Supporting Information

Polysulfurating Reagents Design for Unsymmetrical Polysulfides

Construction

Xiao et al.

Supplementary Methods

General information

All experiments were conducted under air atmosphere unless otherwise noted. Anhydrous CH₂ClCH₂Cl was prepared by first distillation over P₂O₅ and then from CaH₂. Toluene and THF were prepared by distillation over sodium-benzophenone ketyl prior to use. Other solvents were undried solvents. ¹H and ¹³C NMR spectra were collected on 400 MHz or 500 MHz NMR spectrometers (Bruker AVANCE) using CDCl₃ or DMSO-d₆. Chemical shifts are reported in parts per million (ppm). Chemical shifts for protons are reported in parts per million downfield and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26, DMSO = δ 2.50). Chemical shifts for carbon are reported in parts per million downfield and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.0, DMSO = δ 39.5). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Unless otherwise noted, commercially available reagents purchased from Adamas-beta, TCI, or Energy Chemical and were used as received.

Mass spectroscopy:

Mass spectra were in general recorded on a Shimadzu GCMS-QP2010 Ultra and a HP 5989A mass selective detector.

Chromatography:

Column chromatography was performed with silica gel (200-300 mesh ASTM).

IR:

TENSOR (27) Series FT-IR Spectrometers.

Optimization of disulfurating reagents and gram scale reaction for disulfurating reagents synthese

Supplementary Table 1. Optimization of disulfurating reagents.

		SSAc	CuSO ₄ 5H Li ₂ CO ₃ (1	l ₂ O, Ligand equiv.), PhI(OP	viv) ₂	\bigwedge	SSOMe
NC ⁻	1d		MeOH, ter	mp., time		20	i
Entry	CuSO ₄ (mol%)	Liga (mol	nd %)	PhI(OPiv) ₂ (equiv.)	Temp. (°C)	Time (h)	Yield (% ^b)
1 ^c	10	bpy ((10)	2.5	25	11	31
2 ^d	10	bpy ((10)	2.5	25	11	ND
3	10	bpy/	phen (10)	2.5	25	11	50/ 53
4	10	L1 (1	0)	2.5	25	11	77
5	10	L2/ L	.3/ L4 (10)	2.5	25	11	70/ 63/ 68
6	10	L1 (1	0)	2.5	20	13	86
7	5	L1 (1	0)	2.5	20	13	86
8	2.5	L1 (1	0)	2.5	20	13	79
9	5	L1 (5	5)	2.5	20	13	76
10	5	L1 (1	10)	2.2	20	13	88
11	5	L1 (1	0)	1.9	20	13	65
Ph		h		Ph	Ph		

^{*a*}Conditions: **1d** (0.2 mmol, 1 equiv.), $CuSO_4 \cdot 5H_2O$, Ligand, Li_2CO_3 and $PhI(OPiv)_2$ were added to MeOH (2 mL) at 20 °C for 13 h. ^{*b*}Isolated yeild. ^{*c*}PhI(OAc)₂ was instead of PhI(OPiv)₂. ^{*d*}PhI(OTFA)₂ was instead of PhI(OPiv)₂.

To a Schlenk tube were added 4-CNC₆H₄CH₂SSAc (**1d**) (0.2 mmol, 1 equivalent, 44.7 mg), CuSO₄·5H₂O, Ligand, Li₂CO₃ (0.2 mmol, 1 equivalent, 14.8 mg), oxidant, and undistilled MeOH (2 mL), the mixture was stirred at 20 °C before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

Supplementary Table 2. Optimization of gram scale reaction for disulfurating reagents synthesis.

		SSAc CuS 4,7-	SO₄ [.] 5H₂O (x mol%) <i>di</i> -Ph-1,10-Phen (y) / mol%)		SSOMe
NC		Li ₂ C	O ₃ , PhI(OPiv) ₂	NC ²		
10	d (5 mmol, 1.	12 g) MeC	DH, 20 °C, 15 h		2d	
Entry	CuSO ₄ /mol%	Ligand / mol%	PhI(OPiv) ₂ / equiv.	MeOH / mL	time / h	yeild / % ^b
1	5	10	2.2	50	13	86
2	5	6	2.2	50	13	84
3	5	6	1.7	50	13	56
4	2.5	6	2.2	50	13	77
5	2.5	6	2.2	35	13	81
6	1	2	2.2	35	13	76
7	1	2	2.2	20	14	88
8	0.5	1	2.2	20	14	83
9	0.5	1	2.2	10	15	86
10	0.25	0.5	2.2	10	15	87
11 ^c	0.25	0.5	2.2	10	15	87
12 ^c	0.125	0.25	2.2	10	15	80

^{*a*}Conditions: **1d** (5 mmol, 1 equiv.), $CuSO_4$ · SH_2O , **L1**, Li_2CO_3 (5 mmol, 1 equiv.) and $PhI(OPiv)_2$ (11 mmol, 2.2 equiv.) were added to MeOH at 20 °C. ^{*b*}Isolated yeild. ^{*c*}**1d** (10 mmol, 1 equiv.).

To a Schlenk tube were added 4-CNC₆H₄CH₂SSAc (**1e**) (5 mmol, 1 equivalent, 1.12 g), CuSO₄·5H₂O, **L1**, Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), PhI(OPiv)₂, and undistilled MeOH (2 mL), the mixture was stirred at 20 $^{\circ}$ C for 13-15 hours. The mixture was quenched by saturated NaHCO₃ and extracted by DCM before the organic phase was concentrated under vacuum without adding silica gel. Purification by column chromatography afforded the desired product.

General procedure and spectra data of disulfurating reagents

	CuSO ₄ 5H ₂ O (0.25 mol%)	
RSSAc	L1 (0.5 mol%), PhI(OPiv) ₂ (2.2 equiv.)	RSSOMe
4	$Li_{C}O_{2}$ (1 equiv) MeOH 20 °C 15 h	
1	$L_{2}OO_{3}$ (1 equiv.), we of 1, 20° C, 10 f	2

General procedure: To a Schlenk tube were added RSSAc $1^{[1]}(5 \text{ mmol}, 1 \text{ equivalent})$, CuSO₄·5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), **L1** (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), PhI(OPiv)₂^[2-3] (11 mmol, 2.2 equivalents, 4.47 g), and undistilled MeOH (10 mL), the mixture was stirred at 20 °C for 15 hours. The mixture was quenched by saturated NaHCO₃ and extracted by DCM before the organic phase was concentrated under vacuum without adding silica gel. Purification by column chromatography afforded the desired product.

The reaction of 3-MeOC₆H₄CH₂SSAc (5 mmol, 1 equivalent, 1.14 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), **L1** (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in

MeOH (10 mL) at 20 °C for 15 hours afforded compound **2a** in 54% yield (590 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 1H), 6.94-6.84 (m, 2H), 6.82 (dd, J = 8.2, 2.0 Hz, 1H), 4.14 (s, 2H), 3.80 (s, 3H), 3.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 138.2, 129.6, 121.6, 114.7, 113.2, 62.7, 62.6, 55.2, 55.2, 46.7. IR (film) 2973, 2913, 1599, 1489, 1435, 1263, 1152, 1051, 982, 872, 781, 672. HRMS (EI) Calcd for C₉H₁₂O₂S₂ 216.0279, Found 216.0283.

The reaction of 4-MeOC₆H₄CH₂SSAc (5 mmol, 1 equivalent, 1.14 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1

equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalentss, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2b** in 58% yield (630 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 4.16 (s, 2H), 3.83 (s, 3H), 3.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 130.4, 128.7, 114.1, 62.6, 55.3, 45.9. **IR** (film)

2964, 2922, 2831, 1610, 1510, 1452, 1245, 1176, 1034, 982, 827, 740, 672. **HRMS** (EI) Calcd for C₉H₁₂O₂S₂ 216.0279, Found 216.0277.

The reaction of $4\text{-NO}_2C_6H_4CH_2SSAc$ (5 mmol, 1 equivalent, 1.22 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1

equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2c** in 74% yield (856 mg) as a white solid according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 4.19 (s, 2H), 3.57 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 144.4, 130.1, 123.8, 62.7, 44.9. IR (film) 2972, 1601, 1517, 1343, 1073, 980, 856, 800,754, 675. HRMS (EI) Calcd for C₈H₉NO₃S₂ 231.0024, Found 231.0022.

The reaction of 4-CNC₆H₄CH₂SSAc (10 mmol, 1 equivalent, 2.24 g), CuSO₄.5H₂O (0.025 mmol, 0.25 mol%, 6.4 mg), L1 (0.05 mmol, 0.5 mol%, 16.2 mg), Li₂CO₃ (10 mmol, 1

equivalent, 740 mg), and PhI(OPiv)₂ (22 mmol, 2.2 equivalents, 8.94 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2d** in 87% yield (1.87 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 4.15 (s, 2H), 3.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.4, 130.0, 118.6, 111.4, 62.6, 45.4. IR (film) 2927, 2816, 2228, 1728, 1606, 1504, 1417, 1284, 1105, 981, 843, 740, 675. HRMS (EI) Calcd for C₉H₉NOS₂ 211.0126, Found 211.0132.

The reaction of 4-ClCH₂C₆H₄CH₂SSAc (5 mmol, 1 equivalent, 1.24 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), **L1** (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5

mmol, 1 equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2e** in 68% yield (800 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 4.58 (s, 2H), 4.16 (s, 2H), 3.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 136.7, 129.6, 128.9, 62.6, 45.9, 45.8. IR

(film) 2970, 1512, 1418, 1264, 1072, 982, 829, 765, 672. **HRMS** (EI) Calcd for C₉H₁₁ClOS₂233.9940, Found 233.9943.

The reaction of 3-ClCH₂C₆H₄CH₂SSAc (5 mmol, 1 equivalent, 1.24 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent,

370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 ^oC for 15 hours afforded compound **2f** in 68% yield (800 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 4H), 4.60 (s, 2H), 4.18 (s, 2H), 3.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.4, 129.4, 129.3, 129.0, 127.7, 62.7, 46.1, 45.9. IR (film) 2972, 21814,1607, 1443, 1271, 1075, 982, 900, 797, 706, 673. HRMS (EI) Calcd for C₉H₁₁ClOS₂ 233.9940, Found 233.9935.

The reaction of (Ph)2CHSSAc (5 mmol, 1 equivalent, 1.38 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370

mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2g** in 76% yield (997 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.44 (m, 4H), 7.40-7.36 (m, 4H), 7.33 - 7.28 (m, 2H), 5.55 (s, 1H), 3.53 (s, 3H)... ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 128.9, 128.6, 127.6, 63.1, 62.9. IR (film), 3060, 2926, 2814, 1579, 1493, 1448, 1335, 1160, 983, 745, 697, 674, 625. HRMS (EI) Calcd for C₁₄H₁₄OS₂ 262.0486, Found 262.0488.

The reaction of $C_6H_5CCCH_2SSAc$ (5 mmol, 1 equivalent, 1.11 g), $CuSO_4.5H_2O$ (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li_2CO_3 (5 mmol, 1

equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2h** in 50% yield (525 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.44 (m, 2H), 7.34-7.29 (m, 3H), 3.94 (s, 2H), 3.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 131.7, 128.4, 128.3, 122.7, 85.5, 84.0, 63.1, 31.2. IR (film) 2975, 2902,

2815, 2217, 1597, 1490, 1411, 1212, 1067, 982, 755, 676. **HRMS** (EI) Calcd for C₁₀H₁₀OS₂ 210.0173, Found 210.0170.

The reaction of $C_6H_5CH_2CH_2SSAc$ (5 mmol, 1 equivalent, 1.06 g), $CuSO_4.5H_2O$ (0.0125 mmol, 0.25 mol%, 3.2 mg), **L1** (0.025 mmol, 0.5 mol%, 8.1 mg), Li_2CO_3 (5 mmol, 1 equivalent, 370

mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2i** in 72% yield (726 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.22 (m, 2H), 7.18-7.14 (m, 3H), 3.55 (s, 3H), 3.15-3.06 (m, 2H), 3.01-2.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 128.6, 128.5, 126.4, 62.5, 42.6, 35.8. IR (film) 2968, 2925, 2813, 1603, 1496, 1453, 1261, 1050, 984, 748, 699, 672. HRMS (EI) Calcd for C₉H₁₂OS₂ 200.0330, Found 200.0329.

The reaction of Me(CH₂)₉SSAc (5 mmol, 1 equivalent, 1.25 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), **L1** (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), and

PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2j** in 63% yield (745 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 3.61 (s, 3H), 3.28-2.63 (m, 2H), 1.89-1.61 (m, 2 H), 1.40-1.35 (m, 2H), 1.31-1.28 (m, 12H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 62.4, 41.8, 31.9, 29.5, 29.5, 29.4, 29.3, 29.2, 28.4, 22.7, 14.1. **IR** (film), 2924, 1457, 1409, 1251, 1052, 989, 894, 673. **HRMS** (EI) Calcd for C₁₁H₂₄OS₂ 236.1269, Found 236.1274.

The reaction of $EtO_2C(CH_2)_3SSAc$ (5 mmol, 1 equivalent, 1.11 g), $CuSO_4.5H_2O$ (0.0125 mmol, 0.25 mol%, 3.2 mg), **L1** (0.025 mmol, 0.5 mol%, 8.1 mg), Li_2CO_3 (5 mmol, 1

equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2k** in 75% yield (789 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 4.13 (q, J = 7.1 Hz, 2H), 3.60 (s, 3H), 2.96 (t, J = 7.2 Hz, 2H), 2.43 (t, J = 7.2 Hz, 2H), 2.08 (p, J = 7.2 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

172.8, 62.5, 60.4, 40.6, 32.5, 24.5, 14.2. **IR** (film) 2981, 1731, 1374, 1200, 1133, 1041, 984, 801, 673. **HRMS** (EI) Calcd for C₇H₁₄O₃S₂ 210.0834, Found 210.0388.

