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Methods - Complements
Fluorescence microscopy and staining
Fluorescence confocal microscopy imaging was performed with an inverted scanning confocal microscope (ZEISS LSM710)
equipped with a motorized X-Y stage and a set of ZEISS objectives with magnification from 10X to 63X. Fluorescent images
(1224 x 900 pixels) were collected using a 405 nm blue-violet laser diode (DAPI, AMCA), a 488 nm argon laser (Alexa Fluor
488), and a 561 nm diode-pumped solid state (DPSS) laser (Cy3). The excitation and the fluorescence signal acquisition of each
fluorophore was executed in sequential multi-tracking channels in order to avoid bleed-through crossover artefacts. Saturation
was checked and avoided using range indicators of the Zen software. The scan speed and image averaging were optimized
before image acquisition in order to have the highest signal-to-noise ratio for a minimum cost of time. Z-Stack images of 9 µm
± 3 µm depth with 0.5 µm interval between each slice were acquired with the Zen software. ImageJ 1.47v processing program
was used to analyze the confocal microscopy images and to reconstruct the Z projections.

Fluorescent labelling of specific intracellular structure of C2C12 cells was performed combining immunofluorescence and
non-antibody labelling techniques. Adherent C2C12 myoblasts (∼ 105) and confluent myotubes on 35 mm diameter CCPDs
were rinsed twice with preheated PBS and fixed with freshly made 4% paraformaldehyde (PFA, Fluka) in PBS for 20 minutes
at room temperature (RT). The samples were then permeabilized with 0.05 % Triton X-100 (Euromedex, Souffelweyersheim,
France) in PBS for 10 minutes at RT before being saturated with 1 % bovine serum albumins (BSA, Sigma) in PBS and
kept 30 minutes at RT. The samples were stained either for F-actin, β -tubulin and nucleus, or for the three cytoskeleton
filaments according to the two following protocols. In the fist case, after incubation with mouse monoclonal Cy3-conjugate
anti-β -tubulin (Sigma) diluted 1:200 in 1 % BSA PBS for 1 hour at RT in a humid and dark chamber, the cells were incubated
with phalloidin-Alexa Fluor 488 (Molecular Probes) diluted 1:100 in 1 % BSA PBS for 15 minutes at RT in a humid and dark
chamber. Finally, the samples were sealed with glass cover-slides and VectaShield mounting medium (Vector Laboratories) with
DAPI (4’,6-diamino-2- phenylindole) and stored at least for 10 minutes at 4◦C. In the second case before β -tubulin staining,
the cells were incubated with mouse monoclonal anti-desmin (DAKO, Agilent Technologies) diluted 1:200 in 1 % BSA PBS
over night in humid chamber at 4◦C. The day after, incubation with AMCA-conjugated goat secondary antibody anti mouse
(Jackson ImmunoResearch) diluted 1:1000 in 1% BSA PBS was carried out for 1 hour at RT in a humid and dark chamber.
Then the labelling of β -tubulin and F-actin was performed similarly to previous protocol before sealing the samples with glass
cover-slides and VectaShield mounting medium without DAPI and storing them at least 10 minutes at 4◦C. In both protocols the
samples were gently rinsed with PBS 3 times for 5 minutes between each step. Fluorescence images of C2C12 myoblasts and
myotubes in different conditions are shown in Figs 1(a), S1, S2 and S3.
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Figure S1. Immuno-fluorescence confocal images of ATP depleted C2C12 myoblasts. C2C12 myoblasts on CCPD were
stained at different times after being immersed in the ATP depletion buffer. The samples were kept at room temperature during
the treatment. Staining: F-actin (phalloidin-Alexa Fluor 488, green), β -tubulin (anti-β -tubulin Cy3-conjugate, red) and nucleus
(DAPI, blue). The time is reported as hh:min. Scale bars: 20 µm.
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Figure S2. Immuno-fluorescence confocal images of normal, blebbistatin treated and ATP depleted C2C12
myoblasts. C2C12 myoblasts on CCPD were stained after 2h in (a-e) normal GM, (f-j) GM with blebbistatin, and (k-o) in the
ATP depletion buffer. The samples were kept at room temperature during the treatments, similar to the AFM experimental
conditions. Staining: F-actin (phalloidin-Alexa Fluor 488, green), β -tubulin (anti-β -tubulin Cy3-conjugate, red) and nucleus
(DAPI, blue). Scale bars: (a, f, k) 50 µm, all the other images 20 µm.
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Figure S3. Fluorescence staining of F-actin and nuclei on C2C12 myotubes. Confocal microscopy imaging of MFs
(green) and nuclei (blue) of C2C12 myotubes, the fifth day after differentiation induction. White arrows indicate cell fusion
events leading to myotubes; arrowheads indicate the typical bipolar shape of myogenic committed myoblasts. Staining: F-actin
(phalloidin-Alexa Fluor 488, green) and nuclei (DAPI, blue). Scale bars: (a) 100 µm, (b-h) 50 µm, and (i) 20 µm.

