Supplementary Material 1

Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds

Running Title of the Supplementary Material

Results of method optimisation for metagenomics of viruses.

Authors

Jessy Vibin^{1,2}, Anthony Chamings^{1,2}, Fiona Collier^{1,3}, Marcel Klaassen², Tiffanie M Nelson^{1,2}, Soren Alexandersen^{*1,2,3}

1 Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;

2 Deakin University, Geelong, Victoria, 3220, Australia;

3 Barwon Health, Geelong, VIC 3220, Australia;

*Corresponding Author: soren.alexandersen@deakin.edu.au

Table S1. The marker viruses, their properties and source used for spiking the faecal samples.

Virus	Family	Characteristics	Sample type	Reference genome NCBI ID [#]
Bluetongue virus, Serotype 1 (BTV)*	Reoviridae	dsRNA virus; segmented linear genome; non- enveloped and icosahedral about 80 nm in diameter.	Tissue culture isolate	KM099511
Bovine viral diarrhoea virus (BVDV)*	Flaviviridae	Monopartite, linear, ssRNA (+) genome; enveloped, spherical, about 50 nm in diameter.	Tissue culture isolate	NC 001461
Porcine circovirus 2 (PCV2) *	Circoviridae	Monopartite, circular, ssDNA genome; non- enveloped, icosahedral about 20 nm in diameter.	Frozen infected swine spleen	NC 005148
Infectious laryngotracheitis virus (ILTV)*	Herpesviridae	Monopartite, linear, dsDNA genome; enveloped, spherical to pleomorphic, 120-200 nm in diameter, nucleocapsid present	Pooled tracheal swabs in viral transport medium	NC006623
Infectious bronchitis virus (IBV) ⁺	Coronaviridae	Monopartite, linear ssRNA (+) genome; enveloped, spherical, about 120 nm in diameter, nucleocapsid present	Tissue culture isolate	KF460437

*Source: Elizabeth Macarthur Agriculture Institute, NSW, Australia

⁺Source: AAHL, Victoria, Australia

#The reference genomes from NCBI listed served to map the NGS reads in IGV.

The table gives the details of the viruses that acted as marker viruses for protocol optimisation. Each of these viruses was isolated/present from/in different samples.

Virus	Primers	Reference
BTV	FP: GCGTTCGAAGTTTACATCAAT RP: CAGTCATCTCTCTAGACACTCTATAATTACG	1
BVDV	FP: GRAGTCGTCARTGGTTCGAC RP: TCAACTCCATGTGCCATGTAC	2
PCV2	FP: TGGCCCGACGTATTCTGATT RP: CAGCTGGGACAGCAGTTGAG	3
ILTV	FP: GCACGTCACGGACGATTGT RP: GCCGCCTCGTCTTTTGC	Courtesy of Dr P. D. Kirkland, Elizabeth Macarthur Agricultural Institute, NSW
IBV	FP: CAAGCAGATGCTCAAGTGGA RP: CTCACGCTGTTGTGACACCT	This study. NCBI reference sequence used DQ490206.1

The table displays the primers used for all the marker viruses and the origin of those primers. Both forward and reverse primers for each assay are shown. Primers for BTV, BVDV and PCV2 were taken from the literature. Primer sequences for ILTV were kindly provided by Dr P D Kirkland from the Elizabeth Macarthur Agricultural Institute. We designed the forward and reverse primers for IBV.

Table S3.	Ct values of marker	viruses during the star	t of the protocol and af	iter the nucleic
acid extra	ction step.			

Virus	Variati	on A	Variat	ion B	Variat	ion C	Variat	ion D	Variat	ion E	Variat	ion F
Step	Start*	End [#]	Start	End								
PCV2	16	16	16	12	17	13.5	17	16.5	17	15	19	14
IBV	28	39	28	36	28.5	26	28	26	27	24	27	21
ILTV	28	29	28	25	31	26	31	29	32	29	32	31
BVDV	31	30	31	35	31	28	31	27	30	28	30	28
BTV	29	28	29	29	30	26	30	24.5	31	26	31	25

*Nucleic acid isolated after homogenization of the spiked sample

[#]Nucleic acid isolated at the end of the variations

The table displays the Ct value of marker viruses, which were used as a reference for identifying how different virus enrichment combinations affected each virus type. For the "Start" Ct value, we took the spiked sample after homogenization and isolated the nucleic acid as per the described method. The "End" Ct value was determined using the nucleic acids isolated at the end stage of each variation. As there was an increase in more than 3Ct values, for one of the marker virus (IBV), we discontinued variation A and B. All other variations were processed for NGS.

Table S4: Number of high-quality NGS reads generated for the marker v	viruses	with a
minimum mapping quality threshold of 20		

	No. of reads	Variation C	Variation D	Variation E	Variation F
Virus					
BTV		14	33	8	13
BVDV		13	50-100	16	5
PCV2		50-150	50-150	50-150	50-150
ILTV		37	39	39	33
IBV		13	50-100	18	9

The table displays the number of high quality (Q20 or higher) NGS reads obtained for each marker virus from the spiked sample variations C to F. This was calculated manually from IGV. We used the reference genome mentioned in Table S1 for each of the marker viruses.

References

- 1. Shaw, A. E. *et al.* Development and initial evaluation of a real-time RT-PCR assay to detect bluetongue virus genome segment 1. *J. Virol. Methods* **145**, 115–126 (2007).
- 2. Hoffmann, B., Depner, K., Schirrmeier, H. & Beer, M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. *J. Virol. Methods* **136**, 200–9 (2006).
- 3. Opriessnig, T. *et al.* Effect of vaccination with selective bacterins on conventional pigs infected with type 2 porcine circovirus. *Vet. Pathol.* **40**, 521–9 (2003).

Supplementary Material 2

Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds

Running Title of the Supplementary Material

Representative phylogenetic trees of the consensus sequences generated and analysed using MEGA 6 or 7 software

Authors

Jessy Vibin^{1,2}, Anthony Chamings^{1,2}, Fiona Collier^{1,3}, Marcel Klaassen², Tiffanie M Nelson^{1,2}, Soren Alexandersen^{*1,2,3}

1 Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;

2 Deakin University, Geelong, Victoria, 3220, Australia;

3 Barwon Health, Geelong, VIC 3220, Australia;

*Corresponding Author: soren.alexandersen@deakin.edu.au

1. Avian Paramyxovirus 6 from MAD faecal sample

Figure and Table	Long Name (Format: Sample- virus-protein-length- quality-coverage-year)	Short name (Format: Sample- virus-protein- length)	Coverage	No. of nucleotides	Mapping quality threshold	NCBI accession number
S1.1	MAD-Avian- paramyxovirus-6- nucleocapsid-protein- 153nt-Q32-C-8-20- 2016	MAD-APMV6- NCP-153nt	8-20	153	32	MH000403
S1.2	MAD-Avian- paramyxovirus-6- nucleocapsid-protein- 187nt-Q32-C-92-204- 2016	MAD-APMV6- NCP-187nt	92-204	187	32	MH000404
\$1.3	MAD-Avian- paramyxovirus-6- nucleocapsid-protein- 270nt-Q32-C-4-26- 2016	MAD-APMV6- NCP-270nt	4-26	270	32	MH000405
S1.4	MAD-Avian- paramyxovirus-6- nucleocapsid-protein- 410nt-Q32-C-3-20- 2016	MAD-APMV6- NCP-410nt	3-20	410	32	MH000406
S1.5	MAD-Avian- paramyxovirus-6- phosphoprotein-211nt- Q32-C-6-72-2016	MAD-APMV6-PP- 211nt	6-72	211	32	MH000407
S1.6	MAD-Avian- paramyxovirus-6- phosphoprotein-167nt- Q32-C-3-17-2016	MAD-APMV6-PP- 167nt	3-17	167	32	MH000408
S1.7	MAD-Avian- paramyxovirus-6- matrix-protein-297nt- Q32-C-4-23-2016	MAD-APMV6- MP-297nt	4-23	297	32	MH000409
S1.8	MAD-Avian- paramyxovirus-6- matrix-protein-241nt- Q32-C-3-24-2016	MAD-APMV6- MP-241nt	3-24	241	32	MH000410
S1.9	MAD-Avian- paramyxovirus-6- matrix-protein-132nt- Q32-C-16-24-2016	MAD-APMV6- MP-132nt	16-24	132	32	MH000411
S1.10	MAD-Avian- paramyxovirus-6-	MAD-APMV6-FP- 276nt	3-8	276	32	MH000413

	fusion-protein-276nt- Q32-C-3-8-2016					
S1.11	MAD-Avian- paramyxovirus-6- small-hydrophobic- protein-351nt-Q32-C- 4-19-2016	MAD-APMV6- SHP-351nt	4-19	351	32	MH000414
S1.12	MAD-Avian- paramyxovirus-6- large-polymerase- protein-617nt-Q32-C- 16-115-2016	MAD-APMV6-Pol- 617nt	16-115	617	32	MH000416
S1.13	MAD-Avian- paramyxovirus-6- large-polymerase- protein-496nt-Q32-C- 11-53-2016	MAD-APMV6-Pol- 496nt	11-53	496	32	MH000417
S1.14	MAD-Avian- paramyxovirus-6- large-polymerase- protein-702nt-Q32-C- 4-37-2016	MAD-APMV6-Pol- 702nt	4-37	702	32	MH000418
S1.15	MAD-Avian- paramyxovirus-6- large-polymerase- protein-199nt-Q32-C- 3-19-2016	MAD-APMV6-Pol- 199nt	3-19	199	32	MH000420
S1.16	MAD-Avian- paramyxovirus-6- large-polymerase- protein-380nt-Q32-C- 20-52-2016	MAD-APMV6-Pol- 380nt	20-52	380	32	MH000421
S1.17	MAD-Avian- paramyxovirus-6- large-polymerase- protein-204nt-Q32-C- 6-19-2016	MAD-APMV6-Pol- 204nt	6-19	204	32	MH000422
S1.18	MAD-Avian- paramyxovirus-6- large-polymerase- protein-241nt-Q32-C- 3-9-2016	MAD-APMV6-Pol- 241nt	3-9	241	32	MH000423
S1.19	MAD-Avian- paramyxovirus-6- large-polymerase- protein-284nt-Q32-C- 4-18-2016	MAD-APMV6-Pol- 284nt	4-18	284	32	MH000424

S1.20	MAD-Avian-	MAD-APMV6-Pol-	21-187	383	32	MH000425
	paramyxovirus-6-	383nt				
	large-polymerase-					
	protein-383nt-Q32-C-					
	21-187-2016					
S1.21	MAD-Avian-	MAD-APMV6-Pol-	3-35	507	32	MH000426
	paramyxovirus-6-	507nt				
	large-polymerase-					
	protein-507nt-Q32-C-					
	3-35-2016					
S1.22	MAD-Avian-	MAD-APMV6-Pol-	3-19	343	32	MH000427
	paramyxovirus-6-	343nt				
	large-polymerase-					
	protein-343nt-Q32-C-					
	3-19-2016					
S1.23	MAD-Avian-	MAD-APMV6-Pol-	3-31	156	32	MH000428
	paramyxovirus-6-	156nt				
	large-polymerase-					
	protein-156nt-Q32-C-					
	3-31-2016					
NCBI sequ	ences taken for phylogen	etic analysis	T	I		
Long Name	e	Short Name	Country	Collection da	ate	
		(Format: NCBI	of			
		accession number-	collection			
		virus-country/state)				
AB759118	-Avian-paramyxovirus-	AB759118-	Japan	2008		
6-viral-cRI	NA-complete-genome-	APMV6-JP				
strain:red-r	hecked-					
stint/Japan/	/8KS0813/2008	G 0 40 (222	.	2007		
GQ406232	Avian-paramyxovirus-	GQ406232-	Italy	2007		
6-strain-du	ck/Italy/4524-2/07-	APMV6-IT				
complete-g	genome	VD7(0700	TZ 11 (2012		
KP/62/99	-Avian-paramyxovirus-	KP/62/99-	Kazakhst	2013		
6-isolate-re	ed-crested-	APMV6-KZ	an			
pochard/Ba	alknash/5842/2013-					
A X020200		A V020200	Toiman			
A 1029299	-Avian-paramyxovirus-	A 1029299-	Taiwan	-		
KT062080	Avian paramyyovirus	KT062080	Duccio	2009		
6-isolate-	-Avian-parantyx0virus-	APMV6_RU	Russia	2009		
teal/Novosibirsk_region/455/2000_						
complete-9	renome					
IN571486-	Avian-paramyxovirus-	IN571486-	Belgium	2007		
JINJ/1400-AVIAII-parainyxovirus- 6-strain-		APMV6-BE	Dergium	2007		
APMV6/mallard/Beloium/12245/0						
7-nucleopr	otein(NP)-					
phosphopro	otein(P)-matrix-					
protein(M)	-fusion-protein(F)-					

small-hydrophobic-protein(SH)-			
hemagglutinin-neuramis			
KF267717-Avian-paramyxovirus-	KF267717-	China	2011
6-isolate-mallard/Jilin/127/2011-	APMV6-CN		
complete-genome			

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of APMV6. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S1.1. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial NCP gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-427.58) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4716)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 63.10% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 153 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.1. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 153 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-NCP-153nt							
AB759118-APMV6-JP	4						
GQ406232-APMV6-IT	5	1					
KP762799-APMV6-KZ	34	37	36				
AY029299-APMV6-TW	35	38	37	5			
KT962980-APMV6-RU	36	39	38	3	2		
JN571486-APMV6-BE	36	37	38	13	10	10	
KF267717-APMV6-CN	35	38	37	2	3	1	11

