 | yn, φ)4) = O (r4/n6−ε)

as long as e−n
ε̃ � r4, and hence (91) is O (r2/n4−ε). Noting that θ̄2

i is strictly decreas-

ing with r, (91) is O (r2/n4−ε) also when e−n
ε̃ � r4. Finally, by Lemma 8 we have∑

θ∗i =0 Eθ∗((θ̄i − θ∗i )2) = O(p0r
2/n4−ε′) for any ε′ > ε, as we wished to prove.

For the peMOM and piMOM we first consider the term Varθ∗ ((E(θi | δi = 1,yn, φ))2)
in (91). Lemma 9 (below) gives that E(θi | δi = 1,yn, φ) = mi +

√
viφh(mi, vi) where

sign(mi) = sign(h(mi, vi)) and Eθ∗(h
2(mi, vi)) <∞. Thus

E(θi | δi = 1,yn, φ)2 = m2
i + viφh

2(mi, vi)− 2mi

√
viφh(mi, vi) ≤ m2

i + viφh
2(mi, vi) and

consequently Varθ∗(E(θi | δi = 1,yn, φ)2) ≤ Eθ∗(m
2
i ) + O(1/n), which is O(1/n) when

θ∗i = 0. We next consider the term Eθ∗(P (δi = 1 | yn, φ)4) in (91) and show that it is

O
(
r4e−n

1/2−ε
)

. Lemma 7 gives that

Pθ∗

(
P (δi = 1 | yn, φ)4 > r4en

−1/2−ε
)

= Pθ∗

(
P (δi = 1 | yn, φ) > re

1
4
n−1/2−ε

)
=

O
(
e−n

1/2
)

, which is O(r4e−n
1/2

) as long as r � e−n
1/2

. Hence from Lemma 6 we obtain

Eθ∗(P (δi = 1 | yn, φ)4) = O
(
r4e−n

1/2−ε
)

as long as r � e−n
1/2

and thus (91) is

O
(
r2e−n

1/2−ε
)

. Given that θ̄i is strictly decreasing with r, (91) is O
(
r2e−n

1/2−ε
)

also

when r � e−n
1/2

. Finally, by Lemma 8 we obtain
∑

θ∗i =0 Eθ∗((θ̄i− θ∗i )2) = O(p0r
2e−n

1/2−ε
)

as we wished to prove.
Now consider the case θ∗i 6= 0. To show that Eθ∗((θ̄i − θ∗i )

2) = O(1/n) we shall
decompose it in three terms and show that each of them is O(1/n). By the triangle
inequality Eθ∗((θ̄i − θ∗i )2) ≤

Eθ∗((θ̄i − E(θi | δi = 1,yn, φ))2 + (E(θi | δi = 1,yn, φ)−mi)
2) + Eθ∗((mi − θ∗i )2) =

− Eθ∗
(
E2(θi | δi = 1,yn, φ)P 2(δi = 0 | yn, φ)

)
+ Eθ∗((E(θi | δi = 1,yn, φ)−mi)

2)

+ Eθ∗((mi − θ∗i )2)

From standard theory and eigenvalue condition D2 the third term Eθ∗((mi − θ∗i )2) �
1/n. Regarding the second term, for peMOM and piMOM Lemma 9 below gives that
Eθ∗((E(θi | δi = 1,yn, φ)−mi)

2) = O(1/n). For the pMOM, easy algebra shows that

(E(θi | δi = 1,yn, φ)−mi)
2 = φvi

(
mi/
√
φvi

1 +m2
i /(φvi)

)2

≤ φvi
4
� 1/n,(92)

given that |z|/(1 + z2) ≤ 1/2 for all z ∈ R. Therefore all that remains is showing that
the first term on the right hand side of (92) is O(1/n). For the pMOM this follows

from Lemmas 6-7 and the Cachy-Schwarz inequality, since E
1
2
θ∗ (E4(θi | δi = 1,yn, φ)) ≤