The reaction of EtO₂C(CH₂)₅SSAc (5 mmol, 1 equivalent, 1.25 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1

equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2l** in 36% yield (450 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.22 (m, 2H), 7.18-7.14 (m, 3H), 3.55 (s, 3H), 3.15-3.06 (m, 2H), 3.01-2.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.56, 62.4, 60.3, 41.4, 34.1, 29.0, 27.8, 24.5, 14.2. IR (film) 2967, 2900, 1733, 1376, 1253, 1186, 1075, 1056, 986, 750, 673. HRMS (EI) Calcd for C₉H₁₈O₃S₂ 238.0697, Found 238.0699.

The reaction of NC(CH₂)₃SSAc (5 mmol, 1 equivalent, 853 mg), CuSO₄·5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1

equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound **2m** in 75% yield (612 mg) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 3.62 (s, 1H), 3.02 (t, *J* = 6.9 Hz, 2 H), 2.51 (t, *J* = 7.0 Hz, 2H), 2.15 (tt, *J* = 7.0 Hz, *J* = 6.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 118.9, 62.6, 39.1, 24.9, 15.7. IR (film) 2963, 2928, 2816, 2247, 1731, 1445, 1424, 981, 674. HRMS (EI) Calcd for C₅H₉NOS₂ 163.0126, Found 163.0125.

The reaction of $AcSSCH_2C_6H_4CH_2SSAc$ (2.5 mmol, 1 equivalent, 796 mg), $CuSO_4$ ·5H₂O (0.0125 mmol, 0.5 mol%, 3.2 mg), **L1** (0.05 mmol, 1 mol%, 8.1 mg),

Li₂CO₃ (5 mmol, 2 equivalents, 370 mg), and PhI(OPiv)₂ (11 mmol, 4.4 equivalents, 4.47 g) in MeOH: acetone (9: 1) (10 mL) at 20 °C for 15 hours afforded compound **2n** in 38% yield (282 mg) as a white solid according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 4H), 4.15 (s, 4H), 3.57 (s, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 136.1, 129.6, 62.7, 46.0. **IR** (film) 2982, 1411, 1231, 1053, 979, 831, 669. **HRMS** (EI) Calcd for C₁₀H₁₄O₂S₄ 293.9872, Found 293.9877.

The reaction of $AcSSCH_2C_6H_4C_6H_4CH_2SSAc$ (2.5 mmol, 1 equivalent, 987 mg), $CuSO_4.5H_2O$ (0.0125 mmol, 0.5 mol%, 3.2 mg), **L1** (0.05 mmol, 1 mol%, 8.1 mg), Li_2CO_3 (5 mmol, 2 equivalents,

370 mg), and PhI(OPiv)₂ (11 mmol, 4.4 equivalents, 4.47 g) in MeOH : acetone (9: 1) (10 mL) at 20 °C for 15 hours afforded compound **20** in 42% yield (388 mg) as a white solid according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 4H), 7.40 (d, J = 8.1 Hz, 4H), 4.21 (s, 4H), 3.60 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 135.9, 129.7, 127.3, 62.7, 46.1. IR (film) 2987, 2971, 2810, 1494, 1405, 1232, 1054, 981, 823, 725, 668. HRMS (EI) Calcd for C₁₆H₁₈O₂S₄ 370.0190, Found 370.0188.

The reaction of RSSAc (5 mmol, 1 equivalent, 2.2 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent,

370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 ^oC for 15 hours afforded compound **2p** in 88% yield (1.88 g) as a white solid according to the general procedure. ¹**H NMR** (400 MHz, CDCl₃) δ 5.33 - 5.19 (m, 2H), 5.15-5.11 (m, 1H), 4.67-4.65 (m, 1H), 4.26 (d of ABq, J = 12.5, 4.7 Hz, 1H), 4.16 (d of ABq, J = 12.5, 2.3 Hz, 1H), 3.80 (ddd, J = 10.0, 4.7, 2.3 Hz, 1H), 3.64 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.2, 169.3, 169.0, 76.5, 73.8, 69.9, 67.9, 63.7, 61.8, 20.6. **IR** (film) 2946, 1746, 1366, 1226, 1208, 1031, 973, 756. 695. **HRMS** (ESI) Calcd for C₁₅H₂₂O₁₀S₂ (M+Na⁺) 449.0547, Found 449.0559.

The reaction of RSSAc (5 mmol, 1 equivalent, 3.42 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2

equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15 hours afforded compound 2q in

64% yield (2.13 g) as a white solid according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.3 Hz, 2H), 8.00 (d, J = 7.3 Hz, 2H), 7.89 (d, J = 7.3 Hz, 2H), 7.59-7.55 (m, 1H), 7.54-7.48 (m, 2H), 7.47-7.43 (m, 2H), 7.40-7.35 (m, 4H), 5.92 - 5.78 (m, 2H), 5.60 (d of ABq, J = 10.6, 3.6 Hz, 1H), 5.24 (d, J = 3.6 Hz, 1H), 4.55-4.50 (m, 2H), 4.39-4.33 (m, 1H), 3.57 (s, 3H), 3.47 (s, 3H), 2.85 (t, J = 7.1 Hz, 2H), 2.66-2.52 (m, 2H), 2.05 (p, J = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 165.9, 165.4, 133.3(3), 133.2(6), 133.2(5), 129.8, 129.6, 129.5, 129.4, 129.2, 128.4, 128.4, 128.4, 97.5, 68.9, 68.5, 68.3, 66.4, 62.4, 62.2, 55.6, 40.1, 32.0, 24.4. **IR** (film) 2974, 2902, 2817, 1721, 1602, 1451, 1315, 1064, 984, 708, 674. **HRMS** (ESI) Calcd for C₃₃H₃₄O₁₁S₂ (M+Na⁺) 693.1435, Found 693.1449.

The reaction of RSSAc (5 mmol, 1 equivalent, 2.14 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in MeOH (10 mL) at 20 °C for 15

hours afforded compound **2r** in 67% yield (1.42 g) as a colorless oil according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 5.86 (d, J = 3.6 Hz, 1H), 5.27 (s, 1H), 4.47 (d, J = 3.6 Hz, 1H), 4.22 - 4.16 (m, 2H), 4.09 - 4.06 m, 1H), 4.03 - 3.95 (m, 1H), 3.59 (s, 3H), 2.95 (t, J = 7.1 Hz, 2H), 2.56 - 2.40 (m, 2H), 2.10 (p, J = 7.1 Hz, 2H), 1.50 (s, 3H), 1.39 (s, 3H), 1.30 (s, 3H) , 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 112.2, 109.3, 105.0, 83.3, 79.8, 76.0, 72.4, 67.3, 62.4, 40.0, 32.3, 26.8, 26.7, 26.1, 25.2, 24.4. **IR** (film) 2986, 2903, 1744, 1376, 1215, 1161, 1072, 1023, 985, 845, 733, 675. **HRMS** (EI) Calcd for C₁₇H₂₈O₈S₂ 424.1226, Found 424.1229.

The reaction of RSSAc (5 mmol, 1 equivalent, 1.27 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), **L1** (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in

MeOH (10 mL) at 20 °C for 15 hours afforded compound **2s** in 67% yield (806 mg) as a white solid according to the general procedure. ¹**H NMR** (400 MHz, CDCl₃) δ 6.73 (brs, 1H), 5.07-4.95 (m, 1H), 3.76 (s, 3H), 3.63 (s, 3H), 3.47 (d of ABq, J = 14.2, 4.4 Hz, 1H), 3.35 (d of ABq, J = 14.2, 3.1 Hz, 1H), 2.00 (s, 3H) .¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.9, 62.6, 52.7, 51.4, 44.6, 23.0. **IR** (film) 3287, 2998, 2971, 2882, 1722, 1639, 1543, 1377, 1243, 1066, 980, 797, 757, 673. **HRMS** (ESI) Calcd for C₇H₁₃NO₄S₂ (M+Na⁺) 262.0178, Found 262.0178.

The reaction of RSSAc (5 mmol, 1 equivalent, 1.56 g), CuSO₄.5H₂O (0.0125 mmol, 0.25 mol%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li₂CO₃ (5 mmol, 1 equivalent, 370 mg), and PhI(OPiv)₂ (11 mmol, 2.2 equivalents, 4.47 g) in

MeOH (10 mL) at 20 °C for 15 hours afforded compound **2t** in 67% yield (1.22 g) as a colorless oil according to the general procedure. ¹**H NMR** (400 MHz, CDCl₃) δ 5.53 (s, 1H), 4.80 - 4.49 (m, 1H), 3.76 (s, 3H), 3.61 (s, 3H), 3.41 (d, *J* = 4.0 Hz, 2H), 1.43 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.8, 155.1, 80.1, 62.5, 52.9, 52.6, 44.8, 28.2. **IR** (film) 3374, 2974, 2904, 1747, 1715, 1506, 1367, 1255, 1162, 1052, 983, 866, 760, 679. **HRMS** (EI) Calcd for C₁₀H₁₉NO₅S₂ 297.0705, Found 297.0707.

Optimization of polysulfuration

Supplementary Table 3. Optimization of disulfuration with acetylacetone.

	Me Me (X e	$ \underbrace{Lewis base (5 m)}_{Me} \operatorname{Solvent (0.5 mL)}}_{N_2, 22 h} $	h, r.t. HO Me	s-s 3a
Entry	X (equiv.)	Lewis base (mol%)	Solvent	Yield (%)
1	2.4	-	PhMe	23
2	2.4	Et ₃ N/ TMP/ PMP ^e	PhMe	20/ 16/ 18
3	2.4	DMAP	PhMe	Complicated
4	2.4	4-MeOPy	PhMe	59
5	2.4	4-НОРу	PhMe	56
6	2.4	4-MePy	PhMe	42
7	2.4	2,4,6-Collidine	PhMe	20
8	2.4	2,4-diMeOPy	PhMe	22
9	2.4	4-MeOPy	DCE	76
10	2.4	4-MeOPy	THF	71
11	2.4	4-MeOPy	1,4-dioxane	41
12 ^c	2.4	4-MeOPy	DCE	81
13 ^c	1.1	4-MeOPy	DCE	82
14 ^{c,d}	1.1	4-MeOPy	DCE	85

^{*a*}**2d** (0.2 mmol, 1 equivalent), acetylacetone, $B(C_6F_5)_3$ (0.01 mmol, 5 mol%) and Lewis base (0.01 mmol, 5 mol%) were added to DCE at r.t. for 22 h. ^{*b*}Isolated yields. ^{*c*}DCE (0.25 mL). ^{*d*}Air atmosphere. ^{*e*}TMP = 2,2,6,6-tetramethylpiperidine, PMP = 1,2,2,6,6-pentamethylpiperidine.

To a Schlenk tube were added **2d** (0.2 mmol, 1 equivalent, 42.3 mg), acetylacetone, B(C₆F₅)₃ (0.01 mmol, 5 mol%, 5.2 mg), Lewis base (0.01 mmol, 5 mol%), and solvent, the mixture was stirred at r.t. before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

	⁺ MeOSS CO ₂ E	Acid (10 mol DCE, Temp.		SS(CH ₂) ₃ CO ₂ Et
	2k (0.2 mmol, 1.0 equiv.)	п	5a
Entry	Acid	DCE /M	Temp. /ºC	Yield /%
1	TsOH	[0.2]	25	48
2 ^c	TsOH	[0.2]	25	47
3 ^d	TsOH	[0.2]	25	49
4	TsOH	[0.4]	25	53
5	TsOH	[0.8]	25	50
6	TsOH	[0.4]	0	60
7	TsOH	[0.4]	-10	55
8	CSA	[0.4]	0	50
9	4-NO ₂ C ₆ H ₄ COOH	[0.4]	0	NR
10	NsOH	[0.4]	0	52
11	4-CIC ₆ H ₄ SO ₃ H	[0.4]	0	30
12	$4-\mathrm{NH_2C_6H_4SO_3H}$	[0.4]	0	trace
13	C ₆ H ₄ SO ₃ H	[0.4]	0	47

Supplementary Table 4. Optimization of disulfuration with indole.

^{*a*}**2k** (0.2 mmol, 1 equivalent), indole (0.4 mmol, 2 equivalents), and catalyst (0.02 mmol, 10 mol%) were added to DCE at r.t. for 5 h. ^{*b*}Isolated yields. ^{*c*}TsOH (5 mol%). ^{*d*} TsOH (10 mol%).