Figure S1.2. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial NCP gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-466.22) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 187 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 187 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-NCP-187nt							
AB759118-APMV6-JP	7						
GQ406232-APMV6-IT	7	2					
KP762799-APMV6-KZ	39	37	36				
AY029299-APMV6-TW	37	35	34	2			
KT962980-APMV6-RU	38	36	35	1	1		
JN571486-APMV6-BE	38	38	37	5	3	4	
KF267717-APMV6-CN	40	38	37	1	3	2	6

Figure S1.3. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial NCP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-733.10) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4529)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 64.25% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 270 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.3. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 270 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-NCP-270nt							
AB759118-APMV6-JP	15						
GQ406232-APMV6-IT	15	2					
KP762799-APMV6-KZ	64	66	67				
AY029299-APMV6-TW	62	64	65	5			
KT962980-APMV6-RU	63	63	64	4	5		
JN571486-APMV6-BE	61	63	64	5	2	5	
KF267717-APMV6-CN	64	66	67	0	5	4	5

Figure S1.4. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial NCP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-1125.76) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.3877)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 410 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.4. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 410 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-NCP-410nt							
AB759118-APMV6-JP	26						
GQ406232-APMV6-IT	22	8					
KP762799-APMV6-KZ	100	92	94				
AY029299-APMV6-TW	98	94	96	7			
KT962980-APMV6-RU	100	92	94	6	3		
JN571486-APMV6-BE	95	92	94	13	6	9	
KF267717-APMV6-CN	102	94	96	7	10	9	16

Figure S1.5. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial PP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model³. The tree with the highest log likelihood (-682.39) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 57.35% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 211 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.5. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 211 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-PP-211nt							
AB759118-APMV6-JP	10						
GQ406232-APMV6-IT	10	4					
KP762799-APMV6-KZ	63	65	64				
AY029299-APMV6-TW	62	62	61	7			
KT962980-APMV6-RU	64	64	63	6	5		
JN571486-APMV6-BE	60	58	61	13	7	12	
KF267717-APMV6-CN	63	65	64	4	7	6	13

Figure S1.6. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial PP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-436.43) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 167 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.6. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 167 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-PP-167nt							
AB759118-APMV6-JP	7						
GQ406232-APMV6-IT	5	4					
KP762799-APMV6-KZ	38	36	38				
AY029299-APMV6-TW	38	36	38	3			
KT962980-APMV6-RU	38	36	38	2	3		
JN571486-APMV6-BE	38	36	38	5	2	5	
KF267717-APMV6-CN	36	34	36	2	3	2	5

Figure S1.7. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial MP gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-855.36) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.3705)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 297 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.7. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 297 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-MP-297nt							
AB759118-APMV6-JP	10						
GQ406232-APMV6-IT	11	4					
KP762799-APMV6-KZ	59	63	64				
AY029299-APMV6-TW	68	68	71	11			
KT962980-APMV6-RU	64	64	67	12	10		
JN571486-APMV6-BE	67	67	70	12	6	12	
KF267717-APMV6-CN	66	66	69	10	13	13	15

Table S1.8. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 241 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-MP-241nt							
AB759118-APMV6-JP	7						
GQ406232-APMV6-IT	4	3					
KP762799-APMV6-KZ	61	60	61				
AY029299-APMV6-TW	60	59	60	8			
KT962980-APMV6-RU	61	60	61	6	2		
JN571486-APMV6-BE	59	58	59	9	3	5	
KF267717-APMV6-CN	62	61	62	3	7	5	10

Figure S1.9. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial MP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-357.56) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 132 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.9. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 132 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-MP-132nt							
AB759118-APMV6-JP	5						
GQ406232-APMV6-IT	4	1					
KP762799-APMV6-KZ	29	30	30				
AY029299-APMV6-TW	30	31	31	5			
KT962980-APMV6-RU	28	29	29	1	4		
JN571486-APMV6-BE	29	30	30	4	5	3	
KF267717-APMV6-CN	30	31	31	1	6	2	5

Figure S1.10. Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial FP gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-744.95) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4490)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 276 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.10. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 276 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-FP-276nt							
AB759118-APMV6-JP	9						
GQ406232-APMV6-IT	7	4					
KP762799-APMV6-KZ	63	61	63				
AY029299-APMV6-TW	63	61	63	9			
KT962980-APMV6-RU	61	59	61	9	6		
JN571486-APMV6-BE	66	62	66	15	6	12	
KF267717-APMV6-CN	63	61	63	3	8	8	14

Table S1.11. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 344 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-SHP-351nt							
AB759118-APMV6-JP	19						
GQ406232-APMV6-IT	19	4					
KP762799-APMV6-KZ	166	155	155				
AY029299-APMV6-TW	164	153	153	10			
KT962980-APMV6-RU	166	155	155	5	5		
JN571486-APMV6-BE	167	156	156	15	11	12	
KF267717-APMV6-CN	165	154	154	5	11	6	15

Figure S1.12: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-1870.04) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 32.66% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 617 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.12: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 617 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-617nt							
AB759118-APMV6-JP	20						
GQ406232-APMV6-IT	20	6					
KP762799-APMV6-KZ	188	188	190				
AY029299-APMV6-TW	193	191	193	14			
KT962980-APMV6-RU	190	188	190	14	14		
JN571486-APMV6-BE	193	193	193	33	23	33	
KF267717-APMV6-CN	188	188	190	6	14	14	33

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-1392.34) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 35.38% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 496 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.13: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 496 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-496nt							
AB759118-APMV6-JP	22						
GQ406232-APMV6-IT	20	2					
KP762799-APMV6-KZ	131	129	127				
AY029299-APMV6-TW	131	129	127	8			
KT962980-APMV6-RU	129	127	125	7	7		
JN571486-APMV6-BE	134	132	130	13	7	10	
KF267717-APMV6-CN	131	129	127	2	6	5	11

Figure S1.14: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-1924.36) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4751)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 702 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.14: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 702 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-702nt							
AB759118-APMV6-JP	24						
GQ406232-APMV6-IT	24	6					
KP762799-APMV6-KZ	176	181	178				
AY029299-APMV6-TW	173	171	170	21			
KT962980-APMV6-RU	170	175	172	8	17		
JN571486-APMV6-BE	177	175	176	29	20	27	
KF267717-APMV6-CN	171	176	173	7	18	5	28

Figure S1.15: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-572.97) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 36.68% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 199 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.15: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 199 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-199nt							
AB759118-APMV6-JP	9						
GQ406232-APMV6-IT	5	6					
KP762799-APMV6-KZ	46	43	47				
AY029299-APMV6-TW	48	47	47	5			
KT962980-APMV6-RU	46	45	47	5	4		
JN571486-APMV6-BE	46	45	47	5	4	4	
KF267717-APMV6-CN	47	44	48	2	5	5	5

Figure S1.16: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-1025.97) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 36.45% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 380 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.16: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 380 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-380nt							
AB759118-APMV6-JP	9						
GQ406232-APMV6-IT	11	2					
KP762799-APMV6-KZ	89	91	92				
AY029299-APMV6-TW	91	92	93	4			
KT962980-APMV6-RU	93	95	96	6	8		
JN571486-APMV6-BE	88	89	90	13	9	15	
KF267717-APMV6-CN	92	94	95	3	5	5	14

0.02

Figure S1.17: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-509.35) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 204 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.17: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 204 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-204nt							
AB759118-APMV6-JP	6						
GQ406232-APMV6-IT	7	3					
KP762799-APMV6-KZ	40	39	39				
AY029299-APMV6-TW	40	39	37	5			
KT962980-APMV6-RU	41	40	40	4	3		
JN571486-APMV6-BE	40	39	39	2	3	2	
KF267717-APMV6-CN	41	40	40	3	4	3	1

Figure S1.18: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-720.37) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5353)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 241 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.18: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 241 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-241nt							
AB759118-APMV6-JP	9						
GQ406232-APMV6-IT	9	0					
KP762799-APMV6-KZ	64	63	63				
AY029299-APMV6-TW	66	66	66	15			
KT962980-APMV6-RU	61	61	61	12	12		
JN571486-APMV6-BE	64	64	64	17	4	14	
KF267717-APMV6-CN	65	64	64	7	15	9	17

10

Figure S1.19: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter $model^1$. The tree with the highest log likelihood (-816.02) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5244)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 284 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.19: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 284 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-284nt							
AB759118-APMV6-JP	3						
GQ406232-APMV6-IT	4	1					
KP762799-APMV6-KZ	77	75	75				
AY029299-APMV6-TW	81	79	79	6			
KT962980-APMV6-RU	80	78	78	5	5		
JN571486-APMV6-BE	78	78	78	7	5	6	
KF267717-APMV6-CN	79	77	77	2	6	5	7

Figure S1.20: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-1044.49) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 36.68% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 383 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.20: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 383 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-383nt							
AB759118-APMV6-JP	12						
GQ406232-APMV6-IT	12	2					
KP762799-APMV6-KZ	90	88	88				
AY029299-APMV6-TW	89	87	87	6			
KT962980-APMV6-RU	90	88	88	9	3		
JN571486-APMV6-BE	91	89	89	13	9	12	
KF267717-APMV6-CN	91	89	89	4	6	9	15

Figure S1.21: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-1352.37) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4413)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 507 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.21: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 507 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-507nt							
AB759118-APMV6-JP	19						
GQ406232-APMV6-IT	14	5					
KP762799-APMV6-KZ	127	119	119				
AY029299-APMV6-TW	124	116	116	15			
KT962980-APMV6-RU	124	116	116	8	9		
JN571486-APMV6-BE	122	116	116	25	12	21	
KF267717-APMV6-CN	128	120	120	2	15	8	25

Figure S1.22: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-947.92) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5111)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 343 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.22: Estimates of Evolutionary Divergence between Sequences

0.5

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 343 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-343nt							
AB759118-APMV6-JP	14						
GQ406232-APMV6-IT	11	5					
KP762799-APMV6-KZ	94	94	93				
AY029299-APMV6-TW	90	90	89	6			
KT962980-APMV6-RU	92	92	91	4	6		
JN571486-APMV6-BE	91	91	90	10	4	10	
KF267717-APMV6-CN	95	95	94	1	7	5	11

Figure S1.23: Molecular Phylogenetic analysis by Maximum Likelihood method of APMV6 partial Pol gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-402.62) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 156 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S1.23: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 156 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-APMV6-Pol-156nt							
AB759118-APMV6-JP	3						
GQ406232-APMV6-IT	2	1					
KP762799-APMV6-KZ	41	40	41				
AY029299-APMV6-TW	40	39	40	3			
KT962980-APMV6-RU	39	38	39	3	4		
JN571486-APMV6-BE	44	43	44	6	5	7	
KF267717-APMV6-CN	40	39	40	1	4	4	7

2. Gammacoronavirus from MAD faecal sample

Figure and Table	Long Name (Format: Sample- virus-protein-length- quality-coverage- vear)	Short name (Format: Sample- virus-protein-length- year)	Coverage	No. of nucleotides	Mapping quality threshold	NCBI accession number
S2.1	MAD- Gammacoronavirus- NSP12-1071nt-Q32- C-4-65-2016	MAD-GCoV-NSP12- 1071nt	4-65	1071	32	MG991677
S2.2	MAD- Gammacoronavirus- Spike-protein-524nt- Q32-C-3-19-2016	MAD-GCoV-SP- 524nt	3-19	524	32	MG991678
S2.3	MAD- Gammacoronavirus- Spike-protein-469nt- Q32-C-3-19-2016	MAD-GCoV-SP- 469nt	3-13	469	32	MG991679
NCBI seq	uences taken for phylog	enetic analysis				
Long Nan	ne	Short Name (Format: NCBI accession number- virus-country/state-	Country of collection	n Collection date		
KM45447 isolate-DI complete-	73-Duck-coronavirus- K/GD/27/2014- genome	KM454473-DCoV- CN	China	2014		
LN61009 coronavir complete-	9-Guinea-fowl- us-GfCoV/FR/2011- genome	LN610099-GfCoV-FR	France	-		
KR82242 coronavir genome	4-European-turkey- us-080385d-complete-	KR822424-TCoV-FR	France	2008		
EU02252 isolate-TC genome	6-Turkey-coronavirus- CoV-ATCC-complete-	EU022526-TCoV-US	United States of America	nited - ates of merica		
KT25427 Coronavin PdCoV/P 14-NSP12 cds	9-Pigeon-dominant- cus-isolate- G/Guangdong/1418/20 2-(1ab)-gene-partial-	KT254279-PdCoV- CN	China	2014		
FN43041: virus-NG, complete-	5-Infectious-bronchitis- A/A116E7/2006- genome	FN430415-IBV-NG	Nigeria	2006		
KF65222. isolate-NG	3-Turkey-coronavirus- C/20/09-spike-	KF652223-TCoV(P)- US	United States of America	2009		

glycoprotein-(S)-gene-complete-		
cds		

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of GCoV. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S2.1. Molecular Phylogenetic analysis by Maximum Likelihood method of GCoV partial OLPP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-3293.18) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.2729)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1071 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S2.1. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1071 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

KM454473-DCoV-CN						
LN610099-GfCoV-FR	163					
KR822424-TCoV-FR	177	67				
EU022526-TCoV-US	178	72	59			
KT254279-PdCoV-CN	152	186	170	187		
FN430415-IBV-NG	158	47	58	62	181	
MAD-GCoV-NSP12-1071nt	41	167	185	186	154	166

Figure S2.2: Molecular Phylogenetic analysis by Maximum Likelihood method of GCoV partial SP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model⁵. The tree with the highest log likelihood (-2146.14) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.6568)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 524 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S2.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 524 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

EU022526-TCoV-US	153	88 83	167	19	
KR822424-TCoV-FR KF652223-TCoV(P)-US	149 160	172 88	167		
LN610099-GfCoV-FR	143				
KM454473-DCoV-CN					

Figure S2.3: Molecular Phylogenetic analysis by Maximum Likelihood method of GCoV partial SP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-1893.27) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5370)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 469 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S2.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. Standard error estimate(s) are shown above the diagonal. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 469 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