E
1
2
θ∗(3

4m4
i ), which is a finite constant. For the peMOM and piMOM from Lemma 9

Eθ∗ (E2(θi | δi = 1,yn, φ)P 2(δi = 0 | yn, φ))
< Eθ∗(m

2
iP

2(δi = 0 | yn, φ)) + φviEθ∗(h
2(mi, vi)P

2(δi = 0 | yn, φ))
< Eθ∗(m

2
iP

2(δi = 0 | yn, φ)) + φviEθ∗(h
2(mi, vi)) = o(1/n) + O(1/n). Lemma 6 coupled

with Lemma 7 under the data-generating truth θ∗i 6= 0 gives that for pMOM, peMOM



and piMOM Eθ∗ (P 4(δi = 0 | yn, φ)) = O(e−n(θ∗i )2) as long as 1/r � en
ε

for some
ε ∈ (0, 1), which is o(1/n) and hence (92) is O(1/n). Finally, from Lemma 8 we obtain
that

∑
θ∗i 6=0 Eθ∗((θ̄i − θ∗i )2) = O(p1/n

1−ε̃) for any fixed but arbitrarily small ε̃ > 0, where

p1 =
∑p

i=1 I(θ∗i 6= 0) is the number of truly active variables.

Lemma 9. Let E(θi | δi = 1,yn, φ) be the posterior mean under the sampling model
yn ∼ N(Xnθ, φI) with diagonal X ′nXn, known φ as in Proposition 3(iii). Suppose that
conditional on the variable inclusion indicators δi the prior on the non-zero elements in
θ has independent components and that an eMOM or iMOM prior is specified on θi.

Let xi = (x1i, . . . , xni)
′ be the ith column in Xn, then

E(θi | δi = 1,yn, φ) = mi +
√
φvih(mi, vi) where sign(h(mi, vi)) = sign(mi),

mi = vix
′
iyn and vi = τ/(1 + τx′ixi) for the peMOM and vi = 1/x′ixi for the piMOM.

Further, lim
n→∞

h(mi, vi) = 0 for any fixed mi and Eθ∗(h(mi, vi)) < ∞, implying that

Eθ∗((E(θi | δi = 1,yn, φ)−mi)
2) = O(1/n) by assumption D2.

Proof. of Lemma 9 From (67) we know that E(θi | δi = 1,yn, φ) =∫
(z
√
φvi +mi)d(z

√
φvi +mi, φ)N(z; 0, 1)dz∫

d(z
√
φvi +mi, φ)N(z; 0, 1)dz

= mi +
√
φvih(mi, vi),

where

h(mi, vi) =

∫
zd(z
√
φvi +mi, φ)N(z; 0, 1)dz∫

d(z
√
φvi +mi, φ)N(z; 0, 1)dz

.(93)

This implies that

Eθ∗
(
(E(θi | δi = 1,yn, φ)−mi)

2
)

= φviEθ∗
(
h(mi, vi)

2
)
.(94)

Note that the expectation in (94) is with respect to mi ∼ N(θ∗i (x
′
ixi)vi, φvi), where for

the piMOM θ∗i (x
′
ixi)vi = θ∗i and for the peMOM Assumption D2 implies

lim
n→∞

θ∗i (x
′
ixi)vi = θ∗i . For simplicity below we consider the peMOM case, but all arguments

extend to the piMOM by noting that this latter prior can also be written in terms
of a bounded penalty times a local prior (Lemma 1). Also for simplicity we denote
d(z) = d(z, φ).

We first show that for any fixed mi we have lim
n→∞

h(mi, vi) = 0. Symmetry in the

integrand of the numerator of (93) gives that h(mi, vi) = 0 for mi = 0, and similarly
h(mi, vi) > 0 for mi > 0 and h(mi, vi) < 0 for mi < 0. Without loss of generality
consider the case mi > 0 (the case mi < 0 is analogous). From (93) we obtain

h(mi, vi) <

∫∞
0
zd(z
√
φvi +mi)N(z; 0, 1)dz∫∞

0
d(z
√
φvi +mi)N(z; 0, 1)dz

<

∫∞
0
zN(z; 0, 1)dz

d(mi)
∫∞

0
N(z; 0, 1)dz

=
0.1995

d(mi)
,(95)

where the second inequality is obtained by noting that d(·) is bounded and increasing
in R+. Given that h(mi, vi) is bounded by 0.1995/d(mi) we may apply the Dominated