To a Schlenk tube were added 2k (0.2 mmol, 1 equivalent, 42.1 mg), indole (0.4 mmol, 2 equivalents), catalyst (0.02 mmol, 10 mol%), and DCE, the mixture was stirred for 5 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

$\left(\right)$	+ MeOSS	$CO_2Et = \frac{Acid (10)}{Solvent}$	$\frac{0 \text{ mol}\%)}{0.990}$	SS(CH ₂) ₃ CO ₂ Et
N H	2k (0.2 mmol, 1.0	equiv.)	, 0 C	N H 5a
Entry	Indole /equiv.	Acid	Solvent /M	Yield /%
1	2.0	TsOH	THF	59
2	2.0	TsOH	PhCI	49
3	2.0	TsOH	MeCN	40
4	2.0	TsOH	HCCI ₃	62
5	2.0	TsOH	MeOH	60
6	2.0	TsOH	Acetone	36
7	2.0	TsOH	EtOH	60
8	2.0	TsOH	Dioxane	60
9	2.0	TsOH	DMF	42
10	2.0	TsOH	PhMe	61
11	2.0	TsOH	EA	60
12	2.0	TsOH	ⁱ PrOH	66
13	2.0	TsOH	ⁿ PrOH	70
14	2.0	TsOH	ⁿ BuOH	70
15	2.0	TsOH	ⁱ BuOH	74
16	2.0	TsOH	^t AmylOH	74
17	2.0	TsOH	HFIP	52
18	1.5	TsOH	^t AmylOH	75
19	1.5	MeSO₃H	^t AmyIOH	78
20	1.5	CSA	^t AmylOH	77

Supplementary Table 5. Optimization of disulfuration with indole using Brønsted acids.

^{*a*}**2k** (0.2 mmol, 1 equivalent), indole, and catalyst (0.02 mmol, 10 mol%) were added to solvent at 0 °C for 5 h. ^{*b*}Isolated yields.

To a Schlenk tube were added 2k (0.2 mmol, 1 equivalent, 42.1 mg), indole (0.4 mmol, 2 equivalents), catalyst (0.02 mmol, 10 mol%), and solvent, the mixture was stirred at 0 °C for 5 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

Supplementary	Table 6.	Optimization	of	disulfuration	with	indole	using
$B(C_6F_5)_3.$							

NC	SSOMe +	$\mathbf{N}_{\mathbf{H}} \stackrel{\mathbf{B}(\mathbf{C}_{6}\mathbf{F}_{5})_{3}}{Solvent} (\mathbf{Z}_{4})$	Y mol%) C mL), 0 °C	S-S CN
2d	(X equ	uiv.)		5u
Entry	X /equiv.	Y /mol%	Solvent /mL	Yield /%
1 ^c	1.5	10	^t AmylOH (0.5)	79
2	1.5	2	PhMe (0.5)	83
3	1.2	2	PhMe (0.5)	81
4	1.2	2	PhMe (0.25)	87
5	1.1	2	PhMe (0.25)	86
6	1.1	1	PhMe (0.25)	86

^{*a*}**2d** (0.2 mmol, 1 equivalent), indole, and catalyst were added to solvent at 0 $^{\circ}$ C for 24h. ^{*b*}Isolated yields. ^{*c*}MeSO₃H (10 mol%).

To a Schlenk tube were added 2d (0.2 mmol, 1 equivalent, 42.3 mg), indole, catalyst, and PhMe, the mixture was stirred at 0 °C for 24 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

NC 2d	SSOMe +	(X equiv.) $H_2 = \frac{B(C_6F)}{PhMe}$	(Z mL), r.t. ► NC	SSNHPh 6a
Entry	X/ equiv.	Y/ mol%	PhMe/ mL	Yield/ %
1	1.2	5	1.0	82
2	1.2	2	1.0	67
3	1.5	5	1.0	85
4	1.2	5	0.5	88
5	1.2	2.5	0.5	87
6	1.2	0	0.5	9
7 ^c	1.1	2.5	0.5	86

Supplementary Table 7. Optimization of disulfuration with aniline.

^{*a*}**2d** (0.2 mmol, 1 equivalent), PhNH₂, and B(C_6F_5)₃ were added to PhMe at r.t. for 24h. ^{*b*}Isolated yields. ^{*c*}Air atmosphere.

To a Schlenk tube were added **2d** (0.2 mmol, 1 equivalent, 42.3 mg), PhNH₂, $B(C_6F_5)_3$, and PhMe, the mixture was stirred at r.t. for 24 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

General Procedure and Spectra Data of Polysulfuration

General procedure A: To a Schlenk tube were added 1,3-dicarbonyl compound (0.22 mmol, 1.1 equivalents), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg), RSSOMe (0.2 mmol, 1 equivalent), and 1,2-dichloroethane (0.25 mL), the mixture was stirred at r.t. for 22 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

General procedure B: To a Schlenk tube were added arene (0.3mmol, 1.5 equivalents), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), RSSOMe (0.2 mmol, 1 equivalent), and toluene (0.5 mL), the mixture was stirred at 0 °C or r.t. for 24-60 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

General procedure C_1 : To a Schlenk tube were added indole (0.3 mmol, 1.5 equivalents), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), RSSOMe (0.2 mmol, 1 equivalent), and *t*-AmylOH (0.5 mL), the mixture was stirred at r.t. for 24 hours

before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

General procedure C₂: To a Schlenk tube were added indole (0.22 mmol, 1.1 equivalents), $B(C_6F_5)_3$ (0.004 mmol, 2 mol%, 2.1 mg), RSSOMe (0.2 mmol, 1 equivalent), and toluene (0.25 mL), the mixture was stirred at 0 °C or r.t. for 24 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

$$\begin{array}{cccc} R^{1}SSOMe & + & \begin{matrix} R^{2} \\ NH \\ R^{3} \end{matrix} & \begin{matrix} B(C_{6}F_{5})_{3} & (2.5 \text{ mol}\%) \\ \hline PhMe, CH_{3}CN \text{ or DMF} \end{matrix} & \begin{matrix} R^{2} \\ N \\ R^{3} \end{matrix} \\ \hline R^{3} \end{array}$$

General procedure D: To a Schlenk tube were added amine (0.22 mmol, 1.1 equivalents), $B(C_6F_5)_3$ (0.01 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent), and toluene/CH₃CN/DMF (0.5 mL), the mixture was stirred at 0 °C or r.t. for 24 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product.

R¹SSOMe
 +
 R²-SH

$$\frac{B(C_6F_5)_3 (0 \text{ or } 2.5 \text{ mol}\%)}{DCM \text{ or DMF, N}_2, \text{ r.t.,}}$$
 R¹SSSR²

 2
 (1.1 equiv.)
 5-8 h
 7

General procedure E: To a Schlenk tube were added thiol (0.22 mmol, 1.1 equivalents), $B(C_6F_5)_3$, RSSOMe (0.2 mmol, 1 equivalent), and DCM/DMF (0.5 mL), the mixture was stirred at r.t. under N₂ atmosphere for 5-8 hours before it was

concentrated under vacuum. Purification by column chromatography afforded the desired product.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeOpyridine (0.01 mmol, 5 mol%, 1.1 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in

DCE (0.25 mL) at r.t. for 22 hours afforded compound **3a** in 85% yield (47.4 mg) as a white solid according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 16.98 (s, 1H), 7.56 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 4.01 (s, 2H), 2.36 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 142.1, 132.5, 129.7, 118.5, 111.5, 107.3, 42.1, 24.8. IR (film) 2974, 2905, 2229, 1737, 1405, 1253, 1227, 1052, 908, 845. HRMS (EI) Calcd for C₁₃H₁₃NO₂S₂ 279.0388, Found 279.0387.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg), 4-MeOC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 43.3

mg) in DCE (0.25 mL) at r.t. for 22 hours afforded compound **3b** in 98% yield (55.7 mg) as a white solid according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 17.04 (s, 1H), 7.23 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.04 (s, 2H), 3.80 (s, 3H), 2.45 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 159.1, 130.3, 128.1, 114.1, 107.9, 55.3, 42.2, 24.8. IR (film) 2968, 2905, 1606, 1509, 1405, 1248, 1175, 1036, 827, 741, 684. HRMS (EI) Calcd for C₁₃H₁₆O₃S₂ 284.0541, Found 284.0540.

The reaction of 1,3-Cyclohexanedione (0.22 mmol, 1.1 equivalents, 24.7 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg), $EtO_2C(CH_2)_5SSOMe$ (0.2 mmol, 1 equivalent, 47.7 mg) in

DCE (0.25 mL) at r.t. for 22 hours afforded compound **3c** in 50% yield (31.9 mg) as a colorless oil according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ

7.82 (brs, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.94 (t, J = 7.3 Hz, 2H), 2.65 (s, 2H), 2.50 (s, 2H), 2.30 (t, J = 7.5 Hz, 2H), 2.06-1.95 (m, 2H), 1.78-1.71 (m, 2H), 1.69-1.61 (m, 2H), 1.47-1.39 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 173.6, 113.0, 60.2, 39.1, 34.2, 28.8, 27.9, 24.5, 19.7, 14.2. IR (film) 2937, 2865, 1730, 1658, 1562, 1373, 1174, 1135, 1029, 822, 732, 695. HRMS (EI) Calcd for C₁₄H₂₂O₄S₂ 318.0960, Found 318.0956.

The reaction of 3-methyl-2,4-pentanedione (0.22 mmol, 1.1 equivalents, 25.1 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg)

in DCE (0.25 mL) at r.t. for 22 hours afforded compound **3d** in 47% yield (27.6 mg) as a white solid according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 3.89 (s, 2H), 2.26 (s, 6H), 1.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 141.9, 132.4, 130.1, 118.6, 111.5, 73.7, 42.8, 26.8, 19.2. IR (film) 2980, 2905, 2228, 1690, 1447, 1253, 1073, 893, 757, 640. HRMS (EI) Calcd for C₁₄H₁₅NO₂S₂ 293.0544, Found 293.0549.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeOpyridine (0.01 mmol, 5 mol%, 1.1 mg), $C_6H_4CH_2CH_2SSOMe$ (0.2 mmol, 1 equivalent, 42.3 mg) in

DCE (0.25 mL) at r.t. for 22 hours afforded compound **3e** in 67% yield (40.1 mg) as a colorless oil according to the general procedure A. ¹**H NMR** (400 MHz, CDCl₃) δ 17.05 (s, 1H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.26-7.17 (m, 3H), 3.03 (s, 4H), 2.49 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.3, 139.6, 128.6, 128.5, 126.6, 107.7, 38.8, 35.7, 24.8. **IR** (film) 2977, 2908, 1560, 1400, 1254, 1049, 907, 750, 701, 655. **HRMS** (EI) Calcd for C₁₃H₁₆O₂S₂ 268.0592, Found 268.0591.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg),

EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in DCE (0.25 mL) at r.t. for 22 hours afforded compound **3f** in 80% yield (44.5 mg) as a colorless oil according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 17.01 (s, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.78 (t, *J* = 7.1 Hz, 2H), 2.45 (s, 6H), 2.41 (t, *J* = 7.3 Hz, 2H), 2.03 (p, *J* = 7.1 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 172.7, 107.5, 60.4, 36.4, 32.6, 24.7, 24.3, 14.2. IR (film) 2980, 2914, 1732, 1564, 1406, 1120, 1041, 908, 790, 653. HRMS (EI) Calcd for C₁₁H₁₈O₄S₂ 278.0647, Found 278.0652.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeOpyridine (0.01 mmol, 5 mol%, 1.1 mg), EtO₂C(CH₂)₅SSOMe (0.2 mmol, 1 equivalent, 47.7 mg)

in DCE (0.25 mL) at r.t. for 22 hours afforded compound **3g** in 84% yield (46.8 mg) as a colorless oil according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 17.00 (s, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.74 (t, *J* = 7.2 Hz, 2H), 2.44 (s, 6H), 2.28 (t, *J* = 7.4 Hz, 2H), 1.74-1.67 (m, 2H), 1.67-1.58 (m, 2H), 1.44-1.37 (m, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 173.4, 107.7, 60.2, 37.2, 34.0, 28.8, 28.0, 24.7, 24.4, 14.2. **IR** (film) 2936, 1733, 1568, 1425, 1182, 987, 915, 732, 653. **HRMS** (EI) Calcd for C₁₃H₂₂O₄S₂ 306.0960, Found 306.0957.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeOpyridine (0.01 mmol, 5 mol%, 1.1 mg), $C_6H_5CCCH_2SSOMe$ (0.2 mmol, 1 equivalent, 42.1 mg) in