KM454473-DCoV-CN					
LN610099-GfCoV-FR	126				
KR822424-TCoV-FR	127	129			
KF652223-TCoV(P)-US	132	101	126		
EU022526-TCoV-US	127	93	125	21	
MAD-GCoV-SP-469nt	38	130	131	133	126

3. Deltacoronavirus from MAD faecal sample

Figure and	Long Name	Short name	Coverage	No. of	Mapping	NCBI
Table	(Format: Sample-virus-	(Format: Sample-		nucleotides	quality	accession
	protein-length-quality-	virus-protein-			threshold	number
	coverage-year)	length-year)				
S3.1	MAD-	MAD-DCoV-SP-	3-8	201	20	Part of
	Deltacoronavirus-	201nt				MH013337
	spike-glycoprotein-					
	201nt-Q20-C-3-8-2016					
S3.2	MAD-	MAD-DCoV-SP-	3-8	201	20	Part of
	Deltacoronavirus-	aa-201nt				MH013337
	spike-glycoprotein-					
	201nt-Q20-C-3-8-2016					
S3.3	MAD-	MAD-DCoV-RPP-	3-30	205	20	Part of
	Deltacoronavirus-	205nt				MH013331
	replicase-polyprotein-					
	205nt-Q20-C-3-30-					
	2016		4.21	115	20	
\$3.4	MAD-	MAD-DCoV-RPP-	4-21	117	20	Part of
	Deltacoronavirus-	11/nt				MH013335
	replicase-polyprotein-					
	11/nt-Q20-C-4-21-					
52.5	2010 MAD		200 1700	1121	20	Davit of
33.3	MAD- Deltecoronovirus	MAD-DC0V-SP-	290-1700	1151	20	Part OI MH012227
	spike glycoprotein	115111				MIN015557
	1131 nt_O20_C_200_					
	1700-2016					
\$3.6	MAD-	MAD-DCoV-SP-	290-1700	1131	20	Part of
2010	Deltacoronavirus-	aa-1131nt				MH013337
	spike-glycoprotein-					
	1131nt-Q20-C-290-					
	1700-2016					
S3.7	MAD-	MAD-DCoV-RPP-	39-1266	2121	20	Part of
	Deltacoronavirus-	2121nt				MH013332
	replicase-polyprotein-					
	2121nt-Q20-C-39-					
	1266-2016					
S3.8	MAD-	MAD-DCoV-RPP-	39-1266	2121	20	Part of
	Deltacoronavirus-	aa-2121nt				MH013332
	replicase-polyprotein-					
	2121nt-Q20-C-39-					
	1266-2016		26.625.1	0.01	20	
\$3.9	MAD-	MAD-DCoV-EP-	36-6274	261	20	MH013336
	Deltacoronavirus-	201nt				
	envelope-protein-					
	201nt-Q20-C-36-62/4-					
	2010		1		1	1

S3.10	MAD-	MAD-DCoV-EP-	36-6274	261	20	MH013336
	Deltacoronavirus-	aa-261nt				
	envelope-protein-					
	261nt-Q20-C-36-6274-					
~~	2016					
\$3.11	MAD-	MAD-DCoV-MP-	36-6274	654	20	MH013338
	Deltacoronavirus-	654nt				
	membrane-protein-					
	034III-Q20-C-30-0274- 2016					
\$3.12	MAD-	MAD-DCoV-MP-	36-6274	654	20	MH013338
05.12	Deltacoronavirus-	aa-654nt	50 0274	0.0-1	20	1011013330
	membrane-protein-					
	654nt-O20-C-36-6274-					
	2016					
S3.13	MAD-	MAD-DCoV-RPP-	5-336	1095	20	MH013333
	Deltacoronavirus-	1095nt				
	orf1bstart-1095nt-Q20-					
	C-5-336-2016					
S3.14	MAD-	MAD-DCoV-RPP-	5-336	1095	20	MH013333
	Deltacoronavirus-	aa-1095nt				
	orf1bstart-1095nt-Q20-					
S2 15	C-5-336-2016		26 6071	276	20	MU012220
55.15	MAD- Doltocoronovirus NS6	MAD-DC0V-NS0-	30-02/4	270	20	MH015559
	protein-276nt-020-C-	27011				
	36-6274-2016					
S3.16	MAD-	MAD-DCoV-NS6-	36-6274	276	20	MH013339
	Deltacoronavirus-NS6-	aa-276nt				
	protein-276nt-Q20-C-					
	36-6274-2016					
S3.17	MAD-	MAD-DCoV-RPP-	7-1923	2619	20	MH013334
	Deltacoronavirus-	2619nt				
	Orf1bNSP11-13-					
	2619nt-Q20-C-7-1923-					
62.10	2016 MAD		7 1022	2610	20	NILIO12224
55.18	MAD- Deltacoronavirus	MAD-DC0V-RPP-	7-1925	2019	20	MH015554
	Orf1bNSP11_13_	aa-2019iit				
	2619nt-020-C-7-1923-					
	2019 2019					
S3.19	MAD-	MAD-DCoV-RPP-	14-290	1914	20	MH013335
	Deltacoronavirus-	1914nt			-	
	Orf1bNSP11-1914nt-					
	Q20-C-14-290-2016					
S3.20	MAD-	MAD-DCoV-RPP-	14-290	1914	20	MH013335
	Deltacoronavirus-	aa-1914nt			1	

	Orf1bNSP11-1914nt-					
	Q20-C-14-290-2016					
S3.21	MAD-	MAD-DCoV-	6-2326	10650	20	MH013332
	Deltacoronavirus-	Orf1a-aa-10650nt				
	Orf1a-10650nt-Q20-C-					
	6-2326-2016					
S3.22	MAD-	MAD-DCoV-RPP-	5-475	2076	20	MH013331
	Deltacoronavirus-	aa-2076nt				
	Orf1b-polymerase-					
	2076nt-Q20-C-5-475-					
	2016					
S3.23	MAD-	MAD-DCoV-SP-	36-6274	3702	20	MH013337
	Deltacoronavirus-	aa-3702nt				
	spike-glycoprotein-					
	3702nt-Q20-C-36-					
	6274-2016					
NCBI seque	nces taken for phylogenetic	c analysis		-		
Long Name		Short Name	Country	Collection	date	
		(Format: NCBI	of			
		accession number-	collection			
		virus-country/state-				
		year)				
JQ065049-C	Common-moorhen	JQ065049-MCoV-	China	2007		
coronavirus-	HKU21-strain-HKU21-	CN				
8295-comple	ete-genome					
JQ065046-N	Iagpie-robin-coronavirus	JQ065046-MrCoV-	China	2007		
HKU18-stra	in-HKU18-chu3-	CN				
complete-ge	nome					
FJ376622-M	Iunia-coronavirus-	FJ376622-MuCoV-	China	2007		
HKU13-351	4-complete-genome	CN				
FJ376621-T	hrush-coronavirus-	FJ376621-TCoV-	China	2007		
HKU12-600	-complete-genome	CN				
MF431743-I	Porcine-deltacoronavirus-	MF431743-	China	2014		
strain-SD-co	omplete-genome	PDCoV-CN				
FJ376620-B	ulbul-coronavirus-	FJ376620-BCoV-	China	2007		
HKU11-796	-complete-genome	CN				
JQ065047-N	light-heron-coronavirus-	JQ065047-NhCoV-	China	2007		
HKU19-stra	in-HKU19-6918-	CN				
complete ger	nome					
JQ065048-V	Vigeon-coronavirus-	JQ065048-WCoV-	China	2008		
HKU20-stra	in-HKU20-9243-	CN				
complete-ge	nome					

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of DCoV. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping

quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. In case of the amino acid sequence analysis, the short names contain the "aa" after the protein. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic analysis. They were found to be the most closely related sequences to the consensus sequences generated using BLASTN. Corresponding short names have been used in the phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S3.1: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial SP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-1292.92) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.6091)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 201 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 201 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065048-WCoV-CN								
JQ065049-MCoV-CN	49							
JQ065046-MrCoV-CN	52	59						
FJ376622-MuCoV-CN	48	48	54					
FJ376621-TCoV-CN	50	41	57	32				
MF431743-PDCoV-CN	57	58	55	57	56			
FJ376620-BCoV-CN	55	53	60	40	45	56		
JQ065047-NhCoV-CN	63	59	53	54	49	45	56	
MAD-DCoV-SP-201nt	37	52	53	58	58	59	58	61

Figure S3.2. Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial SP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-501.04) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+*I*], 60.17% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 67 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.2. Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 67 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065048-WCoV-CN								
JQ065049-MCoV-CN	11							
JQ065046-MrCoV-CN	12	15						
FJ376622-MuCoV-CN	13	11	9					
FJ376621-TCoV-CN	12	12	11	5				
MF431743-PDCoV-CN	17	11	13	11	12			
FJ376620-BCoV-CN	17	14	15	10	13	12		
JQ065047-NhCoV-CN	17	15	14	13	11	6	15	
MAD-DCoV-SP-aa-201nt	5	13	12	13	13	16	16	17

Figure S3.3: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial RPP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-1144.72) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4466)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 205 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 205 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	48							
FJ376622-MuCoV-CN	43	35						
FJ376621-TCoV-CN	37	35	34					
MF431743-PDCoV-CN	47	29	33	29				
FJ376620-BCoV-CN	43	36	36	28	32			
JQ065047-NhCoV-CN	53	60	55	50	52	48		
JQ065048-WCoV-CN	48	58	46	46	53	43	45	
MAD-DCoV-RPP-205nt	46	59	50	51	58	53	52	39

Figure S3.4: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial RPP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-653.38) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4247)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 117 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.4: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 117 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	28							
FJ376622-MuCoV-CN	27	20						
FJ376621-TCoV-CN	21	22	21					
MF431743-PDCoV-CN	22	23	18	20				
FJ376620-BCoV-CN	27	23	22	22	27			
JQ065047-NhCoV-CN	20	28	24	26	21	22		
JQ065048-WCoV-CN	30	32	33	32	32	30	26	
MAD-DCoV-RPP-117nt	25	28	26	25	28	24	23	21

Figure S3.5: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial SP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-8892.42) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.0627)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 26.08% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1125 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.5: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1125 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	421							
FJ376622-MuCoV-CN	347	405						
FJ376621-TCoV-CN	389	413	388					
MF431743-PDCoV-CN	354	417	252	377				
FJ376620-BCoV-CN	308	423	274	390	261			
JQ065047-NhCoV-CN	436	408	443	416	421	423		
JQ065048-WCoV-CN	421	424	420	439	413	436	456	
MAD-DCoV-SP-1131nt	425	421	428	432	428	426	436	393

0.05

Figure S3.6: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial SP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-3983.73) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.7265)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 375 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.6: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. Standard error estimate(s) are shown above the diagonal. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 375 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	133							
FJ376622-MuCoV-CN	89	129						
FJ376621-TCoV-CN	128	132	111					
MF431743-PDCoV-CN	96	132	43	114				
FJ376620-BCoV-CN	80	133	49	115	46			
JQ065047-NhCoV-CN	131	123	137	134	143	136		
JQ065048-WCoV-CN	149	130	141	147	135	140	144	
MAD-DCoV-SP-aa-1131nt	145	129	147	142	140	140	149	99

Figure S3.7: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial RPP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the General Time Reversible model⁷. The tree with the highest log likelihood (-15847.72) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.0085)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 2091 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.7: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 2091 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065048-WCoV-CN								
JQ065049-MCoV-CN	830							
JQ065046-MrCoV-CN	907	664						
FJ376622-MuCoV-CN	887	617	403					
FJ376621-TCoV-CN	872	569	614	557				
MF431743-PDCoV-CN	908	633	495	501	559			
FJ376620-BCoV-CN	866	577	576	566	433	534		
JQ065047-NhCoV-CN	878	835	954	912	891	928	887	
MAD-DCoV-RPP-2121nt	707	804	908	895	843	918	859	872

Figure S3.8: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial RPP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^{6}$. The tree with the highest log likelihood (-7469.23) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.6196)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 697 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.8: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 697 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065048-WCoV-CN								
JQ065049-MCoV-CN	316							
JQ065046-MrCoV-CN	328	181						
FJ376622-MuCoV-CN	323	189	60					
FJ376621-TCoV-CN	333	183	147	152				
MF431743-PDCoV-CN	327	183	117	116	141			
FJ376620-BCoV-CN	317	166	145	146	94	131		
JQ065047-NhCoV-CN	332	320	325	325	328	325	329	
MAD-DCoV-RPP-aa-	239	316	323	320	324	327	322	321
2121nt								

Figure S3.9: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial EP gene The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-1858.26) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.3268)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 231 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.9: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 231 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	86							
FJ376622-MuCoV-CN	80	30						
FJ376621-TCoV-CN	84	58	60					
MF431743-PDCoV-CN	79	65	70	65				
FJ376620-BCoV-CN	85	69	67	50	68			
JQ065047-NhCoV-CN	114	117	114	115	107	117		
JQ065048-WCoV-CN	115	118	125	116	120	120	115	
MAD-DCoV-EP-261nt	111	112	111	121	110	117	111	74

Figure S3.10: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial EP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^{6}$. The tree with the highest log likelihood (-962.16) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.9470)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 77 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.10: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 77 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

	1	1			1			
JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	29							
FJ376622-MuCoV-CN	32	5						
FJ376621-TCoV-CN	27	14	17					
MF431743-PDCoV-CN	29	22	24	19				
FJ376620-BCoV-CN	31	18	19	12	21			
JQ065047-NhCoV-CN	49	47	47	46	47	49		
JQ065048-WCoV-CN	47	50	51	51	48	50	45	
MAD-DCoV-EP-aa-261nt	47	50	51	50	48	50	46	22