Convergence Theorem to obtain the limit as n→∞ (equivalently, as vi → 0)

lim
vi→0

h(mi, vi) =

∫
z lim
vi→0

d(z
√
φvi +mi)N(z; 0, 1)dz∫

d(z
√
φvi +mi)N(z; 0, 1)dz

=

∫
z
d(mi)N(z; 0, 1)dz

d(mi)
= 0,

(96)

where the second equality follows from the fact that the denominator can be bounded by
1/d(mi) and a second application of the Dominated Convergence Theorem. Expression
(96) gives that the random variable h(mi, vi) converges to 0 for any fixed mi as n→∞,
however it does not guarantee that E(h(mi, vi)

2) is bounded and that therefore (94) is
O(1/n).

To characterize (94) we need a sharper upper bound on h(mi, vi). Without loss of
generality we shall show that

∫∞
0
h2(mi, vi)N(mi; θ

∗
i x
′
ixivi, φvi)dmi <∞, which combined

with an analogous argument for the integral over mi ∈ (−∞, 0) gives∫∞
−∞ h

2(mi, vi)N(mi; θ
∗
i x
′
ixivi, φvi)dmi < ∞. Briefly, let a be an arbitrary real number

satisfying a
√
φvi +mi < 0, an argument akin to (95) gives

h(mi, vi) <

∫∞
0
zN(z; 0, 1)dz∫ a

−∞ d(z
√
φvi +mi)N(z; 0, 1)dz +

∫∞
0
d(z
√
φvi +mi)N(z; 0, 1)dz

(97)

<
0.3989

d(a
√
φvi +mi)Φ(a) + 1

2
d(mi)

,(98)

where Φ(·) is the standard Normal cumulative distribution function. Let b > 0 be an
arbitrary constant and consider the particular choice a = −(mi + b)/

√
φvi, which implies

that d(a
√
φvi +mi) = d(−b) = d(b) by symmetry of d(·). Therefore∫ ∞

0

h2(mi, vi)N(θ∗i x
′
ixivi, φvi)dmi <

∫ ∞
0

0.39892N(mi; θ
∗
i x
′
ixivi, φvi)(

d(b)Φ
(
−mi+b√

φv

)
+ 1

2
d(mi)

)2dmi(99)

=

∫ ∞
0

u(mi, vi)dmi,(100)

where u(mi, vi) simply denotes the integrand. Now,
∫∞

0
u(mi, 1)dmi is finite for any finite

θ∗i and u(mi, vi) can be seen to be decreasing as vi → 0 for any mi > 0, implying that∫∞
0
u(mi, vi)dmi <

∫∞
0
u(mi, 1)dmi <∞ for any vi ≤ 1, as desired.

�

2.9. Proof of Proposition 4. The goal is to show that for all ε > 0 there exists η > 0
such that d(θ) < η implies π(θ) < ε. By construction, the conditional prior density is
π(θ | λ) = πL(θ)I(d(θ) > λ)/h(λ), where h(λ) = Pu(d(θ) > λ) =

∫
πL(θ)I(d(θ) > λ)dθ.

Let θ be a value such that d(θ) < η, and express the prior density as

π(θ) =

∫
π(θ | λ)π(λ)dλ =∫

λ≤η

πL(θ)I(d(θ) > λ)

h(λ)
π(λ)dλ+

∫
λ>η

πL(θ)I(d(θ) > λ)

h(λ)
π(λ)dλ(101)



The second term in (101) is 0, as by assumption d(θ) < η. Now, consider that for λ ≤ η,
h(λ) = Pu(d(θ) > λ) is minimized at λ = η, and therefore (101) can be bounded by

π(θ) ≤
πL(θ)

∫
λ≤η I(d(θ) > λ)π(λ)dλ

h(η)
=
πL(θ)P (λ < min{η, d(θ)})

h(η)
(102)

Notice that the numerator can be made arbitrarily small by decreasing η, since πL(θ) is
bounded around θ0, by assumption there is no prior mass at λ = 0 so that the cdf in the
numerator converges to 0 as η → 0, and that denominator converges to 1 as η → 0. That
is, it is possible to choose η such that π(θ) ≤ ε, which gives the result. �

2.10. Proof of Corollary 5. Replace I(d(θ) > λ) by
∏p

i=1 I(d(θi) > λi) in the proof of
Proposition 4. Letting any λi go to 0 and applying the same argument delivers the result.