DCE (0.25 mL) at r.t. for 22 hours afforded compound **3h** in 44% yield (24.5 mg) as a colorless oil according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 17.10 (s, 1H), 7.43-7.40 (m, 2H), 7.34-7.29 (m, 3H), 3.76 (s, 2H), 2.53 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 131.7, 128.4, 128.3, 122.6, 107.1, 84.7, 84.5, 26.8, 24.8. IR (film) 2977, 2904, 2189, 1696, 1573, 1404, 1226, 1067, 891, 756, 692. HRMS (EI) Calcd for C₁₄H₁₄O₂S₂ 278.0435, Found 278.0428.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg), RSSOMe (0.2 mmol, 1 equivalent, 84.9 mg) in DCE (0.25 mL) at r.t. for 22 hours afforded

compound **3i** in 75% yield (73.8 mg) as a colorless oil according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 17.01 (s, 1H), 5.85 (d, J = 3.6 Hz, 1H), 5.25 (s, 1H), 4.46 (d, J = 3.6 Hz, 1H), 4.16 (s, 2H), 4.07-4.05 (m, 1H), 3.99 (d, J = 6.4 Hz, 1H), 2.78 (t, J = 6.8 Hz, 2H), 2.50-2.36 (m, 8H), 2.13-2.00 (m, 2H), 1.49 (s, 3H), 1.37 (s, 3H), 1.28 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 171.3, 112.2, 109.3, 107.5, 105.0, 83.3, 79.8, 76.1, 72.4, 67.3, 36.2, 32.4, 26.8, 26.6, 26.1, 25.2, 24.7, 24.1. IR (film) 2980,2901, 1744, 1566, 1405, 1379, 1253, 1070, 887, 847, 738, 639. HRMS (EI) Calcd for C₂₁H₃₂O₉S₂ 492.1488, Found 492.1483.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg), RSSOMe (0.2 mmol, 1 equivalent, 134.2 mg) in DCE (0.25 mL) at r.t. for 22 hours afforded

compound **3j** in 81% yield (119.6 mg) as a white solid according to the general procedure A. ¹H NMR (400 MHz, CDCl₃) δ 16.93 (s, 1H), 7.94 (d, J = 7.5 Hz, 2H), 7.90 (d, J = 7.5 Hz, 2H), 7.79 (d, J = 7.5 Hz, 2H), 7.49-7.31 (m, 5H), 7.29-7.17 (m, 4H), 5.79-5.75 (m, 2H), 5.52 (d of ABq, J = 10.5, 3.4 Hz, 1H), 5.14 (d, J = 3.3 Hz, 1H), 4.45-4.40 (m, 2H), 4.31-4,26 (m, 1H), 3.37 (s, 3H), 2.53 (dt, J = 17.8, 7.1 Hz, 4H), 2.31 (s, 6H), 2.00-1.86 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 171.7, 165.9, 165.8, 165.3, 133.3, 133.2, 129.7, 129.6, 129.4, 129.4, 129.1, 129.1, 128.4, 128.3, 107.4, 97.5, 68.8, 68.5, 68.3, 66.4, 62.1, 55.6, 35.9, 32.1, 24.6, 24.6, 24.1. IR (film) 2977, 2907, 1723, 1597, 1449, 1404, 1261, 1067, 902, 709. HRMS (EI) Calcd for C₃₇H₃₈O₁₂S₂ 738.1805, Found 738.1799.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1

mg), RSSOMe (0.2 mmol, 1 equivalent, 85.3 mg) in DCE (0.25 mL) at r.t. for 22 hours afforded compound **3k** in 60% yield (59.3 mg) as a white solid according to the general procedure A. ¹**H NMR** (400 MHz, CDCl₃) δ 17.09 (s, 1H), 5.24-5.18 (m, 2H), 5.09 (t, J = 9.4 Hz, 1H), 4.65 (d, J = 9.3 Hz, 1H), 4.28 (d of ABq, J = 12.6, 4.6 Hz, 1H), 4.06 (d, J = 11.3 Hz, 1H), 3.73 (dd, J = 10.0, 2.6 Hz, 1H), 2.49 (s, 6H), 2.09 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.6, 170.5, 170.1, 169.3, 169.1, 107.5, 87.5, 76.6, 73.8, 69.6, 67.8, 61.9, 24.9, 20.7, 20.6, 20.5(3), 20.5(0). **IR** (film) 2996, 2954, 2895, 1745, 1567, 1370, 1213, 1083, 1052, 1032, 907, 733, 674. **HRMS** (ESI) Calcd for C₁₉H₂₆O₁₁S₂ (M+Na⁺) 517.0809, Found 517.0809.

The reaction of acetylacetone (0.22 mmol, 1.1 equivalents, 22 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-MeOpyridine (0.01 mmol, 5 mol%, 1.1 mg), RSSOMe (0.2 mmol, 1 equivalent, 59.5 mg) in DCE (0.25 mL) at r.t. for

22 hours afforded compound **3l** in 60% yield (58.4 mg) as a colorless oil according to the general procedure A. ¹**H NMR** (400 MHz, CDCl₃) δ 17.07 (s, 1H), 5.30 (d, *J* = 6.9 Hz, 1H), 4.66 (d, *J* = 5.5 Hz, 1H), 3.76 (s, 3H), 3.25 (dd, *J* = 13.8, 4.4 Hz, 1H), 3.13 (dd, *J* = 13.8, 5.5 Hz, 1H), 2.45 (s, 6H), 1.43 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.6, 171.0, 155.0, 107.5, 80.3, 53.1, 52.7, 40.4, 28.2, 24.8. **IR** (film)3373, 2939, 1756, 1682, 1516, 1363, 1289, 1216, 1163, 1022, 976, 868, 781, 709. **HRMS** (EI) Calcd for C₁₄H₂₃NO₆S₂ 365.0967, Found 365.0965.

The reaction of 1,3,5-trimethoxybenzene (0.3mmol, 1.5 equivalents, 50.5 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1

equivalent, 42.3 mg) in toluene (0.5 mL) at 0 °C for 24 hours afforded compound **4a** in 70% yield (48.6 mg) as a white solid according to the general procedure B. ¹H **NMR** (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.3 Hz, 2H), 6.13 (s, 2H), 4.03 (s, 2H), 3.87 (s, 6H), 3.84 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 163.1, 162.2, 144.1, 132.1, 129.8, 119.0, 110.7, 104.4, 91.1, 56.2, 56.2, 55.5, 43.0. **IR** (film) 2967, 2925, 2225, 1580, 1451, 1407, 1227, 1120, 1081, 841, 808, 646. **HRMS** (EI) Calcd for C₁₇H₁₇NO₃S₂ 347.0650, Found 347.0645.

The reaction of 1,3-dimethoxy-5-methylbenzene (0.3mmol, 1.5 equivalents, 45.7 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), RSSOMe (0.2 mmol, 1 equivalent, 85.3 mg) in toluene (0.5 mL)

at r.t. for 60 hours afforded compound **4b** in 48% yield (52.5 mg) as a white solid according to the general procedure B. ¹H NMR (400 MHz, CDCl₃) δ 6.39 (d, J = 2.4 Hz, 1H), 6.32 (d, J = 2.4 Hz, 1H), 5.24-5.13 (m, 2H), 5.08 (t, J = 9.6 Hz, 1H), 4.84 (d, J = 9.8 Hz, 1H), 4.21 (d of ABq, J = 12.3, 4.8 Hz, 1H), 4.02 (d of ABq, J = 12.3, 2.4 Hz, 1H), 3.90 (s, 3H), 3.79 (s, 3H), 3.70 (ddd, J = 10.0, 4.7, 2.4 Hz, 1H), 2.52 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H), 1.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.2, 161.9, 161.6, 145.3, 115.4, 107.2, 96.7, 89.8, 76.2, 74.0, 70.0, 68.3, 62.2, 56.1, 55.3, 21.9, 20.7, 20.5(9), 20.5(6), 20.4(6). IR (film) 2977, 2903, 1750, 1588, 1455, 1375, 1223, 1048, 907, 811, 733. HRMS (EI) Calcd for C₂₃H₃₀O₁₁S₂ 546.1230, Found 546.1238.

The reaction of (+)-d-tocopherol (0.3mmol, 1.5 equivalents, 120.8 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), RSSOMe (0.2 mmol, 1 equivalent, 85.3 mg) in toluene (0.5 mL) at r.t. for 60 hours afforded compound **4c** in 40% yield (63.7

mg) as a white solid according to the general procedure B. ¹H NMR (400 MHz, CDCl₃) δ 6.66 (s, 1H), 6.45 (s, 1H), 5.26-5.10 (m, 3H), 4.56 (d, J = 9.6 Hz, 1H), 4.29-4.18 (m, 2H), 3.86-3.82 (m, 1H), 3.01-2.77 (m, 2H), 2.14 (s, 3H), 2.11 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 2.00 (s, 3H), 1.84-1.72 (m, 2H), 1.57-1.46 (m, 3H), 1.42-1.32 (m, 4H), 1.31-1.19 (m, 10H), 1.18-0.99 (m, 7H), 0.90-0.79 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.1, 169.3, 169.2, 151.1, 146.3, 132.4, 124.3, 115.6, 115.0, 84.4, 76.6, 75.2, 73.7, 70.1, 68.2, 61.9, 39.9, 39.4, 37.5(1), 37.4(5), 37.4, 37.3, 32.8, 32.7, 31.3, 28.0, 24.8, 24.4, 23.7, 22.7, 22.6, 22.2, 21.0, 20.7(1) 20.7(0), 20.6, 19.7, 19.6, 16.5(1), 16.4(9). **IR** (film) 3449, 2958, 2929, 1752, 1458, 1372, 1217, 1048, 911, 734, 646. **HRMS** (EI) Calcd for C₄₁H₆₄O₁₁S₂ 796.3890, Found 796.3884.

The reaction of (+)-d-tocopherol (0.3mmol, 1.5 equivalents, 120.8 mg), $B(C_6F_5)_3$ (0.01 mmol, 5 mol%, 5.2 mg), RSSOMe (0.2 mmol, 1 equivalent, 47.9 mg) in toluene (0.5 mL) at r.t. for 60 hours afforded compound **4d** in 53% yield (64.5 mg) as

a white solid according to the general procedure B. ¹H NMR (400 MHz, CDCl₃) δ 6.69 (s, 1H), 6.64-6.15 (m, 2H), 4.95 (dt, J = 10.3, 5.1 Hz, 1H), 3.79 (s, 3H), 3.34-3.23 (m, 2H), 2.90-2.85 (m, 2H), 2.14 (s, 3H), 2.03 (s, 3H), 1.84-1.73 (m, 2H), 1.56-1.02 (m, 24H), 0.90-0.76 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.3, 150.6, 146.4, 131.9, 123.9, 116.1, 115.6, 75.2, 52.9, 52.4, 40.4, 40.0, 39.3, 37.4, 37.3(8), 37.3, 32.8, 32.7, 31.3, 27.9, 24.8, 24.4, 23.7, 23.1, 22.7, 22.6, 22.0, 20.9, 19.7, 19.6, 16.5, 16.4(5). **IR** (film) 3299, 2978, 2902, 1747, 1462, 1555, 1446, 1406, 1253, 1957, 874, 754, 648. **HRMS** (EI) Calcd for C₃₃H₅₅NO₅S₂ 609.3522, Found 609.3527.

The reaction of indole (0.3 mmol, 1.5 equivalents), MeSO₃H (0.02 mmol, 10 mol%, 2.0 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound **5a** in 78% yield (46.0 mg) as

a white solid according to the general procedure C₁. ¹**H** NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.83-7.81 (m, 1H), 7.38-7.34 (m, 2H), 7.27-7.21 (m, 2H), 4.12 (q, J =7.1 Hz, 2H), 2.76 (t, J = 7.0 Hz, 2H), 2.41 (t, J = 7.3 Hz, 2H), 2.10 (p, J = 7.2 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 136.3, 130.1, 128.6, 123.2, 121.1, 119.5, 111.6, 108.1, 60.4, 37.6, 32.8, 23.8, 14.3. **IR** (film) 3398, 2926, 1714, 1497, 1453, 1410, 1375, 1340, 1277,1211, 1131, 1095, 1035, 745. **HRMS** (EI) Calcd for C₁₅H₁₉NO₂S₂ 295.0701, Found 295.0705.

The reaction of 2-methylindole (0.3 mmol, 1.5 equivalents, 39.4 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound

5b in 80% yield (49.2 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, DMSO-d₆) δ 7.93 (d, J = 1.6 Hz, 1H), 7.73 (d, J = 2.7 Hz, 1H), 7.46 (dd, J = 8.5, 1.7 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 3.32 (s, 3H), 2.74 (t, J = 7.3 Hz, 2H), 2.37 (t, J = 7.3 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ 172.3, 135.6, 133.1, 130.9, 130.2, 126.8, 114.7, 103.9, 84.3, 59.8, 36.6, 32.0, 23.6, 14.1. **IR** (film) 3305, 2927, 1707, 1539, 1449, 1399, 1309, 1226, 1183, 1020, 859, 744, 674. **HRMS** (EI) Calcd for C₁₅H₁₉NO₂S₂ 309.0857, Found 309.0851.

The reaction of 7-methylindole (0.3 mmol, 1.5 equivalents, 39.4 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound **5c**

in 71% yield (43.9 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 2.6 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.1 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.78 (t, *J* = 7.0 Hz, 2H), 2.48 (s, 3H), 2.43 (t, *J* = 7.3 Hz, 2H), 2.12 (p, *J* = 7.2 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.2, 135.8, 129.9, 128.2, 123.6, 121.1, 120.8, 117.1, 108.3, 60.4, 37.5, 32.8, 23.8, 16.4, 14.2. **IR** (film) 3303, 2929, 1718, 1612, 1497, 1417, 1375, 1346, 1213, 1178, 1031, 779, 747, 666. HRMS (EI) Calcd for C₁₅H₁₉NO₂S₂ 309.0857, Found 309.0862.

The reaction of 4-benzyloxyindole (0.3 mmol, 1.5 equivalents, 67.0 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound **5d**

in 75% yield (60.1 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.59 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.29 (d, J = 7.3 Hz, 1H), 7.22 (d, J = 4.5 Hz, 1H), 7.08 (t, J = 7.9 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 5.23 (s, 2H), 4.06 (q, J = 7.1 Hz, 2H), 2.71 (t, J = 7.0 Hz, 2H), 2.29 (t, J = 7.3 Hz, 2H), 2.03 - 1.68 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 153.4, 138.4, 137.3, 128.9, 128.4, 127.5, 127.1, 123.9, 117.7, 107.5, 105.1, 102.7, 70.1, 60.3, 36.5, 32.7, 24.1, 14.2. **IR** (film) 3376, 2982, 1726, 1583, 1508, 1314, 1247, 1087, 778, 736, 696. **HRMS** (EI) Calcd for C₂₁H₂₃NO₃S₂ 401.1119, Found 401.1124.