Table S3.11: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 642 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	251							
FJ376622-MuCoV-CN	261	128						
FJ376621-TCoV-CN	223	173	184					
MF431743-PDCoV-CN	244	194	210	174				
FJ376620-BCoV-CN	232	192	193	145	193			
JQ065047-NhCoV-CN	290	262	246	258	268	252		
JQ065048-WCoV-CN	295	256	265	257	266	276	245	
MAD-DCoV-MP-654nt	285	273	252	265	281	271	231	195

0.1

Figure S3.12: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial MP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-2219.53) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.8155)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 214 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table 3.12: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 214 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	77							
FJ376622-MuCoV-CN	75	18						
FJ376621-TCoV-CN	73	43	40					
MF431743-PDCoV-CN	78	55	54	48				
FJ376620-BCoV-CN	76	49	47	36	48			
JQ065047-NhCoV-CN	107	85	83	82	95	90		
JQ065048-WCoV-CN	104	92	95	89	96	97	72	
MAD-DCoV-MP-aa-654nt	102	86	82	88	99	89	70	46

Figure S3.13: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial Orf1bStart gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-7597.55) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.7931)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 19.86% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 1095 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.13: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1095 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	312							
FJ376622-MuCoV-CN	297	195						
FJ376621-TCoV-CN	267	280	279					
MF431743-PDCoV-CN	288	247	247	259				
FJ376620-BCoV-CN	270	281	260	203	264			
JQ065047-NhCoV-CN	350	392	392	376	392	375		
JQ065048-WCoV-CN	379	429	407	389	404	399	397	
MAD-DCoV-RPP-1095nt	373	433	419	395	423	402	378	317

Figure S3.14: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial Orf1bStart gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-3466.48) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5360)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 365 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.14: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 365 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	72							
FJ376622-MuCoV-CN	75	28						
FJ376621-TCoV-CN	75	68	66					
MF431743-PDCoV-CN	70	48	50	56				
FJ376620-BCoV-CN	74	54	52	42	56			
JQ065047-NhCoV-CN	121	127	126	124	124	118		
JQ065048-WCoV-CN	140	141	139	138	137	138	136	
MAD-DCoV-RPP-aa-1095nt	134	140	140	137	141	135	132	89

0.2

Figure S3.15: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial NS6 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-2090.07) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.9020)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 240 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.15: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 240 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	125							
FJ376622-MuCoV-CN	121	38						
FJ376621-TCoV-CN	119	69	62					
MF431743-PDCoV-CN	118	79	78	64				
FJ376620-BCoV-CN	120	93	88	60	81			
JQ065047-NhCoV-CN	127	146	144	137	137	134		
JQ065048-WCoV-CN	131	119	123	99	113	109	136	
MAD-DCoV-NS6-276nt	123	122	126	112	120	113	140	84

Figure S3.16: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial NS6 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-1316.26) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 2.1381)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 80 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.16: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 80 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	57							
FJ376622-MuCoV-CN	59	15						
FJ376621-TCoV-CN	58	27	24					
MF431743-PDCoV-CN	57	27	28	25				
FJ376620-BCoV-CN	60	38	35	24	32			
JQ065047-NhCoV-CN	60	58	61	58	57	57		
JQ065048-WCoV-CN	59	55	54	48	50	54	60	
MAD-DCoV-NS6-aa-276nt	54	55	56	48	50	51	57	36

Figure 3.17: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial Orf1bNSP11-13 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the General Time Reversible model⁷. The tree with the highest log likelihood (-18412.00) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.8614)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 18.41% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 2607 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.17: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 2607 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	781							
FJ376622-MuCoV-CN	704	467						
FJ376621-TCoV-CN	698	604	609					
MF431743-PDCoV-CN	736	555	537	588				
FJ376620-BCoV-CN	681	596	552	406	585			
JQ065047-NhCoV-CN	956	971	949	970	969	958		
JQ065048-WCoV-CN	993	1061	1020	974	1051	982	1044	
MAD-DCoV-RPP-2619nt	946	1083	1040	1009	1051	985	1032	905

Figure S3.18: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial Orf1bNSP11-13 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-8195.31) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.6597)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 869 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.18: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 869 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	174							
FJ376622-MuCoV-CN	181	67						
FJ376621-TCoV-CN	196	123	131					
MF431743-PDCoV-CN	183	99	101	121				
FJ376620-BCoV-CN	194	116	131	73	120			
JQ065047-NhCoV-CN	317	315	312	313	306	315		
JQ065048-WCoV-CN	351	346	349	340	346	335	347	
MAD-DCoV-RPP-aa-2619nt	351	356	365	358	353	351	336	283

Figure S3.19: Molecular Phylogenetic analysis by Maximum Likelihood method of DCoV partial Orf1bNSP11 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the General Time Reversible model⁷. The tree with the highest log likelihood (-11913.38) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.7350)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 20.83% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 1851 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.19: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1851 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	481							
FJ376622-MuCoV-CN	468	206						
FJ376621-TCoV-CN	392	338	328					
MF431743-PDCoV-CN	493	270	274	346				
FJ376620-BCoV-CN	426	353	344	253	351			
JQ065047-NhCoV-CN	603	661	625	640	623	617		
JQ065048-WCoV-CN	613	659	659	653	676	659	635	
MAD-DCoV-RPP-1914nt	634	680	675	665	701	658	659	559

0.05

Figure S3.20. Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial Orf1bNSP11 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-5002.27) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5922)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 617 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.20: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 617 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	100							
FJ376622-MuCoV-CN	99	22						
FJ376621-TCoV-CN	91	65	61					
MF431743-PDCoV-CN	103	46	48	57				
FJ376620-BCoV-CN	87	62	58	29	66			
JQ065047-NhCoV-CN	174	177	176	179	176	178		
JQ065048-WCoV-CN	181	191	186	187	193	178	188	
MAD-DCoV-RPP-aa-1914nt	211	216	210	216	219	210	203	162

0.2

Figure S3.21: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV Orf1a gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-46030.60) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.2319)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 3379 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.21: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 3379 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	1311							
FJ376622-MuCoV-CN	1312	479						
FJ376621-TCoV-CN	1207	1120	1125					
MF431743-PDCoV-CN	1293	885	890	1063				
FJ376620-BCoV-CN	1193	1096	1084	733	1034			
JQ065047-NhCoV-CN	2000	1996	2004	1997	1989	1971		
JQ065048-WCoV-CN	2012	2037	2024	2043	2029	1993	2078	
MAD-DCoV-Orf1a-aa-10650nt	2012	2033	2031	2048	2045	2033	2086	1591

Figure S3.22: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial RPP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 $model^6$. The tree with the highest log likelihood (-4534.10) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.3177)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 692 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.22: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 692 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	72							
FJ376622-MuCoV-CN	71	18						
FJ376621-TCoV-CN	69	52	54					
MF431743-PDCoV-CN	79	39	41	45				
FJ376620-BCoV-CN	61	50	55	21	46			
JQ065047-NhCoV-CN	142	134	131	139	132	136		
JQ065048-WCoV-CN	137	147	144	144	150	146	159	
MAD-DCoV-RPP-aa-2076nt	141	146	143	146	152	149	162	125

Figure S3.23: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of DCoV partial SP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Whelan And Goldman + Freq. model⁸. The tree with the highest log likelihood (-16834.34) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.2876)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 12.14% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 1104 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S3.23: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 9 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 1104 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

JQ065049-MCoV-CN								
JQ065046-MrCoV-CN	568							
FJ376622-MuCoV-CN	509	576						
FJ376621-TCoV-CN	566	581	553					
MF431743-PDCoV-CN	526	583	302	554				
FJ376620-BCoV-CN	496	585	333	559	303			
JQ065047-NhCoV-CN	582	559	609	586	609	620		
JQ065048-WCoV-CN	590	555	585	618	589	599	605	
MAD-DCoV-SP-aa-	618	577	626	622	612	632	624	504
3072nt								

4. Virus related to goose adenovirus 4 (GoA4) and/or duck adenovirus 2 (DuA2) from MAD faecal sample

Figure and Table	Long Name (Format: Sample-	Short name (Format: Sample-	Coverage	No. of nucleotides	Mapping quality	NCBI accession
	virus-protein-	virus-protein-length-			threshold	number
	length-quality-	year)				
DuA2	(coverage-year)					
S4.1	MAD-Adenovirus-	MAD-AV-52K-	3-10	153	20	MH028882
	52K-153nt-Q20-C- 3-10-2016	153nt				
S4.2	MAD-Adenovirus- Hexon-179nt-Q20- C-4-25-2016	MAD-AV-Hexon- 179nt	4-25	179	20	MH028883
S4.3	MAD-Adenovirus-	MAD-AV-Hexon-	4-23	200	20	MH028884
	Hexon-200nt-Q20- C-4-23-2016	200nt				
GoA4		T	T	1	ī	1
S4.4	MAD-Adenovirus- DNA-Polymerase- 176nt-Q20-C-3- 11-2016	MAD-AV-Pol-176nt	3-11	176	20	MH028875
S4.5	MAD-Adenovirus- DNA-Polymerase-	MAD-AV-Pol-144nt	8-180	144	20	MH028876
	144nt-Q20-C-8- 180-2016					
S4.6	MAD-Adenovirus- III-171nt-Q20-C- 3-27-2016	MAD-AV-III-171nt	3-27	171	20	MH028877
S4.7	MAD-Adenovirus- Hexon-157nt-Q20- C-7-78-2016	MAD-AV-Hexon- 157nt	7-78	157	20	MH028878
S4.8	MAD-Adenovirus- Hexon-164nt-Q20- C-3-15-2016	MAD-AV-Hexon- 164nt	3-15	164	20	MH028879
S4.9	MAD-Adenovirus- Hexon-191nt-Q20- C-7-16-2016	MAD-AV-Hexon- 191nt	7-16	191	20	MH028880
S4.10	MAD-Adenovirus- Hexon-228nt-Q20- C-4-39-2016	MAD-AV-Hexon- 228nt	4-39	228	≤20	MH028881
NCBI sequences	taken for phylogeneti	c analysis				
Long Name		Short Name	Country	Collection d	ate	
		(Format: NCBI	of			
		virus-country/state)	conection			

KR135164-Duck-adenovirus-2-	KR135164-DAd2-	China	2014
strain-CH-GD-12-2014-complete-	CN		
genome			
JF510462-Goose-adenovirus-4-	JF510462-GAd4-	Hungary	-
strain-P29-complete-genome	HU		
FN824512-Pigeon-adenovirus-1-	FN824512-PAd1-	Netherlan	1995
complete-genome-strain-IDA4	NL	ds	
KC493646-Fowl-adenovirus-5-strain-	KC493646-FAd5-IE	Ireland	1970
340-complete-genome			

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of AV. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S4.1: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial 52K gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Jukes-Cantor model⁹. The tree with the highest log likelihood (-674.58) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 24.51% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 153 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 153 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-52K-153nt				
KR135164-DAd2-CN	26			
JF510462-GAd4-HU	37	35		
FN824512-PAd1-NL	50	48	43	
KC493646-FAd5-IE	51	50	51	43

Figure S4.2: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Hexon gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-693.56) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 30.17% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 179 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 179 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Hexon-179nt				
KR135164-DAd2-CN	34			
JF510462-GAd4-HU	36	38		
FN824512-PAd1-NL	57	43	50	
KC493646-FAd5-IE	49	37	44	34

Figure S4.3: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Hexon gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-845.82) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 27.25% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 200 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 200 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Hexon-200nt				
KR135164-DAd2-CN	37			
JF510462-GAd4-HU	41	49		
FN824512-PAd1-NL	68	64	71	
KC493646-FAd5-IE	61	63	58	44

Figure S4.4: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Pol gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-747.36) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 25.85% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 176 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.4: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 176 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Pol-176nt				
KR135164-DAd2-CN	38			
JF510462-GAd4-HU	31	37		
FN824512-PAd1-NL	65	56	59	
KC493646-FAd5-IE	57	44	56	47

0.05

Figure S4.5: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Pol gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Jukes-Cantor model⁹. The tree with the highest log likelihood (-566.00) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 30.90% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 144 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.5: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 144 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Pol-144nt				
KR135164-DAd2-CN	33			
JF510462-GAd4-HU	23	31		
FN824512-PAd1-NL	45	31	39	
KC493646-FAd5-IE	45	36	38	21

0.05

Figure S4.6: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial III gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-721.85) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 26.61% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 171 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.6: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 171 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-III-171nt				
KR135164-DAd2-CN	40			
JF510462-GAd4-HU	33	37		
FN824512-PAd1-NL	61	48	45	
KC493646-FAd5-IE	60	61	48	39

Figure S4.7: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Hexon gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-605.36) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 31.21% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 157 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.7: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 157 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Hexon-157nt				
KR135164-DAd2-CN	30			
JF510462-GAd4-HU	30	33		
FN824512-PAd1-NL	42	38	41	
KC493646-FAd5-IE	42	31	33	27

Figure S4.8: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Hexon gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-618.97) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 30.79% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 164 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.8: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 164 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Hexon-164nt				
KR135164-DAd2-CN	35			
JF510462-GAd4-HU	21	31		
FN824512-PAd1-NL	49	42	45	
KC493646-FAd5-IE	46	39	39	30

Figure S4.9: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Hexon gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-778.30) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.6781)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 29.84% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 191 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.9: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 191 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Hexon-191nt				
KR135164-DAd2-CN	49			
JF510462-GAd4-HU	33	41		
FN824512-PAd1-NL	65	52	62	
KC493646-FAd5-IE	59	49	61	33

Figure S4.10: Molecular Phylogenetic analysis by Maximum Likelihood method of AV partial Hexon gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-781.58) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 33.99% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 228 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S4.10: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 228 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AV-Hexon-228nt				
KR135164-DAd2-CN	43			
JF510462-GAd4-HU	40	28		
FN824512-PAd1-NL	61	41	42	
KC493646-FAd5-IE	54	36	41	36