2.11. Proof of Proposition 6. We first note that in order for π(θ) to be proper the
random variable d(θ) must have finite expectation with respect to πL(θ). Now, the
marginal prior for θ is

π(θ) =

∫
πL(θ)I(d(θ) > λ)

Pu(d(θ) > λ)
π(λ)dλ = πL(θ)

∫ d(θ)

0

π(λ)

h(λ)
dλ.(103)

Suppose we set π(λ) ∝ h(λ), which we can do as long as
∫
h(λ)dλ < ∞. Then π(θ) ∝

πL(θ)d(θ), which proves the result. The only step left is to show that indeed∫
h(λ)dλ <∞. In general∫

h(λ)dλ =

∫
Pu(d(θ) > λ)dλ =

∫
Sd(θ)(λ)dλ,(104)

where Sd(θ)(λ) is the survival function of the positive random variable d(θ) and there-
fore (104) is equal to its expectation Eu (d(θ)) with respect to πL(θ), which is finite as
discussed at the beginning of the proof. �

2.12. Proof of Corollary 7. Analogously to the proof of Proposition 6 the marginal
prior for θ is π(θ) =∫

. . .

∫
πL(θ)

∏p
i=1 I(di(θi) > λi)

Pu (d1(θ1) > λ1, . . . , dp(θp) > λp)
π(λ)dλ1, . . . , dλp =

πL(θ)

∫ d1(θ1)

0

. . .

∫ dp(θp)

0

π(λ)

h(λ)
dλ1, . . . , dλp ∝ πL(θ)

p∏
i=1

di(θi),(105)

as by assumption π(λ) ∝ h(λ). �

2.13. Proof of Proposition 8. By definition, the marginal density π(θ(m)) =

πL(θ(m))

∫
π(λ)

h(λ)

p∏
i=1

I(d(θi) > λ)dλ = πL(θ(m))

∫
I(λ < dmin(θ(m)))

π(λ)

h(λ)
dλ =

πL(θ(m))Pλ(dmin(θ(m)))

∫
1

h(λ)
π(λ | λ < dmin(θ(m)))dλ,(106)



where Pλ(dmin(θ(m))) = P (λ < dmin(θ(m))) is the cdf of λ evaluated at dmin(θ(m)). As
dmin(θ(m))→ 0 we have that π(λ | λ < dmin(θ(m))) converges to a point mass at zero and
hence the integral in the right hand side of (106) converges to 1/h(0) = 1. To finish the
proof of (i) notice that Pλ(dmin(θ(m))) = dmin(θ(m))π(λ(m)) for some λ(m) ∈ (0, dmin(θ(m)))
by the Mean Value Theorem, as long as Pλ(·) is differentiable and continuous at 0+, i.e.
λ is a continuous random variable. In the particular case π(λ) = ch(λ), note that h(·) is
continuous and h(0) = 1.

To prove (ii) notice that Pλ(dmin(θ(m)))→ 1 as dmin(θ(m))→∞ and that the integral
in the right hand side of (106) is m(dmin(θ(m))) = E(1/h(λ) | λ < dmin(θ(m))), which is
increasing with dmin(θ(m)) as h(λ) is monotone decreasing in λ. Hence,
lim
m→∞

π(θ(m))/πL(θ(m)) = lim
m→∞

m(dmin(θ(m))) where m(dmin(θ(m))) increases as m→∞.

Furthermore, if
∫ π(λ)

h(λ)
<∞ the Monotone Converge Theorem applies and m(dmin(θ(m)))

converges to a finite constant. �

2.14. Proof of Corollary 9. Because λ1, . . . , λp have independent marginals, π(θ(m)) =
πL(θ(m))

∏p
i=1 Pλi(di(θi))×

∫
. . .