The reaction of 7-benzyloxyindole (0.3 mmol, 1.5 equivalents, 67.0 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound **5**e

in 85% yield (68.2 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.70 - 7.32 (m, 7H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.78 (d, *J* = 7.7 Hz, 1H), 5.20 (s, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.77 (t, *J* = 7.0 Hz, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 2.11 (p, *J* = 7.2 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 145.5, 136.7, 130.1, 129.6, 128.6, 128.2, 127.8, 127.0, 121.4, 112.3, 108.3, 104.1, 70.3, 60.4, 37.5, 32.7, 23.7, 14.2. **IR** (film) 3395, 2983, 1719, 1579, 1410, 1310, 1252, 1081, 1006, 855, 780, 735, 696. **HRMS** (EI) Calcd for C₂₁H₂₃NO₃S₂ 401.1119, Found 401.1127.

The reaction of 5-methoxyindole (0.3 mmol, 1.5 equivalents, 44.2 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1

mg) in *t*-AmylOH (0.5 mL) at 0 °C for 5 hours afforded compound **5f** in 77% yield (49.9 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.36 (d, *J* = 2.7 Hz, 1H), 7.25-7.23 (m, 2H), 6.90 (dd, *J* = 8.8, 2.5 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 2.77 (t, *J* = 7.0 Hz, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 2.11 (p, *J* = 7.2 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.2, 155.1, 131.2, 130.8, 129.2, 113.5, 112.5, 107.0, 100.7, 60.4, 55.8, 37.3, 32.7, 23.7, 14.2. **IR** (film) 3348, 2982, 1716, 1485, 1287, 1206, 1169, 1033, 747, 630. **HRMS** (EI) Calcd for C₁₅H₁₉NO₃S₂ 325.0806, Found 325.0811.

The reaction of 5-fluoroindole (0.3 mmol, 1.5 equivalents, 40.6 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound

5g in 68% yield (42.6 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, DMSO-d₆) δ 7.79 (d, *J* = 2.7 Hz, 1H), 7.45 (dd, *J* = 8.8, 4.4 Hz, 1H), 7.33 (dd, *J* = 9.5, 2.5 Hz, 1H), 7.04 (td, *J* = 9.2, 2.6 Hz, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.86 - 2.50 (m, 2H), 2.37 (t, *J* = 7.2 Hz, 2H), 1.96 (p, *J* = 7.3 Hz, 2H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹⁹**F** NMR (376 MHz, DMSO-d₆) δ -123.02. ¹³**C** NMR (100 MHz, DMSO-d₆) δ 172.3, 157.8 (d, ¹*J* _{*C-F*} = 234.0 Hz), 134.1, 133.0, 129.0 (d, ³*J* _{*C-F*} = 10.0 Hz), 113.5 (d, ³*J* _{*C-F*} = 9.7 Hz), 110.5 (d, ²*J* _{*C-F*} = 26.1 Hz), 104.8 (d, ⁴*J* _{*C-F*} = 4.7 Hz, 3H), 103.1 (d, ²*J* _{*C-F*} = 23.9 Hz), 59.8, 36.7, 32.0, 23.7, 14.0. **IR** (film) 3320, 2934, 1725, 1484, 1457, 1278, 1156, 1026, 929, 855, 800, 621. **HRMS** (EI) Calcd for C₁₄H₁₆FNO₂S₂ 313.0607, Found 313.0607.

The reaction of 5-chloroindole (0.3 mmol, 1.5 equivalents, 44.2 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded

compound **5h** in 62% yield (40.8 mg) as a white solid according to the general procedure C₁. ¹H NMR (400 MHz, DMSO-d₆) δ 11.81 (s, 1H), 7.80 (s, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.20 (dd, J = 8.6, 2.1 Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 2.87 - 2.66 (m, 2H), 2.37 (t, J = 7.3 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 172.3, 134.9, 133.8, 129.5, 125.1, 122.3, 117.5, 114.0, 104.4, 59.8, 36.7, 32, 23.6, 14.0. IR (film) 3264, 2990, 1695, 1408, 1315, 1230, 1187, 1103, 1018, 866, 799, 703. HRMS (EI) Calcd for C₁₄H₁₆CINO₂S₂ 329.0311, Found 329.0313.

The reaction of 6-chloroindole (0.3 mmol, 1.5 equivalents, 44.2 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded

compound **5i** in 63% yield (41.5 mg) as a white solid according to the general procedure C₁. ¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.52 - 7.29 (m, 2H), 7.20 (d, *J* = 8.2 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.76 (t, *J* = 7.0 Hz, 2H), 2.41 (t, *J* = 7.2 Hz, 2H), 2.29 - 1.90 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 173.2, 136.6, 130.6, 129.0, 127.1, 121.7, 120.4, 111.6, 108.2, 60.5, 37.5, 32.7, 23.7, 14.2. **IR** (film) 3264, 2925, 1705, 1308, 1220, 1176, 1176, 1012, 903, 852, 807, 780, 695. **HRMS** (EI) Calcd for C₁₄H₁₆ClNO₂S₂ 329.0311 Found 329.0310.

The reaction of 7-chloroindole (0.3 mmol, 1.5 equivalents, 44.2 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound 5j

in 68% yield (44.8 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.50 (d, *J* = 2.6 Hz, 1H), 7.28 - 7.22 (m, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.77 (t, *J* = 7.1 Hz, 2H), 2.41 (t, *J* = 7.2 Hz, 2H), 2.10 (p, *J* = 7.2 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 133.5, 130.5, 130.0, 122.5, 121.8, 118.2, 117.0, 109.4, 60.4, 37.5, 32.6, 23.7, 14.2. **IR** (film) 3317, 2923, 1705, 1411, 1220, 1194, 1135, 1024, 835, 776, 734, 685. **HRMS** (EI) Calcd for C₁₄H₁₆ClNO₂S₂ 329.0311, Found 329.0314.

The reaction of 4-bromoindole (0.3 mmol, 1.5 equivalents, 58.9 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded compound

5k in 63% yield (47.1 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, DMSO-d₆) δ 11.92 (s, 1H), 7.80 (d, J = 2.8 Hz, 1H), 7.47 (dd, J = 8.1, 0.7 Hz, 1H), 7.30 (dd, J = 7.6, 0.7 Hz, 1H), 7.07 (t, J = 7.9 Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 2.74 (t, J = 7.2 Hz, 2H), 2.37 (t, J = 7.3 Hz, 2H), 1.98 (p, J = 7.3 Hz, 2H), 1.16 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ 172.3, 137.9, 134.6, 124.7, 124.7, 123.3, 113.2, 112.1, 105.2, 59.8, 35.2, 32.1, 24.0, 14. **IR** (film) 3100, 2933, 1725, 1436, 1306, 1183, 1001, 911, 776, 739. **HRMS** (EI) Calcd for C₁₄H₁₆BrNO₂S₂ 372.9806, Found 372.9804.

The reaction of 5-bromoindole (0.3 mmol, 1.5 equivalents, 58.9 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded

compound **51** in 58% yield (43.4 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, DMSO-d₆) δ 11.82 (s, 1H), 7.79 (d, J = 2.7 Hz, 1H), 7.74 (d, J = 1.8 Hz, 1H), 7.44-7.42 (m, 1H), 7.33 - 7.26 (m, 1H), 4.05 (q, J = 7.1

Hz, 2H), 2.74 (t, J = 7.2 Hz, 2H), 2.37 (t, J = 7.3 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, DMSO-d₆) δ 172.3, 135.2, 133.6, 130.1, 124.8, 120.6, 114.4, 113, 104.3, 59.8, 36.6, 32.0, 23.6, 14.0. IR (film) 3154, 2931, 1726, 1450, 1292, 1106, 1025, 881, 799, 756. HRMS (EI) Calcd for C₁₄H₁₆BrNO₂S₂ 372.9806, Found 372.9809.

The reaction of 5-iodoindole (0.3 mmol, 1.5 equivalents, 72.9 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded

compound **5m** in 53% yield (44.6 mg) as a white solid according to the general procedure C₁. ¹**H NMR** (400 MHz, DMSO-d₆) δ 11.78 (s, 1H), 7.93 (d, *J* = 1.6 Hz, 1H), 7.73 (d, *J* = 2.7 Hz, 1H), 7.46 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 2.74 (t, *J* = 7.2 Hz, 2H), 2.37 (t, *J* = 7.3 Hz, 2H), 1.96 (p, *J* = 7.3 Hz, 2H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ 172.3, 135.5, 133.1, 130.9, 130.2, 126.8, 114.7, 103.9, 84.3, 59.8, 36.6, 32.0, 23.6, 14.1. **IR** (film) 3328, 2935, 1724, 1446, 1292, 1208, 1136, 1027, 876, 797. **HRMS** (EI) Calcd for C₁₄H₁₆INO₂S₂ 420.9667, Found 420.9673.

The reaction of indole-4-carboxaldehyde (0.3 mmol, 1.5 equivalents, 43.6 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 24 hours afforded

compound **5n** in 39% yield (25.2 mg) as a white solid according to the general procedure C₁. ¹H NMR (400 MHz, CDCl₃) δ 11.44 (s, 1H), 9.20 (s, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.72 - 7.57 (m, 2H), 7.34 (t, J = 7.7 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.40 (t, J = 7.2 Hz, 2H), 2.06 (p, J = 7.3 Hz, 2H), 1.24 (t, J = 7.1 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 173.2, 138.2, 133.8, 130.1, 127.4, 122.8, 121.2, 117.9, 106.3, 60.5, 36.2, 32.6, 23.8, 14.2. **IR** (film) 3314, 2932, 1728, 1673, 1609, 1414, 1386, 1345, 1259, 1210, 1126, 1035, 998, 792, 748. **HRMS** (EI) Calcd for C₁₅H₁₇NO₃S₂ 323.0650, Found 323.0655.

The reaction of indole (0.22 mmol, 1.1 equivalents, 25.8 mg), $B(C_6F_5)_3$ (0.002 mmol, 1 mol%, 1 mg), 4-NCC₆H₄SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.25 mL) at 0 °C for 24 hours afforded

compound **50** in 86% yield (51.0 mg) as a white solid according to the general procedure C₂. ¹H NMR (400 MHz, DMSO-d₆) δ 11.65 (s, 1H), 7.79 (d, *J* = 6.8 Hz, 2H), 7.70 - 7.60 (m, 2H), 7.57 (d, *J* = 6.8 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.26 - 7.03 (m, 2H), 4.04 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 144.8, 137.5, 133.4, 133.2, 131.4, 129.2, 123.3, 121.2, 119.9, 119.5, 113.3, 110.8, 104.9, 42.1. **IR** (film) 3311, 2985, 2903, 2232, 1408, 1234, 1058, 868, 827, 772, 654. **HRMS** (EI) Calcd for C₁₆H₁₂N₂S₂ 296.0442, Found 296.0449.

The reaction of indole (0.22 mmol, 1.1 equivalents, 25.8 mg), $B(C_6F_5)_3$ (0.002 mmol, 1 mol%, 1 mg), 4-NO₂C₆H₄SSOMe (0.2 mmol, 1 equivalent, 46.3 mg) in toluene (0.25 mL) at 0 °C for 24 hours afforded

compound **5p** in 99% yield (64.5 mg) as a white solid according to the general procedure C₂. ¹**H NMR** (400 MHz, DMSO-d₆) δ 11.63 (s, 1H), 8.17 (d, J = 8.5 Hz, 2H), 7.71-7.53 (m, 4H), 7.44 (d, J = 8.0 Hz, 1H), 7.25-7.07 (m, 2H), 4.10 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ 146.47, 145.98, 136.41, 132.31, 130.51, 128.15, 123.35, 122.21, 120.20, 118.40, 112.22, 103.87, 40.8. **IR** (film) 3391, 2980, 2901, 1448, 1403, 1203, 1054, 891, 749. **HRMS** (EI) Calcd for C₁₅H₁₂N₂O₂S₂ 316.0340, Found 316.0339.

The reaction of indole (0.22 mmol, 2.2 equivalentss, 25.8 mg), B(C₆F₅)₃
(0.002 mmol, 2 mol%, 1 mg), 4-MeOCH₂SSC₆H₄C₆H₄C₆H₄CH₂SSOMe
(0.1 mmol, 1 equivalent, 37.1 mg) in

toluene (0.25 mL) at 0 °C for 24 hours afforded compound **5q** in 35% yield (20 mg) as a white solid according to the general procedure C₂. ¹H NMR (400 MHz, DMSO-d₆) δ 11.62 (s, 2H), 7.73-7.58 (m, 8H), 7.46-7.42 (m,, 6H), 7.22-7.13 (m, 4H), 4.06 (s, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 138.7, 136.7, 136.5, 132.2, 129.9, 128.3,

126.6, 122.2(0), 120.2(2), 118.5, 112.3, 104.6, 41.9. **IR** (film) 3443, 3372, 2986, 2901, 1495, 1453, 1431, 1243, 1052, 874, 814, 750, 624. **HRMS** (ESI) Calcd for $C_{30}H_{24}N_2S_4$ (M+Na⁺) 563.0715, Found 563.0712.