5. Adeno-associated virus from MAD faecal sample

Figure	Long Name	Short name	Coverage	No. of	Mapping	NCBI	
and Table	(Format: Sample-virus-	(Format: Sample-		nucleotides	quality	accession	
	protein-length-quality-	virus-protein-			threshold	number	
05.1	coverage-year)	length)	4.5	0.1	20	NUL107065	
55.1	MAD-	MAD-AAV-RP-	4-5	94	20	MH107865	
	ron protoin 04nt 020	94111					
	$C_{-1} = 5 = 2016$						
\$5.2	MAD.	MAD-AAV-CP-	7_27	279	32	MH107866	
55.2	Adenoassociated-virus-	279nt	1-21	219	52	WIII107000	
	cansid-protein-279nt-	27911					
	032-C-7-27-2016						
S5.3	MAD-	MAD-AAV-CP-	3-4	142	32	MH107867	
	Adenoassociated-virus-	142nt					
	capsid-protein-142nt-						
	Q32-C-3-4-2016						
NCBI sequ	ences taken for phylogene	etic analysis					
Long Nam	e	Short Name	Country	Collection date			
		(Format: NCBI	of				
		accession number-	collection				
		virus-country/state)					
KX583629	-Adenoassociated-virus-	KX583629-AAV-	China	2015			
isolate-MH	IH-05-2015-complete-	CN					
genome							
KY475562	e-Goose-parvovirus-	KY475562-GPV-	China	2016			
strain-RC1	6-complete-genome	CN					
KY679174	-Duck-parvovirus-	KY679174-DPV-	China	2016			
1solate-SC	16-complete-genome	CN		2000			
KY069274	-Muscovy-duck-	KY069274-MDPV-	China	2008			
parvovirus	-strain-LH-complete-	CN					
genome	C	VD265060 CDV	China	2014			
KK200009	2-Goose-parvovirus-	KK203009-GPV-	Cnina	2014			
strain-wX.	2-capsid-protein-(vP)-						
gene-comp	nete-cus			1			

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of AAV. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic analysis. They were found to be the most closely related sequences to the consensus

sequences generated using BLASTN. Corresponding short names have been used in the phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S5.1: Molecular Phylogenetic analysis by Maximum Likelihood method of AAV partial RP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Jukes-Cantor model⁹. The tree with the highest log likelihood (-255.32) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 94 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S5.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 94 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AAV-RP-94nt				
KX583629-AAV-CN	6			
KY475562-GPV-CN	16	18		
KY069274-MDPV-CN	17	18	6	
KY679174-DPV-CN	18	18	2	6

Figure S5.2: Molecular Phylogenetic analysis by Maximum Likelihood method of AAV partial CP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-889.81) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5762)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 255 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [2].

Table S5.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 255 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AAV-CP-279nt					
KX583629-AAV-CN	29				
KY475562-GPV-CN	87	82			
KY679174-DPV-CN	85	81	11		
KY069274-MDPV-CN	89	88	34	29	
KR265069-GPV-CN	85	81	2	11	32

Figure S5.3: Molecular Phylogenetic analysis by Maximum Likelihood method of AAV partial CP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Jukes-Cantor model⁹. The tree with the highest log likelihood (-403.33) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 142 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S5.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 142 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-AAV-CP-142nt					
KX583629-AAV-CN	22				
KY475562-GPV-CN	23	23			
KY679174-DPV-CN	27	27	4		
KY069274-MDPV-CN	23	25	5	7	
KR265069-GPV-CN	23	23	0	4	5

6. Rotavirus G from MAD faecal sample

Figure	Long Name	Short name	Coverage	No. of	Mapping	NCBI
and Table	(Format: Sample-	(Formal: Sample-		nucleotides	quanty	accession
Table	length_quality_	protein_length)			uneshold	number
	coverage-vear)	protein length)				
S6.1	MAD-RotavirusG-	MAD-RG-s1-VP1-	3-14	230	10	MH085089
2011	seg1-VP1-230nt-O10-	230nt	0 1 1		10	
	C-3-14-2016					
S6.2	MAD-RotavirusG-	MAD-RG-s3-VP3-	3-7	162	10	MH085090
	seg3VP3-162nt-Q10-	162nt				
	C-3-7-2016					
S6.3	MAD-RotavirusG-	MAD-RG-s8-	3-6	149	10	MH085891
	seg8-NSP2-149nt-	NSP2-149nt				
	Q10-C-3-6-2016					
NCBI seq	uences taken for phyloge	netic analysis				
Long Nan	ne	Short Name	Country	Collection da	ate	
		(Format: NCBI	of			
		accession number-	collection			
		virus-segment-				
Commont 1	1	country/state)				
Segment	Deterior	VC976010 DDC	China	2011		
nigoon/UI	U-KOLAVITUSU- Z18 stroin UK18 VD1	s1 CN	China	2011		
gene-com	NIO-SUAIII-IINIO-VEI-	51-CIN				
IN596592	P-RotavirusG-	IN596592-CRG-s1-	Germany	2003		
chicken/0	3V0567/DEU/2003-	DE	Germany	2005		
segment-1	-complete-sequence					
KX36236	7-RotavirusB-strain-	KX362367-PiRB-	Vietnam	2012		
RVB/Pig-	wt/VNM/12089-7/VP1-	VN		-		
RNA-dep	endent-RNA-					
polymeras	se-(VP1)-gene-partial-					
cds						
Segment 3	3/4 (as per matched NCB)	submitted reference s	equence)	1		
JQ920005	-RotavirusG-	JQ920005-CRG-s4-	Germany	2003		
chicken/0	3V0567/DEU/2003-	DE				
segment4-	-complete-sequence					
KJ752086	-RotavirusG-strain-	KJ752086-CRG-s3-	South	2011		
RVG/chic	ken/ZAF/MRC-	ZA	Africa			
DPRUI67	/9/2011/GXPX-					
segment3	-RNA-capping-protein-					
VP3-(VP3	3)-gene-complete-cds	VC07(012 DDC	Claime	2011		
KU8/601	2-KOLAVIFUSU-	KU8/0012-PKG-	Unina	2011		
pigeon/Hi	NIO-SITAIII-FIKIO-VP3-	S4-CIN				
gene-com	piele-cus			1		
Segment &						

KC876006-RotavirusG-	KC876006-PRG-	China	2011
pigeon/HK18-strain-HK18-	s8-CN		
NSP2-gene-complete-cds			
JQ920009-RotavirusG-	JQ920009-CRG-s8-	Germany	2003
chicken/03V0567/DEU/2003-	DE		
segment8-complete-sequence			
KJ752080-RotavirusG-strain-	KJ752080-CRG-s8-	South	2011
RVG/chicken/ZAF/MRC-	ZA	Africa	
DPRU1679/2011/GXPX-			
segment8-non-structural-protein-			
2-(NSP2)-gene-complete-cds			

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of RG. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S6.1: Molecular Phylogenetic analysis by Maximum Likelihood method of RG partial VP1 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-805.99) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 36.76% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 4 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 227 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S6.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 4 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 227 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-RG-s1-VP1-230nt			
KC876010-PRG-s1-CN	44		
JN596592-CRG-s1-DE	57	38	
KX362367-PiRB-VN	92	88	87

Figure S6.2: Molecular Phylogenetic analysis by Maximum Likelihood method of RG partial VP3 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-388.80) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 4 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 162 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S6.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 4 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 162 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-RG-s3-VP3-162nt			
JQ920005-CRG-s4-DE	20		
KJ752086-CRG-s3-ZA	23	5	
KC876012-PRG-s4-CN	29	21	22

Figure S6.3: Molecular Phylogenetic analysis by Maximum Likelihood method of RG partial NSP2 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-383.45) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4597)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 4 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 149 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S6.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 4 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 149 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MAD-RG-s8-NSP2-149nt			
KC876006-PRG-s8-CN	19		
JQ920009-CRG-s8-DE	22	26	
KJ752080-CRG-s8-ZA	26	23	13

7. Hubei chryso-like virus 1 from MUD faecal sample

Figure and Table	Long Name (Format: Sample- virus-segment- protein-length- quality-coverage- year)	Short name (Format: Sample- virus-segment- protein-length)	Coverage	No. of nucleotides	Mapping quality threshold	NCBI accession number
\$7.1	MUD-Hubei-chryso- like-virus-1-seg2- putative-protease- 2175nt-Q32-C-4-71- 2016	MUD-HCLV1- s2-PP-2175nt	4-71	2175	32	MH085093
\$7.2	MUD-Hubei-chryso- like-virus-1-seg3- hypothetical-protein- 536nt-Q32-C-9-42- 2016	MUD-HCLV1- s3-HP-536nt	9-42	536	32	MH085094
\$7.3	MUD-Hubei-chryso- like-virus-1-seg4- hypothetical-protein- 1938nt-Q32-C-3- 121-2016	MUD-HCLV1- s4-HP-1938nt	3-121	1938	32	MH085095
NCBI sequer	nces taken for phylogen	etic analysis	1	1		
Long Name		Short Name	Country	Collection da	ate	
		(Format: NCBI	or State of			
		accession	collection			
		number-virus-				
		segment-				
Segment 2		country/state)				
ME176389-I	Jubei_chryso_like_	ME176380	Western	2015		
virus-1-strai	n-mosWSX51080-	HCLV1-s2-WA	Australia	2013		
segment2-co	mplete-sequence		Tustiana			
MF176262-I	Hubei-chryso-like-	MF176262-	Western	2015		
virus-1-strain	n-mos172gb42656-	HCLV1-s2-WA	Australia			
segment2-co	mplete-sequence					
MF176310-I	Hubei-chryso-like-	MF176310-	Western	2015		
virus-1-strain	n-mos191gb77171-	HCLV1-s2-WA	Australia			
segment2-co	mplete-sequence					
MF176281-I	Hubei-chryso-like-	MF176281-	Western	2015		
virus-1-strain	n-mos172X13576-	HCLV1-s2-WA	Australia			
segment2-complete-sequence						
MF176369-I	Hubei-chryso-like-	MF176369-	Western	2015		
virus-1-strain	n-moswSgb49785-	HCLV1-s2-WA	Australia			
segment2-co	implete-sequence					
Segment 3						

MF176263-Hubei-chryso-like-	MF176263-	Western	2015
virus-1-strain-mos172gb42656-	HCLV1-s3-WA	Australia	
segment3-complete-sequence			
MF176370-Hubei-chryso-like-	MF176370-	Western	2015
virus-1-strain-mosWSgb49785-	HCLV1-s3-WA	Australia	
segment3-complete-sequence			
MF176390-Hubei-chryso-like-	MF176390-	Western	2015
virus-1-strain-mosWSX51080-	HCLV1-s3-WA	Australia	
segment3-complete-sequence			
MF176282-Hubei-chryso-like-	MF176282-	Western	2015
virus-1-strain-mos172X13576-	HCLV1-s3-WA	Australia	
segment3-complete-sequence			
Segment 4			
MF176391-Hubei-chryso-like-	MF176391-	Western	2015
virus-1-strain-mosWSX51080-	HCLV1-s4-WA	Australia	
segment4-complete-sequence			
MF176371-Hubei-chryso-like-	MF176371-	Western	2015
virus-1-strain-mosWSgb49785-	HCLV1-s4-WA	Australia	
segment4-complete-sequence			
MF176312-Hubei-chryso-like-	MF176312-	Western	2015
virus-1-strain-mos191gb77171-	HCLV1-s4-WA	Australia	
segment4-complete-sequence			
MF176283-Hubei-chryso-like-	MF176283-	Western	2015
virus-1-strain-mos172X13576-	HCLV1-s4-WA	Australia	
segment4-complete-sequence			
MF176264-Hubei-chryso-like-	MF176264-	Western	2015
virus-1-strain-mos172gb42656-	HCLV1-s4-WA	Australia	
segment-4-complete-sequence			

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of HCLV1. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S7.1: Molecular Phylogenetic analysis by Maximum Likelihood method of HCLV1 partial PP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model⁵. The tree with the highest log likelihood (-3129.64) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 2175 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S7.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 2175 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-HCLV1-s2-PP-2175nt					
MF176389-HCLV1-s2-WA	7				
MF176262-HCLV1-s2-WA	7	4			
MF176310-HCLV1-s2-WA	8	5	1		
MF176281-HCLV1-s2-WA	8	7	7	8	
MF176369-HCLV1-s2-WA	9	6	2	3	9

0.0005

Figure S7.2: Molecular Phylogenetic analysis by Maximum Likelihood method of HCLV1 partial HP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Jukes-Cantor model⁹. The tree with the highest log likelihood (-782.19) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 536 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S7.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 536 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-HCLV1-s3-HP-536nt				
MF176390-HCLV1-s3-WA	2			
MF176263-HCLV1-s3-WA	2	0		
MF176370-HCLV1-s3-WA	3	1	1	
MF176282-HCLV1-s3-WA	4	2	2	3

Figure S7.3: Molecular Phylogenetic analysis by Maximum Likelihood method of HCLV1 partial HP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model⁵. The tree with the highest log likelihood (-2775.63) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1938 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S7.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1938 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-HCLV1-s4-HP-1938nt					
MF176283-HCLV1-s4-WA	7				
MF176391-HCLV1-s4-WA	6	7			
MF176312-HCLV1-s4-WA	6	7	6		
MF176264-HCLV1-s4-WA	7	8	7	1	
MF176371-HCLV1-s4-WA	8	9	8	2	1