∫
1

h(λ)
π
(
λ | λ1 < d1(θ

(m)
1 ), . . . , λp < dp(θ

(m)
p )

)
dλ1 . . . dλp =

πL(θ(m))E
(
h(λ)−1 | ∀λi < di(θ

(m)
i )

) p∏
i=1

Pλi(di(θ
(m)
i )),(107)

where h(λ) is a multivariate survival function and decreases as di(θ
(m)
i ) → 0. Hence as

di(θ
(m)
i )→ 0 E

(
h(λ)−1 | ∀λi < di(θ

(m)
i )

)
decreases. To find the limit as di(θ

(m)
i )→ 0 we

note that the integral is bounded by the finite integral obtained plugging di(θ
(m)
i ) = 1

into the integrand. Hence, the Dominated Convergence Theorem applies and

lim
m→∞

E
(
h(λ)−1 | ∀λi < di(θ

(m)
i )

)
= E (h(0)) = 1 and from (107)

lim
m→∞

π(θ(m))/
(
πL(θ(m))

∏p
i=1 Pλi(di(θ

(m)
i ))

)
= 1. Since λ1, . . . , λp are continuous the

Mean Value Theorem applies, so that Pλi

(
di(θ

(m)
i )

)
= di(θ

(m)
i )π(λ

(m)
i ) for some λ

(m)
i ∈

(0, di(θ
(m)
i )). To prove (ii), notice that Pλi(di(θ

(m)
i )) → 1 as di(θ

(m)
i ) → ∞ and that

m(θ(m)) = E
(
h(λ)−1 | ∀λi < di(θ

(m)
i )

)
increases as di(θ

(m)
i )→∞. Hence,

lim
m→∞

π(θ(m))/
(
πL(θ(m))m(θ(m))

)
= 1 wherem(θ(m)) increases with di(θ

(m)
i ), which proves

(ii). Further, if E(h(λ)−1) < ∞ the Monotone Convergence Theorem applies and
lim
m→∞

m(θ(m)) = c for finite c > 0. �



3. Multivariate Normal sampling under outer rectangular truncation

The goal is to sample θ ∼ N(µ,Σ)I (θ ∈ T ) with truncation region
T = {θ : θi < li or θi > ui, i = 1, . . . , p}. We generalize the Gibbs sampling of Rodriguez-
Yam et al. (2004) and importance sampling of Hajivassiliou (1993) and Keane (1993) to
the non-convex region T .

Let D = chol(Σ) be the Cholesky decomposition of Σ and K = D−1 its inverse, so
that KΣK ′ = KDD′K ′ = I is the identity matrix, and define α = Kµ. The random
variable Z = Kθ follows a N(α, I)I (Z ∈ S) distribution with truncation region S. Since
θ = K−1Z = DZ, denoting di. as the ith row in D we obtain the truncation region
S = {Z : di.Z ≤ li or di.Z ≥ ui, i = 1, . . . , p}.

The full conditionals for Zi given Z(−i) = (Z1, . . . , Zi−1, Zi+1, . . . , Zp) needed for Gibbs
sampling follow from straightforward algebra. Denote by djk the (j, k) element in D,
then Zi | Z(−i) ∼ N(αi, 1) truncated so that either djiZi ≤ lj −

∑
k 6=i djkZk or djiZi ≥

uj −
∑

k 6=i djkZk hold simultaneously for j = 1, . . . , p. We now adapt the algorithm to
address the fact that this truncation region is non-convex.

The region excluded from sampling can be written as Sci =
⋃p
j=1(aj, bj), aj = (lj −∑

k 6=i djkZk)/dji when dji > 0 and aj = (uj −
∑

k 6=i djkZk)/dji when dji < 0 (analogously

for bj). Sci as given is the union of possibly non-disjoint intervals, which complicates

sampling. Fortunately, it can be expressed as a union of disjoint intervals Si =
⋃K
j=1(ãj, b̃j)

with the following algorithm. Suppose that li are sorted increasingly, set l̃1 = l1, ũ1 = u1

and K = 1. For j = 2, . . . , p repeat the following two steps.

(1) If lj > ũK set K = K + 1, l̃K = lj and ũK = uj, else if lj ≤ ũK and uj ≥ ũK set
ũK = uj.

(2) Set j = j + 1.

Finally, because (l̃1, ũ1), . . . , (l̃K , ũK) are disjoint and increasing, we may draw a uniform

number u in (0, 1) excluding intervals (Φ(l̃j),Φ(ũj)) and set Zi = Φ−1(u), where Φ(·) is
the inverse Normal(αi, 1) cdf.