The reaction of indole (0.22 mmol, 1.1 equivalents, 25.8 mg), $B(C_6F_5)_3$ (0.004 mmol, 2 mol%, 2.1 mg), RSSOMe (0.2 mmol, 1 equivalent, 85.3 mg) in toluene (0.25 mL) at r.t. for 24 hours afforded

compound **5r** in 94% yield (96 mg) as a white solid according to the general procedure C₂. ¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (s, 1H), 7.92-7.66 (m, 1H), 7.44 (d, J = 1.4 Hz, 1H), 7.34-7.33 (m, 1H), 7.26-7.14 (m, 2H), 5.30-5.18 (m, 2H), 5.17-5.09 (m, 1H), 4.77-4.61 (m, 1H), 4.22 (d of ABq, J = 12.4, 4.4 Hz, 1H), 3.94 (d, J = 12.1 Hz, 1H), 3.83-3.60 (m, 1H), 2.01 (s, 6H), 1.98 (s, 3H), 1.75 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.6, 170.1, 169.4, 169.3, 136.0, 131.4, 128.5, 123.0, 120.8, 119.14, 111.7, 107.1, 88.8, 76.1, 73.8, 69.6, 68.0, 61.9, 20.6, 20.5, 20.5, 20.2. **IR** (film) 3392, 2988, 2948, 1744, 1371, 1215, 1036, 910, 744, 644. **HRMS** (EI) Calcd for C₂₂H₂₅NO₉S₂ 511.0971, Found 511.0977.

The reaction of indole (0.22 mmol, 1.1 equivalents, 25.8 mg), $B(C_6F_5)_3$ (0.004 mmol, 2 mol%, 2.1 mg), RSSOMe (0.2 mmol, 1 equivalent, 134.2 mg) in toluene (0.25 mL) at 0 °C for 24 hours afforded compound **5s** in 67% yield (104.2 mg) as a white

solid according to the general procedure C₂. ¹**H** NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.95 - 7.86 (m, 4H), 7.74 - 7.66 (m, 3H), 7.46-7.38 (m, 2H), 7.33 - 7.20 (m, 7H), 7.15 - 7.07 (m, 4H), 5.74 (d of ABq, J = 10.7, 3.4 Hz, 1H), 5.66 (d, J = 3.1 Hz, 1H), 5.47 (d of ABq, J = 10.7, 3.6 Hz, 1H), 5.11 (d, J = 3.5 Hz, 1H), 4.40-4.35 (m, 2H), 4.23-4.17 (m, 1H), 3.34 (s, 3H), 2.63-2.50 (m, 2H), 2.35 (t, J = 7.4 Hz, 2H), 1.99-1.85 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 172.2, 166.2, 166.1(5), 165.5, 136.4, 133.4, 133.3, 133.2(9), 130.2, 129.8, 129.7, 129.4(4), 129.4(0), 129.1, 129.0, 128.6, 128.5, 128.4(3), 128.4, 123.0, 120.9, 119.4, 111.7, 107.6, 97.5, 69.0, 68.5, 68.3, 66.6, 62.5, 55.7, 37.6, 32.4, 23.6. **IR** (film) 3408, 2980, 2904, 1720, 1450, 1404, 1258, 1069, 899, 744, 707. **HRMS** (ESI) Calcd for C₄₀H₃₇NO₁₀S₂ (M+Na⁺) 778.1751, Found 778.1754.

The reaction of indole (0.22 mmol, 1.1 equivalents, 25.8 mg), $B(C_6F_5)_3$ (0.004 mmol, 2 mol%, 2.1 mg), RSSOMe (0.2 mmol, 1 equivalent, 47.9 mg) in toluene (0.25 mL) at r.t. for 24 hours afforded compound **5t** in 95% yield (61.5

mg) as a white solid according to the general procedure C₂. ¹H NMR (400 MHz, CDCl₃) δ 9.11 (brs, 1H), 7.82-7.80 (m, 1H), 7.43 (m, 2H), 7.28 - 7.17 (m, 1H), 6.45 (s, 1H), 4.94 (dt, *J* = 7.3, 5.3 Hz, 1H), 3.73 (s, 3H), 3.32 - 3.15 (m, 2H), 1.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.3, 136.6, 130.9, 128.2, 123.2, 121.1, 119.3, 111.9, 106.4, 52.7, 51.7, 39.7, 22.9. **IR** (film) 3379, 3266, 2982, 2906, 1738, 1657, 1519, 1408, 1372, 1217, 1037, 907, 831, 737. **HRMS** (EI) Calcd for C₁₄H₁₆N₂O₃S₂ 324.0602, Found 324.0606.

The reaction of indole (0.22 mmol, 1.1 equivalents, 25.8 mg), $B(C_6F_5)_3$ (0.004 mmol, 2 mol%, 2.1 mg), RSSOMe (0.2 mmol, 1 equivalent, 59.5 mg) in toluene (0.25 mL) at 0 °C for 24 hours afforded compound **5u** in 89% yield (68

mg) as a white solid according to the general procedure C₂. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (brs, 1H), 7.71-7.69 (m, 1H), 7.33 (d, *J* = 1.9 Hz, 1H), 7.27-7.25 (m, 1H), 7.15 - 7.08 (m, 2H), 5.25 (d, *J* = 6.9 Hz, 1H), 4.58 (d, *J* = 6.5 Hz, 1H), 3.60 (s, 3H), 3.09-2.89 (m, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 155.2, 136.5, 130.6, 128.4, 123.3, 121.2, 119.5, 111.7, 107.0, 80.2, 52.9, 52.6, 40.2, 28.3. IR (film) 3380, 2974, 2900, 1736, 1650, 1407, 1253, 1067, 892, 750. HRMS (EI) Calcd for C₁₇H₂₂N₂O₄S₂ 382.1021, Found 382.1017.

The reaction of 2,4-dimethylpyrrole (0.3 mmol, 1.5 equivalents, 28.6 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent,

42.1 mg) in *t*-AmylOH (0.5 mL) at 0 °C for 5 hours afforded compound **5v** in 62% yield (33.7 mg) as a colorless oil according to the general procedure C₁. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 5.78 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.76 (t, *J* = 7.2 Hz, 2H), 2.45 (t, *J* = 6.7 Hz, 2H), 2.33 - 1.91 (m, 8H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 131.7, 128.0, 115.3, 109.6, 60.6, 36.7, 32.5, 23.8,

14.2, 13.2, 11.8. **IR** (film) 3340, 2921, 1729, 1560, 1444, 1374, 1293, 1204, 1135, 1034, 858, 792. **HRMS** (EI) Calcd for C₁₂H₁₉NO₂S₂ 273.0857, Found 273.0863.

The reaction of 2,5-dimethylpyrrole (0.3 mmol, 1.5 equivalents, 28.6 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg), EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 $^{\circ}$ C for 5 hours afforded

compound **5w** in 80% yield (43.7 mg) as a colorless oil according to the general procedure C₁. ¹**H** NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 5.92 - 5.83 (m, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.77 (t, *J* = 7.0 Hz, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 2.32 (s, 3H), 2.19 (s, 3H), 2.09 (p, *J* = 7.2 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 173.2, 131.7, 126.3, 111.0, 110.9, 60.3, 37.4, 32.9, 23.9, 14.2, 12.9, 11.4. **IR** (film) 3358, 2922, 1713, 1587, 1444, 1373, 1309, 1206, 1181, 1131, 1034, 859, 785, 647. **HRMS** (EI) Calcd for C₁₅H₂₃NO₄S₂ 273.0857, Found 273.0856.

The reaction of ethyl 3,5-dimethyl-1H-pyrrole-2carboxylate (0.3 mmol, 1.5 equivalents, 50.2 mg), MeSO₃H (0.02 mmol, 10 mol%, 2 mg),

EtO₂C(CH₂)₃SSOMe (0.2 mmol, 1 equivalent, 42.1 mg) in *t*-AmylOH (0.5 mL) at 0 ^oC for 24 hours afforded compound **5x** in 41% yield (28.3 mg) as a white solid according to the general procedure C₁. ¹H NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 4.32 (q, J = 6.9 Hz, 2H), 4.12 (q, J = 7.0 Hz, 2H), 2.72 (t, J = 6.9 Hz, 2H), 2.51 - 2.29 (m, 8H), 2.19 - 1.94 (m, 2H), 1.36 (t, J = 7.0 Hz, 3H), 1.24 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 161.7, 137.9, 131.4, 117.9, 114.8, 60.4, 60.2, 37.1, 32.7, 24.0, 14.5, 14.2, 12.1, 11.5. **IR** (film) 3270, 2981, 1728, 1665, 1434, 1376, 1276, 1206, 1129, 1078, 1019, 877, 775, 624. **HRMS** (EI) Calcd for C₁₅H₂₃NO₄S₂ 345.1069, Found 345.1073.

The reaction of pyrrole (0.22 mmol, 1.1 equivalents, 14.8 mg), $B(C_6F_5)_3$ (0.004 mmol, 2 mol%, 2.1 mg), 4-NCC₆H₄SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in

toluene (0.25 mL) at 0 °C for 24 hours afforded compound **5y** in 67% yield (33.0 mg) as a white solid according to the general procedure C₂. ¹H NMR (400 MHz, CDCl₃) δ

8.21 (brs, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 6.85 (dd, J = 4.0, 2.7 Hz, 1H), 6.35 (t, J = 3.5 Hz, 1H), 6.17 (dd, J = 5.9, 2.9 Hz, 1H), 3.98 (s, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 142.9, 132.2, 130.1, 122.6, 119.3, 118.7, 117.8, 111.1, 110.2, 42.2. **IR** (film) 3448, 2979, 2908, 2231, 1404, 1252, 1049, 873, 730, 695. **HRMS** (EI) Calcd for C₁₂H₁₀N₂S₂ 246.0285, Found 246.0283.

The reaction of aniline (0.22 mmol, 1.1 equivalents, 20.5 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded

compound **6a** in 86% yield (46.9 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.25 (t, *J* = 7.8 Hz, 2H), 7.05 - 6.81 (m, 3H), 4.72 (s, 1H), 4.08 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 143.7, 132.3, 129.8, 129.2, 121.9, 118.6, 116.9, 111.1, 42.9. **IR** (film) 3314, 2975, 2227, 1595, 1491, 1397,1285, 1225, 1073, 890, 841, 744, 686. **HRMS** (EI) Calcd for C₁₄H₁₂N₂S₂ 272.0442, Found 272.0447.

The reaction of 4-Methylaniline (0.22 mmol, 1.1 equivalents, 23.6 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24

hours afforded compound **6b** in 93% yield (53.3 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 7.90 (s, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 3H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.96 (d, *J* = 8.3 Hz, 2H), 4.17 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 144.1, 143.3, 132.3, 130.0, 129.5, 118.8, 116.5, 109.8, 40.6, 20.2. IR (film) 3311, 2922, 2228, 1603, 1504, 1458, 1283, 1224, 896, 841, 809, 740, 646. HRMS (EI) Calcd for C₁₅H₁₄N₂S₂ 286.0596, Found 286.0593.

The reaction of 4-Methoxyaniline (0.22 mmol, 1.1 equivalents, 27.1 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5
mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6c** in 82% yield (49.9 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 7.79 (d, J = 8.2 Hz, 2H), 7.75 (s, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.00 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 4.15 (s, 2H), 3.70 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 154.0, 144.2, 139.1, 132.3, 130.0, 118.8, 117.9, 114.5, 109.7, 55.2, 40.6. **IR** (film) 3314, 2949, 2834, 2228, 1605, 1504, 1463, 1280, 1222, 1029, 900, 824, 753, 655. **HRMS** (EI) Calcd for C₁₅H₁₄ON₂S₂ 302.0548, Found 302.0554.

The reaction of 4-*tert*-butylaniline (0.22 mmol, 1.1 equivalents, 32.9 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24

hours afforded compound **6d** in 92% yield (60.9 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 7.94 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.7 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 4.17 (s, 2H), 1.23 (s, 9H). ¹³C NMR (100 MHz, DMSO-d₆) δ 144.1, 143.2, 143.0, 132.2, 130.0, 125.7, 118.8, 116.1, 109.8, 40.6, 33.7, 31.3. IR (film) 3332, 2956, 2852, 2227, 1607, 1510, 1464, 1362, 1282, 1233, 1285, 998, 826, 733, 653. HRMS (EI) Calcd for C₁₈H₂₀N₂S₂ 328.1070, Found 328.1068.

The reaction of 4-chloroaniline (0.22 mmol, 1.1 equivalents, 28.1 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24

hours afforded compound **6e** in 87% yield (54 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 8.20 (s, 1H), 7.76 (s, 2H), 7.53 (s, 2H), 7.25 (s, 2H), 7.05 (s, 2H), 4.18 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 144.9, 143.9, 132.3, 130.1, 128.9, 124.3, 118.8, 117.8, 109.9, 40.7. **IR** (film) 3305, 2962, 2852, 2230, 1597, 1486, 1262, 1225, 1093, 894, 814, 737. **HRMS** (EI) Calcd for C₁₄H₁₁ClN₂S₂ 306.0051, Found 306.0052.

The reaction of 4-bromoaniline (0.22 mmol, 1.1 equivalents, 37.9 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24

hours afforded compound **6f** in 71% yield (50 mg) as a white solid according to the general procedure D. ¹**H NMR** (400 MHz, DMSO-d₆) δ 8.20 (s, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.40 (d, *J* = 8.7 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 4.20 (s, 2H). ¹³**C NMR** (100 MHz, DMSO) δ 145.3, 143.9, 132.3, 131.8, 130.1, 118.8, 118.3, 112.0, 109.9, 40.7. **IR** (film) 3300, 2960, 2850, 2231, 1587, 1482, 1226, 1072, 894, 814. **HRMS** (EI) Calcd for C₁₄H₁₁BrN₂S₂ 349.9547, Found 349.9556.