Mechanical indentation experiments
AFM probes and their calibration
We used two types of AFM probes: (i) triangular gold-coated silicon nitride cantilevers from Sharp Nitride Lever (SNL-10,
Bruker, Camarillo, CA) with nominal spring constant of 0.06 N/m (min= 0.03 N/m; max= 0.12 N/m) and typical resonant
frequency in air: 18±6 kHz; (ii) rectangular partially gold-coated quartz cantilevers (qp-CONT 20, Nanosensors, Neuchatel,
Switzerland) with nominal spring constant of 0.1 N/m (min = 0.08 N/m; max= 0.15 N/m) and typical resonant frequency in air:
30±4 kHz. According to the manufacturers, the SNL-10 cantilever tips (resp. qp-CONT 20 cantilever tips) have the following
specifications: front angle (FA) 15±2.5◦, back angle (BA) 25±2.5◦ and side angle (SA) 22.5±2.5◦(resp. FA=BA=SA=15 ±3◦).
Before each experiment, cantilever calibration was carefully performed both in air, to verify the correct positioning of the probe
and the proper system alignment, and in liquid to estimate the cantilever spring constant (k). First, the deflection sensitivity
(nm/V) of the cantilever-photodiode system was evaluated using the in-contact part of force indentation curves (FICs) on a
clean glass surface (5 FICs collected in both air and liquid). Then the cantilever spring constant was estimated in air and in
liquid by the thermal noise method1–4 as shown in Fig. S4. From the thermal fluctuations of the cantilever, we can get an
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estimation of its spring constant k, assuming energy equipartition and harmonic oscillations1:

k =
kBT
〈d2〉

, (S1)

where 〈d2〉 is the mean square displacement of the cantilever from its neutral position, T the absolute temperature in Kelvin and
kB the Boltzmann’s constant. Since AFM cantilevers have different geometries and several vibration modes, a correction factor
βn must be included in Eq. (S1):

k =
kBT
〈d2〉

βn , (S2)

where the factor βn varies according to the vibration mode and the cantilever geometry4, 5. The value βn = 0.817 (resp. 0.778)
was used for rectangular (resp. triangular) cantilevers.

Power spectral density (PSD) was computed from AFM cantilever deflection signals captured 100 µm away from the
sample surface. Fig. S4(b, e) shows peaks of the two first modes of a triangular AFM cantilever (SNL-10 Bruker) in air and in
liquid. Finally, the vertical deflection (∆D) (nm) of the cantilever being proportional to the force applied to the sample, we
converted it to a tip-sample interaction force ∆F (nN) knowing the stiffness of the cantilever k (N/m) through the Hooke’s law:
∆F = k∆D and the sensitivity of the photodiode quadrant.

A key issue in the analysis of AFM FICs is the determination of the scan position Zc where the cantilever tip comes in
contact with the tested material, such as a living cell for instance. This quantity is used in particular as a lower bound for the
work integrals (Eq. (7)) and as an upper bound for hydrodynamic drag correction. To master this issue, we used a wavelet
transform decomposition of the FICs (see next section). For a given width s of the analyzing wavelets g(0) and g(1), we
computed the smoothed force Tg(0) [F ] and its derivative Tg(1) [F ], and we estimated the contact position Zc where these two
functions cross a given threshold. This threshold was estimated from different smoothing scales values sg, as a compromise
between the need of keeping the transition from out-of-contact to in-contact as sharp as possible in the force derivative Tg(1) [F ]

and the necessity of smoothing the background noise. For this purpose, we used a lower threshold of 5 10−5 nN/nm with a g(1)

wavelet size of 2
√

2sg(0) = 110 nm.

Cantilever spring constant correction
When the force derivative is no longer negligible as compared to the cantilever spring constant k, the FICs must be corrected
according to the following equation6:

Z−Zc = h+F/k . (S3)

The nominal spring constant of the cantilever (k ∈ [0.04nN/nm to 0.1 nN/nm]) was chosen large enough for the cantilever
deflection to be small compared to the cell deformation. Nevertheless, we have subtracted the correcting term from the FICs for
energy integral computation. Note that this correcting term does not affect the computation of the second-order derivative of the
force.