4. Monotonicity and inverse of iMOM prior penalty

Consider the product iMOM prior as given in (9). We first study the monotonicity
of the penalty d(θi, λ), which for simplicity here we denote as d(θ), and then provide an
algorithm to evaluate its inverse function. Equivalently, it is convenient to consider the
log-penalty log (d(θ)) =

1

2
(log(ττN) + 2log(φ) + log(2))− log

(
(θ − θ0)2

)
− τφ

(θ − θ0)2
+

1

2τNφ
(θ − θ0)2,(108)

as its inverse uniquely determines the inverse of d(θ). Denoting z = (θ − θ0)2, (108) can
be written as

g(z) =
1

2
(log(ττN) + 2log(φ) + log(2))− log(z)− τφ

z
+

1

2τNφ
z.(109)



To show the monotonicity of (109) we compute its derivative g′(z) = −1
z

+ τφ
z2

+ 1
2τNφ

and

show that it is positive for all z. Clearly, both when z → 0 and z →∞ we have positive
g′(z). Hence we just need to see that there is some τN for which all roots of g′(z) are
imaginary, so that g′(z) > 0 for all z. Simple algebra shows that the roots of g′(z) are

z = τNφ± τNφ
√

1− 2τ
τN

, so that for τN ≤ 2τ there are no real roots. Hence, for τN ≤ 2τ

g(z) is monotone increasing.
We now provide an algorithm to evaluate the inverse. That is, given a threshold t

we seek z0 such that g(z0) = t. Our strategy is to obtain an initial guess from an
approximation to g(z) and then use continuity and monotonicity to bound the desired
z0 and conduct a linear interpolation based search. Inspecting the expression for g(z) in
(109) we see that the term log(z) is dominated by τφ/z when z approaches 0 and by z

2τNφ

when z is large. Hence, we approximate g(z) by dropping the log(z) term, obtaining

g(z) ≈ 1

2
(log(ττN) + 2log(φ) + log(2))− τφ

z
+

1

2τNφ
z.(110)

Setting (110) equal to t and solving for z gives z0 = τNφ
(
−b+

√
b2 − 2 τ

τN

)
as an initial

guess, where b = log(ττN) + 2log(φ) + log(2)− t.
If g(z0) < t we set a lower bound zl = z0 and an upper bound zu obtained by increasing

z0 by a factor of 2 until g(z0) > t. Similarly, if g(z0) > t we set the upper bound zu = z0

and find a lower bound by successively dividing z0 by a factor of 0.5. Once (zl, zu) are
determined, we use a linear interpolation to update z0, evaluate g(z0) and update either
zl or zu. The process continues until |g(z0)− t| is below some tolerance (we used 10−5).
In our experience the initial guess is often quite good and the algorithm converges in very
few iterations.

5. Model search and posterior parameter sampling algorithm

For our examples in Sections 5.2 and 5.3 we first obtained posterior samples from the
model space using a modification of the Gibbs sampling algorithm in Johnson and Rossell
(2012) and subsequently used Algorithm 2 to obtain the corresponding posterior samples
of θk given yn and the sampled Mk. Specifically, to obtain a total of B samples we used
Algorithm 3.

Algorithm 3. Joint posterior sampling for models and parameters

(1) Draw model realizationsm(1), . . . ,m(B) from the target posterior with probabilities
P (Mk | yn) for k = 1, . . . , K using the Gibbs sampling algorithm in Johnson and
Rossell (2012), Section 3, and starting with the null model with no covariates.

(2) Let m∗1, . . . ,m
∗
B̃

be the distinct models visited in Step 1 and v1, . . . , vB̃ the corre-

sponding number of visits. For b = 1, . . . , B̃, obtain vb samples from P (θk, φk |
Mk = m∗b ,yn) using Algorithm 2 (Section 4.2) with a burnin of max{0.1vb, 100}
samples.

Steps 1 and 2 are implemented in functions modelSelection and rnlp in R package
mombf, respectively. In Step 1 for pMOM priors we evaluated mk(yn) exactly using



Expression (6) in Johnson and Rossell (2012) and the recursive formula in Kan (2008)
for gk(sk,n) = E

(∏
i∈Mk

θ2r
ki

)
where θk ∼ Tν(mk,n, Vk,n), with ν = 2rpk + n + α and

Vk,n = Sk,nν/(λ+y′nyn−y′nXk,nmk,n. For piMOM priors we used Laplace approximations
as described in Johnson and Rossell (2012), Section 3.