The reaction of *N*-methylaniline (0.22 mmol, 1.1 equivalents, 23.6 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24

hours afforded compound **6g** in 60% yield (35.3 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.36 - 7.25 (m, 2H), 7.26 - 7.17 (m, 2H), 7.09 - 6.83 (m, 1H), 4.11 (s, 2H), 3.15 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 149.2, 144.0, 132.4, 129.9, 128.9, 121.7, 118.7, 118.4, 109.9, 43.9, 42.3. **IR** (film) 2990, 2956, 2227, 1933, 1595, 1489, 1413, 1253, 1082, 1062, 849, 747, 683. **HRMS** (EI) Calcd for C₁₅H₁₄N₂S₂ 286.0596, Found 286.0598.

The reaction of diethylamine (0.22 mmol, 1.1 equivalents, 17.6 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent,

42.3 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6h** in 69% yield (34.7 mg) as a colorless oil according to the general procedure D. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 4.09 (s, 2H), 2.82 (q, *J* = 7.1 Hz, 4H), 1.15 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 132.4, 129.5, 118.7, 111.0, 51.3, 44.4, 13.3. IR (film) 2977, 2935, 2847, 2229, 1606, 1504, 1465, 1379, 1178, 1060, 1024, 904, 844, 841, 614. HRMS (EI) Calcd for C₁₂H₁₆N₂S₂ 252.0755, Found 252.0760.

The reaction of allylamine (0.22 mmol, 1.1 equivalents, 12.6 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg)

in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6i** in 67% yield (32.1 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 7.82 (d, J = 7.8 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 5.87-5.75 (m, 1H), 5.20 (d, J = 17.2 Hz, 1H), 5.13-5.11 (m, 2H), 4.15 (s, 2H), 3.43 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 144.5, 135.6, 132.3, 130.1, 118.8, 116.7, 109.7, 52.4, 40.6. IR (film) 3292, 2928, 2228, 1919, 1604, 1501, 1417, 1200, 1053, 991, 929, 839, 680. HRMS (EI) Calcd for C₁₁H₁₂N₂S₂ 236.0442, Found 236.0446.

The reaction of 2-propynylamine (0.22 mmol, 1.1 equivalents, 12.2 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent,

42.3 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6j** in 56% yield (26.4 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 7.80 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 5.34 (t, J = 4.6 Hz, 1H), 4.17 (s, 2H), 3.60 (dd, J = 4.6, 2.5 Hz, 2H), 3.23 (t, J = 2.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 144.3, 132.3, 130.2, 118.9, 109.7, 81.2, 74.9, 40.7, 38.6. IR (film) 3293, 2925, 2361, 2225, 1603, 1503, 1418, 1320, 1048, 838, 658. HRMS (EI) Calcd for C₁₁H₁₀N₂S₂ 234.0285, Found 234.0282.

The reaction of 8-aminoquinoline (0.22 mmol, 1.1 equivalents, 32.9 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1

equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6k** in 70% yield (38.9 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 9.35 (dd, J = 4.2, 1.7 Hz, 1H), 8.90 (s, 1H), 8.85 (dd, J = 8.3, 1.6 Hz, 1H), 8.29 (d, J = 8.3 Hz, 2H), 8.16 (d, J = 8.3 Hz, 2H), 8.10 (dd, J = 8.3, 4.2 Hz, 1H), 8.08-8.04 (m, 1H), 7.99 (dd, J = 7.6, 1.3 Hz, 1H), 7.95 (dd, J = 8.0, 1.3 Hz, 1H), 4.79 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 148.2, 144.8, 141.7, 139.1, 136.3, 132.3, 130.2, 128.3, 127.1, 122.1, 119.0, 118.8, 111.3, 109.8, 40.5. **IR** (film)

3318, 3045, 2221, 1610, 1464, 1407, 1372, 1308, 1083, 908, 840, 820, 745, 628. **HRMS** (EI) Calcd for C₁₇H₁₃N₃S₂ 323.0551, Found 323.0560.

The reaction of sulfanilamide (0.22 mmol, 1.1 equivalents, 41.1 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in CH₃CN (0.5 mL)

at r.t. for 24 hours afforded compound **6l** in 80% yield (56 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 8.55 (s, 1H), 7.82 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.32 - 7.03 (m, 4H), 4.23 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 149.1, 143.8, 135.8, 132.4, 130.1, 127.3, 118.8, 115.7, 109.9, 40.8. **IR** (film) 3292, 2918, 2232, 1593, 1496, 1334, 1246, 1152, 1093, 890, 824, 771, 649. **HRMS** (EI) Calcd for C₁₄H₁₃N₃O₂S₃ 351.0170, Found 351.0168.

The reaction of acetosulfamine (0.2 mmol, 1 equivalent, 42.9 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5 equivalents, 70.9 mg) in DMF (0.5 mL) at r.t. for 24

hours afforded compound **6m** in 80% yield (67 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 11.84 (brs, 1H), 8.64 (s, 1H), 7.76 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 2.91 (t, J = 7.3 Hz, 2H), 1.89 (s, 3H), 1.72-1.58 (m, 2H), 1.33-1.19 (m, 14H), 0.85 (t, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 168.4, 151.2, 129.8, 129.3, 115.2, 38.1, 31.2, 29.1, 28.9, 28.6, 28.5, 27.8, 23.1, 22.0, 13.9. **IR** (film) 3329, 3240, 2966, 2921, 1698, 1590, 1490, 1449, 1254, 1152, 1080, 1048, 831, 681, 627. **HRMS** (ESI) Calcd for C₁₈H₃₀N₂O₃S₃ (M+Na⁺) 441.1311, Found 441.1303.

The reaction of sulfapyridine (0.2 mmol, 1 equivalent, 49.8 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5

equivalents, 70.9 mg) in DMF (0.5 mL) at r.t. for 24 hours afforded compound **6n** in 86% yield (78 mg) as a white solid according to the general procedure D. ¹H NMR

(400 MHz, DMSO-d₆) δ 11.48 (brs, 1H), 8.48 (s, 1H), 8.3 (m, 1H), 7.75 (d, J = 8.8 Hz, 2H), 7.67 (m, 1H), 7.14-7.05 (m, 3H), 6.87 (m, 1H), 2.87 (t, J = 7.3 Hz, 2H), 1.67-1.56 (m, 2H), 1.31- 1.19 (m, 14H), 0.85 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 152.1, 149.6, 144.3, 138.9, 131.7, 127.9, 115.8, 114.8, 112.4, 37.5, 30.7, 28.5, 28.3, 28.1, 28.0, 27.3, 21.5, 13.4. **IR** (film) 3315, 2978, 2905, 1591, 1453, 1386, 1251, 1073, 890, 767, 683. **HRMS** (ESI) Calcd for C₂₁H₃₁N₃O₂S₃ (M+H⁺) 454.1651, Found 454.1642.

The reaction of sulfadiazine (0.2 mmol, 1 equivalent, 50.1 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5 equivalents, 70.9 mg) in DMF (0.5 mL) at r.t. for

24 hours afforded compound **60** in 60% yield (54.5 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 11.52 (brs, 1H), 8.65 - 8.38 (m, 3H), 7.84 (d, *J* = 8.7 Hz, 2H), 7.13 (d, *J* = 8.8 Hz, 2H), 7.03 (t, *J* = 4.8 Hz, 1H), 2.88 (t, *J* = 7.2 Hz, 2H), 1.72 - 1.56 (m, 2H), 1.3 -1.15 (m, 14H), 0.85 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 158.3, 157.0, 150.6, 130.9, 129.4, 115.7, 115.1, 38.0, 31.3, 29.1, 28.9, 28.6, 28.5, 27.8, 22.1, 13.9. **IR** (film) 3303, 2979, 2904, 1583, 1406, 1356, 1249, 1153, 1052, 892, 801, 673. **HRMS** (ESI) Calcd for C₂₀H₃₀N₄O₂S₃ (M+Na⁺) 477.1423, Found 477.1420.

The reaction of sulfamerazine (0.2 mmol, 1 equivalent, 52.9 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5 equivalents, 70.9 mg) in DMF (0.5

mL) at r.t. for 24 hours afforded compound **6p** in 90% yield (84.4 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 5.2 Hz, 1H), 8.00 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 5.2 Hz, 1H), 5.64 (s, 1H), 2.87 (t, J = 7.3 Hz, 2H), 2.42 (s, 3H), 1.75-1.59 (m, 2H), 1.38-1.21 (m, 14H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 157.3, 156.5, 150.2, 131.2, 130.6, 115.1, 115.1, 39.4, 31.8, 29.7, 29.5, 29.4, 29.2, 29.1, 28.4, 24.0, 22.6, 14.1. **IR** (film) 3314, 2981, 2903, 1593, 1404, 1250, 1070, 892, 745. **HRMS** (ESI) Calcd for C₂₁H₃₂N₄O₂S₃ (M+Na⁺) 491.1580, Found 491.1577.

The reaction of sulfamethazine (0.2 mmol, 1 equivalent, 56.7 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5 equivalents, 70.9 mg) in DMF (0.5 mL) at r.t.

for 24 hours afforded compound **6q** in 81% yield (78.1 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 11.38 (brs, 1H), 8.49 (s, 1H), 7.86 (d, *J* = 8.8 Hz, 2H), 7.12 (d, *J* = 8.8 Hz, 2H), 6.74 (s, 1H), 2.88 (t, *J* = 7.3 Hz, 2H), 2.24 (s, 6H), 1.66-1.59 (m, 2H), 1.30-1.16 (m, 14H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.3, 156.3, 150.3, 131.2, 129.8, 114.7, 113.7, 38.1, 31.2, 29.0, 28.8, 28.6, 28.4, 27.7, 22.9, 22.0, 13.9. **IR** (film) 3316, 2977, 2903, 1593, 1489, 1384, 1249, 1151, 1075, 872, 832, 676. **HRMS** (ESI) Calcd for C₂₂H₃₄N₄O₂S₃ (M+H⁺)483.1917, Found 483.1913.

The reaction of sulfathiazole (0.2 mmol, 1 equivalent, 51.1 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5 equivalents, 70.9 mg) in DMF (0.5 mL) at r.t. for

24 hours afforded compound **6r** in 65% yield (59.8 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 12.57 (brs, 1H), 8.43 (s, 1H), 7.66 (d, *J* = 8.7 Hz, 2H), 7.21 (d, *J* = 4.6 Hz, 1H), 7.14 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 4.6 Hz, 1H), 2.88 (t, *J* = 7.3 Hz, 2H), 1.68-1.61 (m, 2H), 1.31-1.17 (m, 14H), 0.85 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 168.4, 149.7, 133.5, 127.4, 124.2, 115.3, 38.0, 31.2, 29.1, 28.9, 28.6, 28.5, 27.8, 22.0, 13.9. **IR** (film) 3319, 2953, 2923, 2853, 1573, 1536, 1490, 1289, 1138, 1186, 930, 856, 750, 683, 637. **HRMS** (ESI) Calcd for C₁₉H₂₉N₃O₂S₄ (M+Na⁺) 482.1035, Found 482.1034.

The reaction of sulfamethoxazole (0.2 mmol, 1 equivalent, 50.7 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5 equivalents, 70.9 mg) in DMF (0.5 mL) at r.t. for

24 hours afforded compound **6s** in 86% yield (78.7 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, DMSO-d₆) δ 11.17 (s, 1H), 8.60 (s, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 6.11 (s, 1H), 2.89 (t, *J* = 7.3

Hz, 2H), 2.29 (s, 3H), 1.73-1.58 (m, 2H), 1.32-1.15 (m, 14H), 0.85 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.0, 157.6, 150.9, 130.1, 128.4, 115.5, 95.3, 38.0, 31.2, 29.0, 28.8, 28.6, 28.5, 27.8, 22.0, 13.9, 11.9(8), 11.9(5). IR (film) 3339, 3284, 2978, 2918, 1590, 1463, 1376, 1256, 1155, 1054, 887, 823, 682. HRMS (ESI) Calcd for C₁₉H₂₉N₃O₂S₄ (M+Na⁺) 480.1420, Found 480.1416.

The reaction of lenalidomide (0.2 mmol, 1 equivalent, 51.9 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.3 mmol, 1.5 equivalents, 70.9 mg) in DMF (0.5 mL) at r.t. for 24

hours afforded compound **6t** in 62% yield (57.5 mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, CDCl₃) δ 11.02 (s, 1H), 8.01 (s, 1H), 7.44-7.42 (m, 2H), 7.27 (d, J = 6.0 Hz, 1H), 5.13 (dd, J = 12.7, 4.1 Hz, 1H), 4.33 (q, J = 17.3 Hz, 2H), 2.96-2.88 (m, 3H), 2.64-2.59 (m, 1H), 2.38-2.29 (m, 1H), 2.05-2.04 (m, 1H), 1.62-1.60 (m, 2H), 1.35-1.20 (m, 14H), 0.84 (t, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 171.0, 167.9, 141.5, 132.9, 129.8, 129.0, 118.6, 115.3, 51.6, 46.2, 37.8, 31.3, 31.2, 29.2, 28.9, 28.6, 28.5, 27.8, 22.7, 22.1, 13.9. IR (film) 3287, 2982, 2920, 1703, 1669, 1600, 1406, 1237, 1050, 865, 748, 658. HRMS (EI) Calcd for C₂₃H₃₃N₃O₃S₂ 463.1963, Found 463.1959.