Time-frequency analysis of FICs
Historical introduction of the wavelet transform
The wavelet transform is a mathematical time-frequency (time-scale) decomposition of signals introduced in the early 1980s7.
The wavelet transform has been applied to a great variety of situations in physics, physical chemistry, biology, signal and
image processing, material engineering, mechanics, economics, epidemics . . . 8–14. Real experimental signals are very often
nonstationary (they contain transient components), and when they are complex or singular, they may also involve a rather wide
range of frequencies. It also happens that experimental signals display characteristic frequencies that drift in time. Standard
Fourier analysis is therefore inadequate in these situations, since it provides only statistical information about the relative
contributions of the frequencies involved in the analyzed signal. The possibility to perform simultaneously a temporal and
frequency decomposition of a given signal was first proposed by Gabor for the theory of communication15. Later on, two
distinct approaches (based on different wavelet transforms) were developed in parallel: (i) a continuous wavelet transform
(CWT)7, 11 and (ii) a discrete wavelet transform (DWT)9. For singular (self-similar or multi-fractal) signals or images, the CWT
transform rapidly became a predilection mathematical microscope to perform space-scale analysis and to characterize scale
invariance properties. In particular it was used to elaborate a statistical physics formalism of multifractals10, 13, 16–19.

During the past 30 years, the CWT was used for biological applications, on both 1D signals and 2D images12–14. As far
as 1D signals are concerned, the CWT was applied to AFM force curves collected from single living plant cells20, living
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Figure S4. Illustration of a SNL-10 triangular cantilever calibration. Calibration of the same AFM probe in air (a-c) and
in liquid (d-f). Estimation of the deflection sensitivity of the cantilever using the slope of the loading curves of FICs recorded
when indenting (a) a clean glass surface in air and (d) a collagen coated petri dish in growth medium (GM). Power spectral
density of the same cantilever thermal (unforced) fluctuations in air (b) and in GM (e). First mode resonance peak (blue) and its
fittings with a Lorentzian function (magenta) in air (c) and liquid (f)4. Air (resp. liquid) deflection sensitivity: 41.7 nm/V (resp.
32.4 nm/V); first mode resonance frequency: 18.1 kHz (resp. 3.9 kHz); k = 0.068 N/m (resp. 0.05 N/m).

hematopoietic stem cells21, 22 and to AFM fluctuation signals to characterize the passive microrheology of living myoblasts23.
The 1D CWT was also generalized to 2D (and to 3D) CWT12, 13 and it proved again its versatility and power for analyzing
AFM topographic images of biosensors24, fluorescence microscopy images of chromosome territories25 and diffraction phase
microscopy of living cells26, 27. In the context of this study, we concentrated on 1D Gaussian analyzing wavelets.

Within the norm L 1, the one-dimensional WT of a signal F(Z) reads:

Wψ [F ](b,s) =
1
s

∫
∞

−∞

F(Z)ψ∗(
Z−b

s
)dZ , (S4)

where b is a spatial coordinate (homologous to Z) and s (> 0) a scale parameter. A typical admissible (of null integral) analyzing
wavelet ψ(Z) is the second derivative of a Gaussian g(0)(Z) = e−Z2/2, also called the Mexican hat wavelet:

g(2)(Z) =− d2

dZ2 g(0)(Z) = e−Z2/2(1−Z2) . (S5)

Via two integrations by part, it is straightforward to demonstrate that the WT of F with the second derivative of a Gaussian
wavelet at scale s, Wg(2) [F ](b,s), is precisely the second derivative of a smoothed version Wg(0) [F ](b,s) of F by a Gaussian
function at the same scale s:

Wg(2) [F ](b,s) = s2 d2

db2 Wg(0) [F ](b,s) . (S6)

Let us define the first derivative of the Gaussian function:

g(1)(Z) =− d
dZ

g(0)(Z) = Ze−Z2/2 , (S7)

and its third derivative:

g(3)(Z) =− d3

dZ3 g(0)(Z) = Z(3−Z2)e−Z2/2 . (S8)

With the first and the third derivatives of F , we can write similar relations to Eq. (S6) for the WTs of the odd order derivatives
of F12, 14, 17:

Wg(1) [F ](b,s) = s
d

db
Wg(0) [F ](b,s) , (S9)
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Figure S5. Analyzing wavelets constructed from a Gaussian function. (a) Gaussian function: g(0). (b) First derivative of
a Gaussian: g(1) (Eq. (S7)). (c) Second derivative of a Gaussian: g(2) (Eq. (S5)). (d) Third derivative of a Gaussian: g(3)

(Eq. (S8)).

and

Wg(3) [F ](b,s) = s3 d3

db3 Wg(0) [F ](b,s) . (S10)

These four analyzing wavelets are shown in Fig. S5. The zero- and second-order derivatives of the Gaussian (g(0) and g(2)) are
symmetric functions, the first- and the third-order derivatives (g(1) and g(3)) are asymmetric. When we increase the order of
derivation, the number of extrema of the wavelet increases from 1 to 4.