The Gibbs sampling algorithm in Step 1 was initialized at the null model. Although we
set the simulation so that the first θ1 = . . . = θp0 = 0, which implies that spurious covari-
ates are given the chance to enter the model before truly active covariates, it is important
to assess that the algorithm did not get stuck during the exploration. First we note that
(Johnson, 2004) used a similar strategy and provided a formal discussion of numerical
convergence through a coupling argument. His findings suggest that rapid convergence
and high accuracy of Bayesian model selection procedures is often achieved, with poten-
tial concerns arising in cases where only a small number of observations is available for
inference. To assess convergence in our simulation study of Section 5.2 we compared the
marginal inclusion probabilities P (θi 6= 0 | yn) obtained from the proportion of MCMC
draws where θi 6= 0 or from renormalizing mk(yn | Mk)P (Mk) across all visited models,
a discrepancy between these two estimates would signal lack of convergence. Figure 6
shows a very strong agreement between the two, supporting that convergence has been
achieved by B =5,000. To assess the robustness of the results to initialization in our
example of Section 5.3 we considered five alternative initial models: the null model, a
model initialized after a greedy search for large marginal associations and three models
initialized at random with 10, 20 and 30 predictors respectively. For both pMOM and
piMOM priors all initializations produced the same MAP model, the same median model
(that obtained by selecting P (θi 6= 0 | yn) > 0.5) and estimates of marginal inclusion
probabilities are highly correlated. Further, all initializations produced the same ranking
in the top 5 models, with very similar estimates of their posterior probabilities based on
25,000 MCMC samples. These diagnostics suggest that our estimates are not apprecia-
bly sensitive to alternative initializations. Detailed results are reported in Supplementary
Figure 7 and Supplementary Table 3.

Although Laplace approximations greatly facilitate the required computations the in-
tegrand is multi-modal, thus the approximation may under-estimate mk(yn) for models
containing spurious parameters (hence being conservative). This stems from the fact
that for spurious parameters (θ∗i = 0) the two modes vanish at the same rate, whereas
for non-spurious parameters (θ∗i 6= 0) one of the modes dominates the other asymptoti-
cally (Proposition 2 and proof of Proposition 3). A practical solution is to use function
pimomMarginalU in mombf to estimate mk(yn) via Importance Sampling for the models
visited in Step 1 of Algorithm 3. Nevertheless our examples in Sections 5.2 and 5.3 sug-
gest that Laplace approximations often provide reasonably good results. Naturally Step 2
avoids any multi-modality issues by using our MCMC-exact latent truncation approach.

Further, we assessed the accuracy of Laplace approximations empirically in several
simulation scenarios and found they were asymptotically accurate. For instance, when
we consider model selection with pMOM priors, we observed that Laplace approxima-
tions closely resembled Importance Sampling estimates of the marginal likelihood, with
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Figure 1. 10,000 independent univariate (left) and bivariate (right)
pMOM prior draws (τ = 5). Lines indicate true density.

θ1 = 0.5, θ2 = 1
MOM iMOM eMOM

θ1 = 0, θ2 = 0 0 0 0
θ1 = 0, θ2 6= 0 2.8e-78 2.72e-78 6.86e-79
θ1 6= 0, θ2 = 0 1.95e-191 3.82-e191 5.90e-191
θ1 6= 0, θ2 = 0 1 1 1

θ1 = 0, θ2 = 1
θ1 = 0, θ2 = 0 1.69e-225 4.39e-225 1.08e-224
θ1 = 0, θ2 6= 0 0.999 1 1
θ1 6= 0, θ2 = 0 1.82e-193 1.64e-192 6.80e-192
θ1 6= 0, θ2 = 0 8.83e-05 3.30e-09 3.17e-09

Table 1. Posterior model probabilities with 2 predictors (θ1 = 0.5 or 0,
θ2 = φ = 1, n = 1000)