Figure and	Long Name	Short name	Coverage	No. of	Mapping	NCBI	
Table	(Format: Sample-	(Format: Sample-		nucleotides	quality	accession	
	virus-protein-length-	virus-protein-length)			threshold	number	
0 1	MUD Culey negot	MUD CNI V2 Dr	2 22	521	22	MH085006	
0.1	like virus 2 Pp 531nt	MUD-CINL V 5-KP-	5-22	551	52	MII003090	
	$032 - C_{-3} - 22 - 2016$	55111					
82	MUD-Culex-negev-	MUD-CNLV3-Rp-	5-30	275	32	MH085097	
0.2	like-virus3-Rp-275nt-	275nt	5 50	215	52	1111005077	
	O32-C-5-30-2016						
8.3	MUD-Culex-negev-	MUD-CNLV3-PMP-	3-19	456	32	MH085098	
	like-virus3-putative-	456nt					
	membrane-protein-						
	456nt-Q32-C-3-19-						
	2016						
NCBI seque	nces taken for phylogenet	ic analysis	T	1			
Long Name		Short Name	Country	Collection date			
		(Format: NCBI	or State				
		accession number-	of				
		virus-country/state)	collection				
MF176277-0	Culex-negev-like-	MF176277-CNLV3-	Western	2015			
virus3-strain	-mos172X44875-	WA	Australia				
complete-ge	nome	NE201700 DV M11	T. 1	2000			
MF281708-	Biggievirus-Mosl I-	MF281708-BV-M11-	Italy	2008			
strain-258/1	9/2008-OKF1-gene-	11					
partial-cus-a	liu-OKF2-aliu-OKF3-						
MF281700	Riggievirus_Mos11_	MF281709_BV_M11_	Italy	2008			
strain-pool-1	1/2008-ORF1-gene-	IT	Itary	2008			
partial-cds-a	nd-ORF2-and-ORF3-	11					
genes-comp	lete-cds						
KX924639-J	Biggievirus-Mos11-	KX924639-BV-M11-	USA	2016			
replicase-lar	ge-subunit-gene-partial-	US					
cds-and-hyp	othetical-protein-genes-						
complete-cd	s i c						

8. Culex Negev like virus 3 of MUD faecal sample

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of CNLV3. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular

phylogenetic analysis. They were found to be the most closely related sequences to the consensus sequences generated using BLASTN. Corresponding short names have been used in the phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S8.1: Molecular Phylogenetic analysis by Maximum Likelihood method of CNLV3 partial Rp gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-1086.99) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 531 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S8.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 531 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-CNLV3-Rp-531nt				
MF176277-CNLV3-WA	2			
MF281708-BV-M11-IT	90	89		
MF281709-BV-M11IT	91	90	1	
KX924639-BV-M11US	93	92	7	6

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-569.79) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 275 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S8.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 275 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-CNLV3-Rp-275nt				
MF176277-CNLV3-WA	4			
MF281708-BV-M11-IT	48	46		
MF281709-BV-M11IT	49	47	1	
KX924639-BV-M11US	49	47	1	0

0.02

Figure S8.3: Molecular Phylogenetic analysis by Maximum Likelihood method of CNLV3 partial PMP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model⁵. The tree with the highest log likelihood (-893.63) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 456 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S8.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 456 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-CNLV3-PMP-456nt				
MF176277-CNLV3-WA	5			
MF281708-BV-M11-IT	59	60		
MF281709-BV-M11IT	59	60	0	
KX924639-BV-M11US	62	61	3	3

Figure and	Long Name	Short name	Coverage	No. of	Mapping	NCBI
Table	(Format: Sample-	(Format: Sample-		nucleotides	quality	accession
	virus-protein-length-	virus-protein-length)			threshold	number
	quality-coverage-					
	year)					
S 9.1	MUD-Hubei-reo-	MUD-HRLV7L-Rp-	3-11	240	20	MH085099
	like-virus7-Rp-240nt-	240nt				
	Q20-C-3-11-2016					
S9.2	MUD-Hubei-reo-	MUD-HRLV7L-Rp-	3-6	184	32	MH085100
	like-virus7-Rp-184nt-	184nt				
	Q32-C-3-6-2016					
S9.3	MUD-Hubei-reo-	MUD-HRLV7L-Rp-	4-5	117	32	MH085101
	like-virus7-Rp-117nt-	117nt				
	Q32-C-4-5-2016					
NCBI sequer	nces taken for phylogenet	ic analysis	·	•	-	
Long Name		Short Name	Country	Collection d	ate	
		(Format: NCBI	of			
		accession number-	collection			
		virus-country/state)				
KX884635-H	Hubei-reo-like-virus7-	KX884635-HRLV7-	China	2013		
strain-mosHI	B235771-Rp-gene-	CN				
complete-cds	5					
DQ087277-A	Aedes-pseudoscutellaris-	DQ087277-APRV-	France	-		
reovirus-segr	ment2-complete-	FR				
sequence	-					
KM978429-I	Fako-virus-strain-	KM978429-FV-CM	Cameroo	2010		
CSW87-segr	ment2-RNA-dependent-		n			
RNA-polyme	erase-gene-complete-					
cds						
KX884633-F	Hubei-mosquito-virus5-	KX884633-HMV5-	China	2013		
strain-mosHI	B233040-RdRp-gene-	CN				
partial-cds						

9. Hubei reo-like virus 7 like virus from MUD faecal sample

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of HRLV7L. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic analysis. They were found to be the most closely related sequences to the consensus sequences generated using BLASTN. Corresponding short names have been used in the phylogenetic trees which contain the NCBI accession number, virus and the country of collection.

The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S9.1: Molecular Phylogenetic analysis by Maximum Likelihood method of HRLV7L partial Rp gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-989.22) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 31.77% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 239 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S9.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 239 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-HRLV7L-Rp-240nt				
KX884635-HRLV7-CN	13			
KX884633-HMV5-CN	112	111		
KM978429-FV-CM	97	97	97	
DQ087277-APRV-FR	90	91	93	27

Figure S9.2: Molecular Phylogenetic analysis by Maximum Likelihood method of HRLV7L partial Rp gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-822.59) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 2.1378)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 184 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S9.2. Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 184 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MUD-HRLV7L-Rp-184nt				
KX884635-HRLV7-CN	23			
DQ087277-APRV-FR	95	85		
KM978429-FV-CM	87	87	23	
KX884633-HMV5-CN	98	95	72	70

Table S9.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 5 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 117 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

eliminated. There were a total of 117 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

MUD-HRLV7L-Rp-117nt				
KX884635-HRLV7-CN	6			
DQ087277-APRV-FR	56	58		
KM978429-FV-CM	53	56	19	
KX884633-HMV5-CN	63	63	53	58

10. Enterobacteria phage phi92 from MUD faecal sample

Figure and	Long Nama	Short nome	Coverego	No. of	Monning	NCDI
Tiguie and	Long Maine	(Earrent: Samela	Coverage	INU. UI	wapping	NCDI
Table	(Format: Sample-	(Format: Sample-		nucleotides	quanty	accession
	virus-protein-length-	virus-protein-length)			threshold	number
	quality-coverage-					
	year)					
S10.1	MUD-	MUD-EPP92-g141-	2-4	277	32	MH188081
	Enterobacteria-	277nt				
	phage-phi92-Phi92-					
	gp141-277nt-Q32-					
	C-2-4-2016					
S10.2	MUD-	MUD-EPP92-g141-	2-4	276	32	MH188081
	Enterobacteria-	aa-276nt				
	phage-phi92-Phi92-					
	gp141-aa-276nt-					
	Q32-C-2-4-2016					
NCBI seque	nces taken for phylogen	etic analysis			•	•
Long Name		Short Name	Country	Collection date		
_			-			
		(Format: NCBI	of			
		(Format: NCBI accession number-	of collection			
		(Format: NCBI accession number- virus-country/state)	of collection			
FR775895-E	Enterobacteria-phage-	(Format: NCBI accession number- virus-country/state) FR775895-EPP92	of collection -	-		
FR775895-E phi92-compl	Enterobacteria-phage- lete-genome	(Format: NCBI accession number- virus-country/state) FR775895-EPP92	of collection -	-		
FR775895-E phi92-compl KU522583-I	Enterobacteria-phage- lete-genome Enterobacteria-phage-	(Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP	of collection -	- 2015		
FR775895-E phi92-compl KU522583-I ECGD1-com	Enterobacteria-phage- lete-genome Enterobacteria-phage- nplete-genome	(Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP	of collection -	- 2015		
FR775895-E phi92-compl KU522583-I ECGD1-com KX552041-I	Enterobacteria-phage- lete-genome Enterobacteria-phage- uplete-genome Escherichia-phage-	(Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP KX552041-EsP-FR	of collection - - France	- 2015 2014		
FR775895-E phi92-compl KU522583-I ECGD1-com KX552041-I ESCO13-con	Enterobacteria-phage- lete-genome Enterobacteria-phage- nplete-genome Escherichia-phage- mplete-genome	(Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP KX552041-EsP-FR	of collection - - France	- 2015 2014		
FR775895-E phi92-compl KU522583-I ECGD1-con KX552041-I ESCO13-coi KX664695-I	Enterobacteria-phage- lete-genome Enterobacteria-phage- nplete-genome Escherichia-phage- mplete-genome Escherichia-phage-	(Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP KX552041-EsP-FR KX664695-EsP-FR	of collection - - France France	- 2015 2014 2014		
FR775895-E phi92-compl KU522583-I ECGD1-com KX552041-I ESCO13-con KX664695-I ESCO5-com	Enterobacteria-phage- lete-genome Enterobacteria-phage- nplete-genome Escherichia-phage- mplete-genome Escherichia-phage- nplete-genome	(Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP KX552041-EsP-FR KX664695-EsP-FR	of collection - - France France	- 2015 2014 2014		
FR775895-E phi92-compl KU522583-I ECGD1-com KX552041-I ESCO13-con KX664695-I ESCO5-com JX561091-E	Enterobacteria-phage- lete-genome Enterobacteria-phage- nplete-genome Escherichia-phage- mplete-genome Escherichia-phage- nplete-genome scherichia-phage-	 (Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP KX552041-EsP-FR KX664695-EsP-FR JX561091-EsP-BE 	of collection - - France France Belgium	- 2015 2014 2014 2010		
FR775895-E phi92-compl KU522583-I ECGD1-con KX552041-I ESCO13-con KX664695-I ESCO5-com JX561091-E phAPEC8-co	Enterobacteria-phage- lete-genome Enterobacteria-phage- nplete-genome Escherichia-phage- mplete-genome Escherichia-phage- plete-genome scherichia-phage- omplete-genome	 (Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP KX552041-EsP-FR KX664695-EsP-FR JX561091-EsP-BE 	of collection - - France France Belgium	- 2015 2014 2014 2010		
FR775895-E phi92-compl KU522583-I ECGD1-com KX552041-I ESCO13-com KX664695-I ESCO5-com JX561091-E phAPEC8-co KR296694-S	Enterobacteria-phage- lete-genome Enterobacteria-phage- pplete-genome Escherichia-phage- mplete-genome Escherichia-phage- pplete-genome escherichia-phage- bscherichia-phage- complete-genome Salmonella-phage-40-	 (Format: NCBI accession number- virus-country/state) FR775895-EPP92 KU522583-EP KX552041-EsP-FR KX664695-EsP-FR JX561091-EsP-BE KR296694-SP40-IN 	of collection - - France Belgium India	- 2015 2014 2014 2010 2002		

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of EPP92. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. In case of the amino acid sequence analysis, the short names contain the "aa" after the protein. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic analysis. They were found to be the most closely related sequences to the consensus

sequences generated using BLASTN. Corresponding short names have been used in the phylogenetic trees which contain the NCBI accession number, virus and the country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

Figure S10.1: Molecular Phylogenetic analysis by Maximum Likelihood method of EPP92 partial g141 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-899.41) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4004)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 277 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S10.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 277 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

FR775895-EPP92						
MUD-EPP92-g141-277nt	4					
KU522583-EP	5	7				
KX552041-EsP-FR	54	54	52			
KX664695-EsP-FR	57	57	55	8		
JX561091-EsP-BE	61	61	59	8	8	
KR296694-SP40-IN	69	67	66	78	77	75

0.02

Figure S10.2: Molecular Phylogenetic analysis by Maximum Likelihood method for amino acid sequences of EPP92 partial g141 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 model⁶. The tree with the highest log likelihood (-431.10) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 7 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 92 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S10.2: Estimates of Evolutionary Divergence between Sequences

The number of amino acid differences per sequence from between sequences are shown. The analysis involved 7 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 92 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

FR775895-EPP92						
MUD-EPP92-g141-aa-276nt	0					
KU522583-EP	0	0				
KX552041-EsP-FR	15	15	15			
KX664695-EsP-FR	15	15	15	1		
JX561091-EsP-BE	15	15	15	1	0	
KR296694-SP40-IN	19	19	19	21	21	21