Let us point out that the validity of the WT definition (Eq. (S4)) was further extended for distributions including Dirac
distributions17, 28. The interest of the WT method is two-fold. The first advantage is to use the same smoothing function to
filter out the experimental background noise and to compute higher-order derivatives (for instance up to third-order in this
study) at a well defined smoothing scale sg. The second advantage relies on the power of the WT to detect local singularities
(including rupture events in the FICs) and to quantify their force via the estimate of local Hölder exponents from the behavior
across scales of the WT modulus maxima (WTMM)11–14, 17–19, 28. In this study, we used modified versions of the definition
(Eq. (S4)) of the WT to get a direct measure of F in nN (Tg(0) [F ](b,s)), dF/dZ in nN/nm (Tg(1) [F ](b,s)), d2F/dZ2 in Pascal
(Tg(2) [F ](b,s)) and d3F/dZ3 in Pascal/nm (Tg(3) [F ](b,s)), once smoothed by a Gaussian window (g(0)(Z)) of width s:

Tg(0) [F ](b,s) =Wg(0) [F ](b,s) , (S11)

Tg(1) [F ](b,s) =
1
s

Wg(1) [F ](b,s) , (S12)

Tg(2) [F ](b,s) =
1
s2 Wg(2) [F ](b,s) , (S13)
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Figure S6. Illustration of the wavelet-based analysis of AFM FICs. (a) Raw FICs recorded from a living myoblast cell
(loading curve: red, unloading curve: green). (b) FICs after tilt and hydrodynamic drag corrections. These FICs have also been
filtered by a Gaussian of width 2

√
2sg(0) = 9 nm. (c) Scale-space representation of the wavelet transform of the loading FIC

with the second derivative g(2) of the Gaussian function (Eq. (S5)). The wavelet scales sg(0) , sg(1) and sg(2) (sg(2) = sg(3)) used
for the FIC are outlined with black dashed-dotted horizontal lines. Rainbow color-scale from black to red: [-5 kPa, 5 kPa]. (d)
First derivative of the loading FIC, computed with the first derivative g(1) of the Gaussian function (Eq. (S7)) of width
2
√

2sg(1) = 110 nm. (e) Second derivative of the loading FIC, computed with the second derivative g(2) of the Gaussian
function of width 2

√
2sg(2) = 710 nm and expressed in Pa units. (f) Third derivative of the loading FIC, computed with the

third derivative g(3) of the Gaussian function (Eq. (S8)) of width 2
√

2sg(3) = 710 nm and expressed in Pa/nm units. The blue
curves correspond to a nonlinear viscoelastic parametrization of the first derivative of the FIC.

Tg(3) [F ](b,s) =
1
s3 Wg(3) [F ](b,s) . (S14)

Fig. S6 illustrates on a single FIC (loading and unloading curves) the computation of the wavelet-based force derivatives
and their parametrization with nonlinear visco-elastic models. The first derivative of the FIC (Fig. S6(d)) is preferred to the
FIC (Fig. S6(b)) for the parametrization because it is more efficient to distinguish the two classes of behaviour (elasto-plastic
nonlinear deformation or viscoelastic exponential type relaxation). To perform this systematic classification of FICs numerically,
we also computed the second and third derivatives of the FIC (Fig. S6(c,e,f)).
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Complementary figures
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Figure S7. Comparing the distributions of the global mechanical parameters of normal myoblasts (red, 54 cells),
myoblasts after blebbistatin treatment (purple, 23 cells). (a) Initial elastic modulus Gi (kPa). (b) Global elastic modulus
Gg (kPa). (c) Dissipation loss Dl (Eq. (6)) (see the Section Methods). (d) Ratio of interpolated elastic works Wg and Wi
(Eq. (7)).
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Figure S8. Cross-correlation of the shear moduli Gi and Gg (kPa). These two quantities were estimated from the sets of
myoblasts (red), myotubes (blue), ATP depleted (grey) and blebbistatin treated (purple) myoblasts reported in Figs 4 and S7.
(a) Scatter plot of log10(Gg) vs log10(Gi). (b) Box plots of log10(Gg) vs log10(Gi). The vertical lines give the error of the
mean of each quantity. The circle diameters are proportional to the percent of FICs with a given Gi.
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Figure S9. Cross-correlation of Wg/Wi and Gg (kPa). These two quantities were estimated from the sets of myoblasts (red),
myotubes (blue), ATP depleted (grey) and blebbistatin treated (purple) myoblasts reported in Figs 4 and S7. (a) Scatter plots of
log10(Wg/Wi) vs log10(Gg). (b) Box plots of log10(Wg/Wi) vs log10(Gg). The vertical lines give the error of the mean of each
quantity. The circle diameters are proportional to the percent of FICs with a given Gg.
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