Laplace approximations growing more conservative as the number of spurious parame-
ters increases. Specifically, we report results on data simulated from a scheme similar to
that of Section 5.2. Considering p = 50 potential predictors, we observed that Laplace
approximations were slightly conservative for small sample sizes (n = 50), although the
approximations improved as the sample size grew to n = 100 and n = 200. Detailed
results are in Supplementary Figure 8.
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Figure 2. Mean SSE for θi = 0 (left) and θi 6= 0 (right) when φ = 1, 4, 8.
Simulation settings: ρ = 0, n = 100, p = 100, 500, 1000 and 5 non-zero
coefficients 0.6, 1.2, 1.8, 2.4, 3.0.
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Figure 3. Mean SSE for θi = 0 (left) and θi 6= 0 (right) when φ = 1, 4, 8.
Simulation settings: ρ = 0.25, n = 100, p = 100, 500, 1000 and 5 non-zero
coefficients 0.6, 1.2, 1.8, 2.4, 3.0.

V.A. Hajivassiliou. Simulating normal rectangle probabilities and their derivatives: the
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Figure 4. Mean SSE for θi = 0 (left) and θi = n−1/4(0.6, 1.2, 1.8, 2.4, 3.0)
(right) and ρ = 0, 0.25 (φ = 1). Simulation settings: (n = 100, p = 100),
(n = 250, p = 500), (n = 500, p = 1000)

θ1 = 0.5, θ2 = 1
MOM iMOM eMOM

θ1 0.096 0.110 0.018
θ2 0.034 0.134 0.019
φ -0.016 0.069 0.027

θ1 = 0, θ2 = 1
θ1 0.115 0.032 0.049
θ2 0.134 0.122 0.042
φ -0.040 0.327 0.353

Table 2. Serial correlation with 2 predictors (θ1 = 0.5 or 0, θ2 = φ = 1,
n = 1000)
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Figure 6. Marginal posterior inclusion probabilities in a simulations from
Section 5.2 with p = 1, 000, ρ = 0, φ = 4 as estimated from MCMC draws or
re-normalizing mk(yn)P (Mk) across visited models. Left: pMOM. Right:
piMOM

pMOM piMOM

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predictor Index

M
ar

gi
na

l I
nc

lu
si

on
 P

ro
ba

bi
lit

ie
s

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predictor Index

M
ar

gi
na

l I
nc

lu
si

on
 P

ro
ba

bi
lit

ie
s

Figure 7. Marginal posterior inclusion probabilities for all predictors in
the TGFB example of Section 5.3. Different colours represent different
initialization strategies

R. Redner. Note on the consistency of the maximum likelihood estimator for nonidenti-
fiable distributions. Annals of Statistics, 9(1):225–228, 1981.
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Figure 8. Importance Sampling (IS) estimates of pMOM log-marginal
likelihoods and Laplace approximations for 900 random models fitted to
simulated data and n = 50, 100, 200 (top, middle, bottom)



Predictor index Posterior probabilities

Initialization

pMOM Null 10 20 30 Greedy

1357,2504,2642,2786,3530,8288 0.2357 0.2347 0.2363 0.2368 0.2350
1357,2275,2504,3530 0.1295 0.1290 0.1299 0.1302 0.1292

1357,2275,3530 0.1269 0.1263 0.1272 0.1275 0.1265
1357,2275,2504,3530,3967 0.0355 0.0354 0.0356 0.0357 0.0354

1357,2504,3530,8288 0.0218 0.0217 0.0218 0.0219 0.0217

Initialization

piMOM Null 10 20 30 Greedy

1357,2504,2642,2786,3530,8288 0.1821 0.1833 0.1821 0.1822 0.1833
2504,2642,2940,3530,3967,5973,6524,7863,8288,8846 0.0757 0.0762 0.0757 0.0758 0.0761

1357,2504,2642,2786,3530,6037,8288 0.0292 0.0294 0.0292 0.0291 0.0294
867,1357,2504,2642,2786,3530,8288 0.0191 0.0192 0.0191 0.0192 0.0192
1357,2504,2642,2786,3530,8288,9862 0.0185 0.0186 0.0185 0.0186 0.0186

Table 3. Top 5 most likely models with associated posterior probabilities
estimated using alternative initialization strategies.
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