11. Human viruses from ST4, ST5 and ST6 faecal samples

Figure	Long Name	Short name	Coverage	No. of	Mapping	NCBI
and	(Format: Sample-virus-	(Format: Sample-		nucleotides	quality	accession
Table	protein-length-quality-	virus-protein-length)			threshold	number
	coverage-year)					
ssDNA vi	ruses	T		T		T
S11.1	ST6- Human-fecal-	ST6-HFVJ2-HP-	1	208	46	MH188072
	virus-Jorvi2-	208nt				
	nypotnetical-protein-					
\$11.2	20811-Q40-C-1-2017	STA TTMV SUTD	11 15	116	10	MU100072
511.2	virus-Sprime-	116nt	11-15	110	10	WIII100073
	untranslated-116nt-	11011				
	010-C-11-15-2017					
S11.2	ST5-Torque-teno-mini-	ST5-TTMV-5UTR-	10-13	116	10	MH188073
	virus-5prime-	116nt				
	untranslated-116nt-					
	Q10-C-10-13-2017					
Picornavi	ruses				1	T
S11.3	ST4-Human-	ST4-HRVC-VP2-	5-6	163	8	MH188075
	rhinovirus-C- genome-	163nt				
	capsid-protein- $VP2$ -					
S11 /	ST6-Human-TMEV-	ST6_HTMEVI CV_	3-15	261	10	MH188076
511.4	like-cardiovirus-	VP1-261nt	5-15	201	10	WIII100070
	polyprotein-261nt-	VII 2011				
	Q10-C-3-15-2017					
S11.5	ST6-H Human-TMEV-	ST6-HTMEVLCV-	3-18	422	10	MH188077
	like-cardiovirus-capsid	VP3-422nt				
	protein-VP3-422nt-					
	Q10-C-3-18-2017					
S11.6	ST6-Saffold-virus-	ST6-SV-2C-212nt	2-4	212	10	MH188078
	protein-2C-212nt-Q10-					
Canting a	<u>C-2-4-2017</u>					
Contigs a	SSEMDIED	ST4 DVA VD4 000mt	2.50	000	20	MII100070
511.7	514-KolavirusA-VP4- 909nt-020-C-3-52-	514-KVA-VP4-909III	5-52	909	20	МП188079
	2017					
S11.8	ST5-Norovirus-contig-	ST5-NV-7044nt	2-189	7044	20	MH188080
~	7044nt-Q20-C-2-189-					
	2017					
NCBI seq	uences taken for phylogen	etic analysis				
Long Nan	ne	Short Name	Country	Collection da	ate	
		(Format: NCBI	of			
		accession number-	collection			
		virus-country/state)				

MF118166-Human-fecal-virus-	MF118166-HFVT-	Estonia	-
Tarto-complete-genome	EE		
MF118167-Human-fecal-virus-	MF118167-HFVJ2-	Finland	-
Jorvi2-complete-genome	FI		
KT163899-Torque-teno-virus-	KT163899-TTV	-	-
isolate-P13-4-ORF1-gene-partial-			
cds			
KM259873-Torque-teno-mini-	KM259873-TTMV-	Spain	2014
virus-ALA22-complete-genome	ES		
EF538883-TTV-like-mini-virus-	EF538883-	France	-
isolate-LIL-y4-ORF2-and-ORF1-	TTVLMV-FR		
genes-complete-cds	WW010062		1002
KX810063-11V-like-mini-virus-	KX810063-	USA	1993
A DO41062 Torgue torg mini	$\frac{11}{10} \frac{11}{10} \frac{10}{10} 10$		
AB041962-10rque-teno-mini-	AB041902-111/1V5	-	-
virus3-DNA-complete-genome-			
KV083580 Human rhinovirus	KV083580 HPVC	USA	2015
C11-strain-SC3107-complete-		USA	2015
sequence	05		
KM486097-Rhinovirus-C-strain-	KM486097-RVC-	Mexico	2014
Mex14-Consensus-polyprotein-	MX	Menteo	2011
gene-complete-cds			
JN815249-Human-rhinovirus-C-	JN815249-HRVC-US	USA	1999
strain-HRV-C43-p1281-s6410-			
1999-polyprotein-gene-partial-cds			
KY369878-Human-rhinovirus-	KY369878-	USA	2016
C43-strain-SC174-complete-	HRVC43-US		
genome			
JX074056-Human-rhinovirus-C-	JX074056-HRVC43-	USA	2009
strain-HRV-C43-p1154-sR1124-	US		
2009-polyprotein-gene-complete-			
cds		T	2012
LC004883-Rhinovirus-C-gene-	LC004883-RVC-JP	Japan	2012
for-polyprotein-vP2-vP3-vP1-			
C/IDN/Nokohomo62/2012			
AB747252 Saffold virus gene for	AB7/7252 SV DK	Dakistan	2009
nolyprotein_partial_cds_	AD747232-5 V-1 K	1 akistaii	2009
isolate Pak-3290			
AB747248-Saffold-virus-gene-for-	AB747248-SV-PK	Pakistan	2009
polyprotein-partial-cds-		1 unitituit	2007
isolate:Pak-3097			
FJ463616-Saffold-virus-isolate-	FJ463616-SV-PK	Pakistan	2009
Pak5152-polyprotein-(gp1)-gene-			
partial-cds-and-L*-protein-(L*)-			
gene-complete-cds			
AB747255-Saffold-virus-gene-for-	AB747255-SV-PK	Pakistan	2009
----------------------------------	------------------	------------	------
polyprotein-partial-cds-			
isolate:Pak-3486			
AB747250-Saffold-virus-gene-for-	AB747250-SV-PK	Pakistan	2009
polyprotein-partial-cds-			
isolate:Pak-3641			
EF165067-Saffold-virus-	EF165067-SV-US	USA	-
complete-genome			
GU595289-Human-TMEV-like-	GU595289-	USA	2001
cardiovirus-isolate-HTCV-UC6-	HTMEVLCV-US		
complete-genome			
EU681179-Cardiovirus-	EU681179-CV-DE	Germany	-
D/VI2223/2004-polyprotein-gene-		5	
complete-cds			
EU376394-Human-TMEV-like-	EU376394-	_	-
cardiovirus-complete-genome	HTMEVLCV		
EU681176-Cardiovirus-	EU681176-CV-DE	Germany	-
D/VI2229/2004-polyprotein-gene-	20001110 01 22	Commission	
complete-cds			
IN652233-Saffold-virus-strain-	IN652233-SA-US	USA	2005
\$19-polyprotein-gene-complete-	J1(052255 D11 00	CDA	2003
cds			
IE813004-Saffold-virus-strain-	IF813004_SV_CA	Canada	2007
Can112051 06 adapted complete	J1013004-3V-CA	Canada	2007
can 12031-00-adapted-complete-			
CU565088 Dotovirus A strain	CU565099 DVA US		1006
GU505088-KolavirusA-strain-	GU303088-KVA-US	USA	1990
RVA/Vaccine/USA/RolaTeq-BfB-			
9/1990/G4P/5-VP4-gene-			
Chipiete-cus	OUECEOZZ DUA UO		1002
GU565077-RotavirusA-strain-	GU3630//-KVA-US	USA	1992
RVA/Vaccine/USA/RotaTeq-			
W1/8-8/1992/G3P/5-VP4-gene-			
complete-cds	D16051 DV		
D16351-Rotavirus-spVP4-	D16351-RV	-	-
mRNA-encoding-VP5-and-VP8-			
complete-cds		-	1000
KC815661-Equine-rotavirusA-	KC815661-ERVA-JP	Japan	1982
genotype-G6-P5-I2-R2-C2-M2-			
A13-N2-T6-E2-H3-outer-capsid-			
spike-protein-(VP4)-gene-			
complete-cds			
L42980-Rotavirus-spmRNA-	L42980-RV	-	-
fragment			
U53923-Bovine-rotavirus-spike-	U53923-BRV-US	USA	-
protein-VP4-(VP4)-mRNA-			
complete-cds			
MG002634-Norovirus-GII-strain-	MG002634-NV-AU	Australia	2017
Hu/GII.P4-New-Orleans2009-			

GII.4-			
Sydney2012/BNE5/2017/AU-			
polyprotein-major-capsid-protein-			
and-minor-structural-protein-			
genes-complete-cds			
MG002632-Norovirus-GII-strain-	MG002632-NV-AU	Australia	2017
Hu/GII.P4-New-Orleans2009-			
GII.4-			
Sydney2012/BNE3/2017/AU-			
polyprotein-major-capsid-protein-			
and-minor-structural-protein-			
genes-complete-cds			
KJ685411-Norovirus-	KJ685411-NV-BD	Banglade	2012
Hu/GII/BG1C0398/2012/BGD-		sh	
partial-genome			
MF140641-Norovirus-GII-	MF140641-NV-NL	Netherlan	2013
strain_Norovirus/GII/Hu/NL/2013		ds	
/GII.P4-			
GII.4/Rotterdam/E7800009-p11-			
d0-ORF1-gene-partial-cds-and-			
ORF2-and-ORF3-genes-complete-			
cds			
MF140642.1-Norovirus-GII-	MF140642-NV-NL	Netherlan	2013
strain-		ds	
Norovirus/GII/Hu/NL/2013/GII.P4			
-GII.4/Rotterdam/E1300306-p11-			
d83-ORF1-gene-partial-cds-			
ORF2-gene-complete-cds-and-			
ORF3-gene-partial-cds			
JX459901-Norovirus-	JX459901-NV-AU	Australia	2011
Hu/GII.4/Caringbah/NSW409G/20			
11/AU-complete-genome			
JX459904-Norovirus-	JX459904-NV-AU	Australia	2011
Hu/GII.4/Doonside/NSW536I/201			
1/AU-complete-genome			

The table points towards the molecular phylogenetic analysis by Maximum Likelihood method of viruses isolated from human samples. The first half of the table provides details to identify the sample from which the virus was isolated, protein that encodes the consensus sequences that are being analysed, the length of the consensus sequences thus providing the depth of the gene being analysed, minimum mapping quality threshold used in IGV for the generation of the consensus sequences, the coverage of the consensus sequences from IGV, the year of collection of the sample and the NCBI accession number assigned to the particular consensus sequence. Corresponding short names have been used in the phylogenetic trees which contain the sample, virus, protein and the number of nucleotides. The second half of the table provides the details of the sequences that were used for the molecular phylogenetic analysis. They were found to be the most closely related sequences to the consensus sequences generated using BLASTN. Corresponding short names have been used in the phylogenetic trees which contain the NCBI accession number and the NCBI accession number analysis. They were found to be the most closely related sequences to the consensus sequences generated using BLASTN. Corresponding short names have been used in the phylogenetic trees which contain the NCBI accession number, virus and the

country of collection. The collection date is given as retrieved from the corresponding NCBI nucleotide reference dataset which together with the country of collection can provide an insight into the possible evolution of the virus through the years.

0.01

Figure S11.1: Molecular Phylogenetic analysis by Maximum Likelihood method of HFVJ2 partial HP gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-385.14) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 3 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 208 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.1: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 3 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 208 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

MF118166-HFVT-EE		
MF118167-HFVJ2-FI	14	
ST6-HFVJ2-HP-208nt	10	17

Figure S11.2: Molecular Phylogenetic analysis by Maximum Likelihood method of TTMV partial 5UTR gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Jukes-Cantor model⁹. The tree with the highest log likelihood (-260.34) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.1000)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 7 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 116 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.2: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 116 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

ST4-TTMV-5UTR-116nt	5	3	7	8	4	7
ST5-TTMV-5UTR-116nt	4	6	6	6	7	
AB041962-TTMV5	5	3	3	5		
KX810063-TTVLMV-US	6	8	8			
EF538883-TTVLMV-FR	6	4				
KM259873-TTMV-ES	2					
KT163899-TTV						

Figure S11.3: Molecular Phylogenetic analysis by Maximum Likelihood method of HRVC partial VP2 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model¹. The tree with the highest log likelihood (-537.01) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 66.13% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 163 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.3: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 163 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

ST4-HRVC-VP2-163nt	6	24	32	33	33	33
LC004883-RVC-JP	31	40	8	3	5	
JX074056-HRVC43-US	33	43	9	6		
KY369878-HRVC43-US	29	40	9			
JN815249-HRVC-US	34	39				
KM486097-RVC-MX	25					
KY983589-HRVC-US						

Figure S11.4: Molecular Phylogenetic analysis by Maximum Likelihood method of HTMEVLCV partial VP1 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model⁴. The tree with the highest log likelihood (-1847.23) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.1715)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 13 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 255 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.4: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 13 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 255 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

AB747252-SV-PK												
AB747248-SV-PK	107											
FJ463616-SV-PK	4	105										
AB747255-SV-PK	115	125	115									
AB747250-SV-PK	112	121	115	77								
EF165067-SV-US	103	34	101	127	121							
GU595289-HTMEVLCV-US	119	96	118	116	111	90						
EU681179-CV-DE	107	115	108	80	42	113	113					
EU376394-HTMEVLCV	116	95	115	115	112	95	11	111				
EU681176-CV-DE	114	99	113	115	114	93	22	114	21			
JN652233-SA-US	112	100	111	114	114	94	21	114	20	3		
JF813004-SV-CA	116	95	115	115	113	95	12	112	3	22	21	
ST6-HTMEVLCV-VP1-261nt	111	97	110	111	111	91	23	112	20	11	10	23

Figure S11.5: Molecular Phylogenetic analysis by Maximum Likelihood method of HTMEVLCV partial VP3 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model⁵. The tree with the highest log likelihood (-2386.84) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5836)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 13 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 422 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.5: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 13 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 422 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

AB747252-SV-PK												
AB747248-SV-PK	123											
FJ463616-SV-PK	9	124										
AB747255-SV-PK	108	95	111									
AB747250-SV-PK	124	97	127	93								
EF165067-SV-US	117	50	120	98	96							
GU595289-HTMEVLCV-US	123	110	127	100	114	110						
EU681179-CV-DE	128	102	128	97	67	100	110					
EU376394-HTMEVLCV	119	106	123	101	106	108	17	111				
EU681176-CV-DE	117	102	120	98	109	106	28	116	25			
JN652233-SA-US	118	101	121	97	111	104	30	118	27	2		
JF813004-SV-CA	120	104	124	103	106	109	20	115	5	28	30	
ST6-HTMEVLCV-VP3-422nt	126	106	127	102	106	108	35	115	32	17	19	35

Figure S11.6: Molecular Phylogenetic analysis by Maximum Likelihood method of SV partial 2C gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter $model^4$. The tree with the highest log likelihood (-752.38) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.2798)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 13 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 212 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.6: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 13 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 212 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

AB747252-SV-PK												
AB747248-SV-PK	11											
FJ463616-SV-PK	13	14										
AB747255-SV-PK	14	5	17									
AB747250-SV-PK	14	9	9	10								
EF165067-SV-US	14	16	17	16	16							
GU595289-HTMEVLCV-US	19	20	22	22	21	19						
EU681179-CV-DE	24	20	21	17	14	21	25					
EU376394-HTMEVLCV	26	27	29	27	28	26	13	29				
EU681176-CV-DE	27	25	26	22	21	24	23	17	24			
JN652233-SA-US	28	26	27	23	22	24	24	19	25	2		
JF813004-SV-CA	25	26	26	26	27	25	12	31	5	25	26	
ST6-SV-2C-212nt	8	11	13	14	16	18	21	26	30	27	28	29

Figure S11.7: Molecular Phylogenetic analysis by Maximum Likelihood method of RVA partial VP4 gene

The evolutionary history was inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model⁵. The tree with the highest log likelihood (-1615.82) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 909 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.7: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 7 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 909 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

ST4-RVA-VP4-909nt						
GU565088-RVA-US	0					
GU565077-RVA-US	1	1				
D16351-RV	17	17	16			
KC815661-ERVA-JP	22	22	21	22		
L42980-RV	23	23	22	23	21	
U53923-BRV-US	29	29	28	26	32	33

Figure S11.8: Molecular Phylogenetic analysis by Maximum Likelihood method of NV

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model³. The tree with the highest log likelihood (-12582.19) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.1000)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 7044 positions in the final dataset. Evolutionary analyses were conducted in MEGA7².

Table S11.8: Estimates of Evolutionary Divergence between Sequences

The number of base differences per sequence from between sequences are shown. The analysis involved 8 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 7044 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

ST5-NV-7044nt							
MG002634-NV-AU	17						
MG002632-NV-AU	17	16					
KJ685411-NV-BD	132	129	131				
MF140641-NV-NL	244	239	241	139			
MF140642-NV-NL	250	245	247	147	10		
JX459901-NV-AU	298	295	297	207	212	218	
JX459904-NV-AU	301	298	300	207	208	214	82

References

- 1. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J. Mol. Evol.* **16**, 111–20 (1980).
- 2. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol. Biol. Evol.* **33**, 1870–4 (2016).
- 3. Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Mol. Biol. Evol.* **10**, 512–26 (1993).
- 4. Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. *Mol. Biol. Evol.* **9**, 678–87 (1992).
- 5. Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. *J. Mol. Evol.* **22**, 160–74 (1985).
- 6. Le, S. Q. & Gascuel, O. An Improved General Amino Acid Replacement Matrix. *Mol. Biol. Evol.* **25**, 1307–1320 (2008).
- 7. Nei, M. & Kumar, S. *Molecular evolution and phylogenetics*. (Oxford University Press, 2000).
- 8. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. *Mol. Biol. Evol.* **18**, 691–9 (2001).
- 9. Jukes, T. H. & Cantor, C. in *Mammalian Protein Metabolism* (ed. Munro, H.) 21–132 (Academic Press, New York., 1969).

Supplementary Material 3

Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds

Running Title of the Supplementary Material

Detailed optimised protocol for metagenomics of viruses and microbiome analysis.

Authors

Jessy Vibin^{1,2}, Anthony Chamings^{1,2}, Fiona Collier^{1,3}, Marcel Klaassen², Tiffanie M Nelson^{1,2}, Soren Alexandersen^{*1,2,3}

1 Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;

2 Deakin University, Geelong, Victoria, 3220, Australia;

3 Barwon Health, Geelong, VIC 3220, Australia;

*Corresponding Author: soren.alexandersen@deakin.edu.au

Materials required:

- 1X PBS
- 2mL microtubes with O-ring
- Microtubes, PCR tubes, 96 well plates
- pipettes and tips
- 0.8µm polyethersulfone (PES) spin filter (Sartorius, Catalogue number: VK01P042)
- Benzonase Nuclease, Purity > 90% (Millipore, Catalogue Number: 707463)
- Micrococcal nuclease (New England Biolabs, Catalogue Number: M0247S)
- 20X buffer {1M Tris pH8, 100mM calcium chloride (CaCl), 30mM magnesium chloride (MgCl₂)}
- 500mM ethylenediaminetetraacetic acid (EDTA; pH=8)
- QIAmp viral RNA mini kit (Qiagen; Catalogue number: 52904)
- 100% ethanol
- SeqPlex RNA amplification kit (Sigma, Catalogue number: SEQR)
- GenElute PCR Clean-up Kit (Sigma, Catalogue number: NA1020)
- Agilent High Sensitivity DNA Kit (Agilent, Catalogue number: 5067-4626)
- Ion Plus Fragment Library Kit (Thermo Fisher Scientific; Catalogue number: 4471252)
- Agencourt AMPure XP Kit (Beckman Coulter, Catalogue number: A63880)
- Magnet
- Low TE
- Ion Xpress Barcode Adapters 1-16 Kit (Thermo Fisher Scientific; Catalogue number: 4471250)
- Ion Library TaqMan[™] Quantitation Kit (Thermo Fisher Scientific; Catalogue number: 4468802)
- Ion 520 & Ion 530 Kit-Chef (Thermo Fisher Scientific; Catalogue number: A27757)

Instruments required:

- small-scale analytical balance
- vortex
- TissueLyser II homogeniser (Qiagen) or equivalent homogeniser
- Microcentrifuge
- Beckman Coulter Airfuge Ultracentrifuge or equivalent ultracentrifuge
- Dry bath or water bath
- Nanodrop spectrophotometer
- Bioanalyzer
- Thermocycler
- QuantStudio[™] 6 Flex Real-Time PCR System (Thermo Fisher Scientific; Catalogue number: 4485697) or equivalent real-time PCR instrument.
- Ion S5, Ion Chef Instrument (Thermo Fisher Scientific; Catalogue number: 4484177)
- Ion Torrent Sequencing and genetic analysis software (Thermo Fisher Scientific)

Step 1: Sample preparation

• Make 1:10 dilution of the faecal sample using sterile 1X PBS, i.e. 100mg:1ml

Step 2: Sample homogenization

- Transfer 1ml * 2 to two 2ml O ring tubes.
- Homogenize for 25Hz for 2min.
- Mix both tubes.
- Transfer 250 μ L to one tube. Now Tube A (1750 μ L) and Tube B (250 μ L).

Step 3: Centrifugation

- Centrifuge both tubes for 17000g for 3min at room temperature (RT).
- Collect supernatant.

Step 4: Filtration

- Filter both tubes using 0.8µm PES filter at 17000g for 1min or until all of the sample has passed through.
- Collect filtrate. Put Tube B on ice. Proceed Tube A for ultracentrifugation.

Step 5: Ultracentrifugation

- The sample was transferred into four 8*20mm ultra-clear (max of 450μ L and min of 300μ L) straight wall tubes.
- The tubes were placed in the A-95 rotor and balanced.
- The sample was then ultracentrifuged at 178,000g for 1 hour (30psi for 1hour) at RT.
- The supernatant was discarded. The pellet was suspended in a total of 130μ L of sterile 1XPBS.

Step 6: Nuclease treatment

- To 130μ L of the samples (both Tube A and B separately), 7μ L of 20X buffer, 2μ L of benzonase nuclease and 1μ L of micrococcal nuclease was added.
- After mixing gently, the samples were incubated at 37 °C for 2 h.
- The nuclease reaction was stopped by adding 3μ L of 500mM EDTA.

Step 7: Nucleic acid extraction

Kit used: QIAmp viral RNA mini kit

Note: No carrier RNA was added to the AVL buffer. If the kit is new, add 25ml of absolute ethanol to buffer AW1 and 30ml of absolute ethanol to buffer AW2. All steps performed at RT. All centrifugation performed at RT.

- Take 560μ L of buffer AVL in the 1.5ml tube.
- Add 140μ L of the sample to the buffer and mix by vortexing for 15s.
- Incubate at RT for 10min.
- Spin down.
- Add 560µL of absolute ethanol to sample and mix by vortexing for 15s. Spin down.
- Apply 630µL to QIAmp Minicolumn.
- Centrifuge 6000g or 8000rpm for 1min.
- Repeat the above two steps.
- Place column in clean collection tube.
- Add 500µL of buffer AW1.
- Centrifuge 6000g or 8000rpm for 1min. Place column in clean collection tube.

- Add 500µL of buffer AW2.
- Centrifuge 20000g or 14000rpm for 1min. Place column in clean collection tube.
- Centrifuge at full speed for 1min. Place column in the clean 1.5ml tube.
- Add 40μ L of buffer AVE directly to spin column membrane without touching it. Close the cap and incubate for 1min at RT.
- Centrifuge 6000g or 8000rpm for 1min.
- Take the eluted buffer and place it on spin column membrane (double elution).
- Centrifuge 6000g or 8000rpm for 1min. The filtrate contains the virus nucleic acid.
- Store isolated nucleic acid at -20 °C.

PAUSE POINT

Step 8: cDNA synthesis, amplification and purification

Kits used: SeqPlex RNA amplification kit and GenElute PCR Clean-up Kit

- Take 10µL of isolated nucleic acid and incubate for 95 °C for 3min followed by snap cooling in -20 °C cold ethanol.
- Add $2\mu L$ of Library Synthesis Solution and $1.2\mu L$ of nuclease free water to the nucleic acid making it a total volume of $13.2\mu L$.
- Incubate in a thermocycler for 70 °C for 5min, 18 °C hold. Do not hold for more than 10 min. Remove reaction from thermocycler and place at RT or maintain at 18 °C.
- Add 2μ L of Library synthesis buffer, 3.2μ L of nuclease free water and 1.6μ L of Library synthesis enzyme to the above reaction mixture to make it a total volume of 20μ L.
- Incubate in a thermocycler for 18 °C for 10min, 25 °C for 10min, 37 °C for 30min, 42 °C for 10min, 70 °C for 20min and 4 °C hold.
- Preferably proceed further or store at -20 °C.
- To the above mixture add, 39.25μ L of nuclease free water, 15μ L of 5X amplification mix, 0.75μ L of amplification enzyme making it a total volume of 75μ L.
- Incubate in a thermocycler for 94 °C for 2min, 25 cycles of 94 °C for 30s and 70 °C for 5min, 1 cycle of 70 °C for 30min followed by 4 °C hold.
- Purify the reaction mixture with GenElute PCR Clean-up Kit.
- After purification quantify the DNA.
- Proceed further or store at -20 °C.

PAUSE POINT

Step 9: Primer removal and purification

Kits used: SeqPlex RNA amplification kit, GenElute PCR Clean-up Kit and Agilent High Sensitivity DNA Kit

- Take 2µg of purified DNA from the above and add 7.5µL of 10X primer removal buffer, 1.5µL of primer removal solution, 3.75µL of primer removal enzyme and make the total reaction volume to 75µL using nuclease free water.
- Incubate the reaction in 37 °C for 60min, 65 °C for 20min and 4 °C hold.
- Purify the reaction mixture with GenElute PCR Clean-up Kit.
- After purification quantify the DNA using Agilent High Sensitivity DNA Kit in Bioanalyzer.
- Proceed further or store at -20 °C.

Step 10: End repair and purification

Kits used: Ion Plus Fragment Library Kit and Agencourt AMPure XP Kit.

- Take 20μ L of primer removed and purified sample DNA in a 1.5mL microtube and add nuclease free water to bring the volume to 79μ L.
- Add $20\mu L$ of 5X end repair buffer and $1\mu L$ of end repair enzyme to make the total reaction mix to $100\mu L$.
- Incubate the mix at RT for 20min.
- After the incubation purify the samples with Agencourt AMPure XP Kit with 180µL of AMPure XP Reagent. After the purification elute the sample in 25µL of Low TE buffer.
- Proceed further or store at -20 °C.

PAUSE POINT

Step 11: Adapter ligation and Nick repair

Kits used: Ion Plus Fragment Library Kit, Ion Xpress Barcode Adapters 1-16 Kit and Agencourt AMPure XP Kit.

- To the 25µL of eluted DNA samples add 10µL of 10X ligase buffer, 2µL of Ion P1 Adapter, 2µL of Ion Xpress Barcode X (barcode chosen), 2µL of dNTP mix, 49µL of nuclease free water, 2µL of DNA Ligase and 8µL of Nick Repair Polymerase.
- Incubate the reaction mix at 25 °C for 15min, 72 °C for 5min and 4 °C for up to 1h. Last stage is not a stopping point; continue directly to purification.
- Purify the samples using Agencourt AMPure XP Kit with 150µL of AMPure XP Reagent. After the purification elute the sample in 20µL of Low TE buffer.
- Store the DNA at -30 °C to -10 °C.

Step 12: Quantify the unamplified library

Kit used: Ion Library TaqMan[™] Quantitation Kit

- Prepare 100-fold and 10000-fold dilution of the library using nuclease free water.
- Prepare 10-fold serial dilution of the *E.coli* DH10B Ion Control Library from 6.8pM to 0.0000068pM.
- To 9μ L of the diluted library and control add 10μ L of 2X TaqMan Master mix and 1μ L of 20X Ion TaqMan Assay.
- Run RT-PCR in QuantStudio[™] 6 Flex Real-Time PCR System using the following conditions in standard mode: 50 °C for 2min, 95 °C for 2min, 40 cycles of 95 °C for 15s and 60 °C for 1min followed by 10 °C hold.
- Calculate the concentration of undiluted library and determine the dilution that result in concentration of ~100pM.

PAUSE POINT

Step 13: Next generation sequencing

Kit used: Ion 520 & Ion 530 Kit-Chef

- Set up plan run in Ion Torrent Server as per manufacturer instructions.
- Prepare the Ion chip using Ion Chef as per manufacturer instructions.
- Run next generation sequencer Ion S5 as per manufacturer instructions.

Step 14: Next generation sequencing analysis

- BLASTN, BLASTX, MEGABLAST, Ion Torrent Server, TMAP, IGV for virus analysis
- Ion Reporter for microbiome analysis.

Step 15: Partial genome and evolutionary analysis of viruses

• IGV, BLASTN, BLASTX, MEGA for partial genome and evolutionary analysis.