The reaction of L-valine (0.22 mmol, 1 equivalent, 25.8 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in toluene (0.5 mL) at r.t. for 24 hours

afforded compound **6u** in 45% yield (27.9 mg) as a colorless oil according to the general procedure D. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 4.01 (s, 2H), 3.73 (s, 3H), 3.42 (d, *J* = 8.2 Hz, 1H), 3.27 (dd, *J* = 8.2, 5.9 Hz, 1H), 1.89 (dq, *J* = 13.3, 6.7 Hz, 1H), 0.89 (d, *J* = 6.8 Hz, 3H), 0.86 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 143.2, 132.3, 129.9, 118.6, 111.1, 70.6, 52.1, 42.2, 31.9, 18.8, 18.1. **IR** (film)3317, 2940, 2229, 1732, 1606, 1505, 1437, 1301, 1201, 1140, 994, 845, 743, 648. **HRMS** (EI) Calcd for C₁₄H₁₈N₂O₂S₂ 310.0810, Found 310.0815.

The reaction of methyl L-prolinate (0.22 mmol, 1.1 equivalents, 28.4 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 59.5 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6v**

in 82% yield (64.6 mg) as a white solid according to the general procedure D. ¹**H NMR** (400 MHz, CDCl₃) δ 5.35 (d, J = 7.5 Hz, 1H), 4.57 (s, 1H), 3.87-3.59 (m, 7H), 3.34 (s, 2H), 3.27 (d, J = 4.6 Hz, 1H), 3.06 (q, J = 7.9 Hz, 1H), 2.25-2.04 (m, 1H), 1.90-1.85 (m, 3H), 1.41 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.8, 170.9, 154.9, 80.1, 65.8, 55.7, 53.6, 52.5, 52.1, 43.1, 30.5, 28.2, 24.5. **IR** (film) 3380, 2980, 2905, 1743, 1714, 1403, 1252, 1164, 1074, 1048, 869, 754. **HRMS** (EI) Calcd for C₁₅H₂₆N₂O₆S₂ 394.1232, Found 394.1234.

The reaction of aniline (0.22 mmol, 1.1 equivalents, 20.5 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 84.9 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6w** in 77% yield (74.7 mg) as a colorless oil according to the

general procedure D. ¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (t, J = 7.9 Hz, 2H), 7.06 (d, J = 7.7 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 5.87 (d, J = 3.7 Hz, 1H), 5.47 (s, 1H), 5.29 (s, 1H), 4.47 (d, J = 3.7 Hz, 1H), 4.20 (t, J = 2.8 Hz, 2H), 4.13-4.05 (m, 1H), 4.05-3.97 (m, 1H), 2.88 (t, J = 7.0 Hz, 2H), 2.44 (t, J = 7.1 Hz, 2H), 2.03 (p, J = 7.2 Hz, 2H), 1.52 (s, 3H), 1.40 (s, 3H), 1.31 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 145.4, 129.1, 121.5, 116.6, 112.2, 109.3, 105.0, 83.3, 79.8, 76.1, 72.4, 67.3, 37.9, 32.3, 26.8, 26.6, 26.1, 25.2, 24.7. **IR** (film)3334, 2981, 2903, 1742, 1598, 1490, 1378, 1222, 1070, 889, 752, 693. **HRMS** (EI) Calcd for C₂₂H₃₁NO₇S₂ 485.1542, Found 485.1540.

The reaction of aniline (0.22 mmol, 1.1 equivalents, 20.5 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 134.2 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6x** in 92% yield (134.4 mg) as a white solid according

to the general procedure D. ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, J = 7.8 Hz, 2H), 8.03 (d, J = 7.8 Hz, 2H), 7.91 (d, J = 7.9 Hz, 2H), 7.62-7.43 (m, 5H), 7.39 (t, J = 7.7

Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.05 (d, J = 8.3 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 5.98-5.82 (m, 2H), 5.71-5.67 (m, 2H), 5.26 (d, J = 3.5 Hz, 1H), 4.63-4.49 (m, 2H), 4.44-5.38 (m, 1H), 3.50 (s, 3H), 2.84 (t, J = 7.6 Hz, 2H), 2.55 (t, J = 7.0 Hz, 2H), 2.01 (p, J = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 166.0, 165.9(7), 165.4, 145.4, 133.3, 133.2, 129.8, 129.6, 129.4, 129.3, 129.1, 128.4, 128.3(5), 121.3, 116.7, 97.6, 68.8, 68.5, 68.4, 66.4, 62.1, 55.6, 37.8, 32.3, 25.0. **IR** (film) 3340, 2970, 2904, 1721, 1597, 1403, 1261, 1072, 891, 753, 709. **HRMS** (ESI) Calcd for C₃₈H₃₇NO₁₀S2 (M+Na⁺) 754.1751, Found 754.1732.

The reaction of aniline (0.22 mmol, 1.1 equivalents, 20.5 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 85.3 mg) in toluene (0.5 mL) at r.t. for 24 hours afforded compound **6y** in 95% yield (92.5

mg) as a white solid according to the general procedure D. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, J = 7.9 Hz, 2H), 7.03 (d, J = 7.7 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 5.67 (s, 1H), 5.42 (t, J = 9.5 Hz, 1H), 5.24 (t, J = 9.4 Hz, 1H), 5.13 (t, J = 9.7 Hz, 1H), 4.68 (d, J = 9.7 Hz, 1H), 4.26-4.14 (m, 2H), 3.79-3.66 (m, 1H), 2.09 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.0, 169.3, 169.2, 145.2, 129.0, 121.7, 116.8, 85.5, 76.2, 73.7, 69.5, 68.0, 61.7, 20.7, 20.6, 20.5, 20.4. IR (film) 3338, 2995, 1744, 1597, 1375, 1222, 1045, 912, 760, 690, 630. HRMS (EI) Calcd for C₂₀H₂₅NO₉S₂ 487.0971, Found 487.0978.

The reaction of 2-propanethiol (0.22 mmol, 1.1 equivalents, 20.5 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded

compound **7a** in 80% yield (40.9 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 2H), 4.07 (s, 2H), 3.15 (tt, *J* = 6.8 Hz, *J* = 6.8 Hz, 1H), 1.33 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.3, 130.1, 118.7, 111.2, 42.2, 41.8, 22.4. IR (film) 2962, 2922, 2862, 2228, 1919, 1606, 1503, 1446, 1235, 1153, 1047, 875, 842, 741, 652. HRMS (EI) Calcd for C₁₁H₁₃NS₃ 255.0210, Found 255.0213.

The reaction of butanethiol (0.22 mmol, 1.1 equivalents, 23.5 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7b** in

88% yield (47.2 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 4.07 (s, 2H), 2.81 (t, *J* = 7.3 Hz, 2H), 1.84-1.55 (m, 2H), 1.57-1.30 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.3, 130.1, 118.7, 111.3, 42.1, 38.5, 30.7, 21.5, 13.6. **IR** (film) 2957, 2927, 2867, 2228, 1919, 1606, 1504, 1460, 1380, 1222, 1101, 1047, 875, 842, 740, 653. **HRMS** (EI) Calcd for C₁₂H₁₅NS₃ 269.0367, Found 269.0371.

The reaction of butane-2-thiol (0.22 mmol, 1.1 equivalents, 24 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours

afforded compound **7c** in 88% yield (47.5 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 8.3 Hz, 2H), 4.07 (s, 2H), 2.94-2.89 (m, 1H), 1.82-1.66 (m, 1H), 1.63-1.50 (m, 1H), 1.33 (d, *J* = 6.8 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 132.3, 130.2, 118.7, 111.3, 48.8, 42.2, 28.7, 20.0, 11.4. IR (film) 2963, 2924, 2871, 2229, 1606, 1499, 1454, 1415, 1288, 1180, 1080, 962, 842, 741, 651. HRMS (EI) Calcd for C₁₂H₁₅NS₃ 269.0365, Found 269.0365.

The reaction of 2-methyl-2-propanethiol (0.22 mmol, 1.1 equivalents, 19.9 mg), $B(C_6H_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded

compound **7d** in 94% yield (50.8 mg) as a white solid according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 4.07 (s, 2H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 132.2,

130.1, 118.7, 111.2, 49.1, 42.3, 29.8. **IR** (film) 2965, 2918, 2227, 1607, 1507, 1455, 1419, 1391,1161, 871, 851, 651. **HRMS** (EI) Calcd for C₁₂H₁₅NS₃ 269.0367, Found 269.0368.

The reaction of cyclohexanethiol (0.22 mmol, 1.1 equivalents, 27 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded

compound **7e** in 87% yield (49.2 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 4.07 (s, 2H), 2.90 (tt, *J* = 10.6, 3.7 Hz, 1H), 2.13-1.90 (m, 2H), 1.89-1.67 (m, 2H), 1.63-1.60 (m, 1H), 1.49-0.98 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 132.3, 130.2, 118.7, 111.3, 50.1, 42.2, 32.5, 25.9, 25.5. IR (film) 2924, 2852, 2229, 1605, 1497, 1447, 1262, 1183, 1080, 965, 827, 739, 648. HRMS (EI) Calcd for C₁₄H₁₇NS₃ 295.0523, Found 295.0525.

The reaction of 1-octanethiol (0.22 mmol, 1.1 equivalents, 38 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1

equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7f** in 85% yield (55.2 mg) as a colorless oil according to the general procedure E. ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 4.07 (s, 2H), 2.90 (tt, *J* = 10.6, 3.7 Hz, 1H), 2.13-1.90 (m, 2H), 1.89-1.67 (m, 2H), 1.63-1.60 (m, 1H), 1.49 - 0.98 (m, 5H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.3, 132.3, 130.1, 118.7, 111.3, 42.1, 38.8, 31.7, 29.1, 29.0, 28.7, 28.4, 22.6, 14.1. **IR** (film) 3063, 2925, 2853, 2229, 1726, 1606, 1503, 1461, 1289, 1196, 1020, 965, 842, 740, 652. **HRMS** (EI) Calcd for C₁₆H₂₃NS₃ 325.0993, Found 325.0989.

The reaction of 1-dodecanethiol (0.22 mmol, 1.1 equivalents, 48 uL), $4-NCC_6H_4CH_2SSOMe$ (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t.

for 8 hours afforded compound **7g** in 89% yield (68 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H),

7.43 (d, J = 8.3 Hz, 2H), 4.07 (s, 2H), 2.85-2.71 (m, 2H), 1.80-1.63 (m, 2H), 1.40-1.25 (m, 18H), 0.88 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.3, 132.3, 130.1, 118.6, 111.4, 42.2, 38.9, 31.9, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 28.7, 28.4, 22.7, 14.1. **IR** (film) 2922, 2852, 2229, 1606, 1504, 1461, 1414, 1234, 1079, 963, 842, 742, 652. **HRMS** (EI) Calcd for C₂₀H₃₁NS₃ 381.1619, Found 381.1626.

The reaction of allyl mercaptan (0.22 mmol, 1.1 equivalents, 18 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent,

42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7h** in 86% yield (41.3 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 5.89-5.79 (m, 1H), 5.28-5.14 (m, 2H), 4.07 (s, 2H), 3.45 (d, *J* = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 132.4, 132.3, 130.1, 119.3, 118.6, 111.3, 42.3, 41.5. **IR** (film) 2979, 2913, 2229,1923, 1632, 1606, 1505, 1414, 1223, 1103, 1073, 916, 844, 724, 649. **HRMS** (EI) Calcd for C₁₁H₁₁NS₃ 253.0544, Found 253.0049.

The reaction of thiol (0.22 mmol, 1.1 equivalents, 105.8 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2

mL) at r.t. for 8 hours afforded compound **7i** in 78% yield (103.1 mg) as a white solid according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 7.9 Hz, 2H), 4.09 (s, 2H), 3.29 - 2.86 (m, 2H), 2.62-2.49 (m, 2H). ¹⁹F NMR (377 MHz, CDCl₃) 19F NMR (376 MHz, CDCl3) δ -80.8 (3F, t, *J* = 9.9 Hz), -[113.8(6)-113.9(3)] (2F, m. CF₂), -[121.7-121.8] (2F, m. CF₂), -122.0 (4F, s, 2 × CF₂), -122.8 (2F, s, CF₂), -123.3 (2F, s, CF₂), -126.17 (2F, m. CF₂). ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 132.4, 130.2, 118.6, 111.6, 42.1, 31.3 (t, ²*J* _{C-F} = 22.2 Hz), 28.8. **IR** (film) 2952, 2920, 2230,1332, 1147, 1116, 953, 844, 703, 647. **HRMS** (EI) Calcd for C₁₈H₁₀F₁₇NS₃ 658.9704, Found 658.9711.

The reaction of thiol (0.22 mmol, 1.1 equivalents, 53 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg),

4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7j** in 52% yield (43.6 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.9 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 4.06 (s, 2H), 3.81 (q, *J* = 7.0 Hz, 6H), 2.84 (t, *J* = 7.2 Hz, 2H), 1.87-1.80 (m, 2H), 1.21 (t, *J* = 7.0 Hz, 9H), 0.90 - 0.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.3, 130.1, 118.7, 111.2, 58.4, 42.0, 41.5, 22.3, 18.3, 9.5. IR (film) 2974, 2888, 2229, 1606, 1390, 1242, 1165, 1075, 957, 785. HRMS (EI) Calcd for C₁₇H₂₇NO₃S₃417.0922, Found 417.0914.

The reaction of 2-mercaptoethanol (0.22 mmol, 1.1 equivalents, 15.5 uL), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1

equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7k** in 89% yield (46 mg) as a white solid according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 4.09 (s, 2H), 3.90 (t, *J* = 5.6 Hz, 2H), 2.98 (t, *J* = 5.8 Hz, 2H), 2.17 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 132.3, 130.1, 118.6, 111.4, 59.6, 42.1, 41.4. IR (film) 3381, 2927, 2232, 1607, 1504, 1415, 1182, 1104, 1040, 1101, 842, 783, 650. HRMS (EI) Calcd for C₁₀H₁₁NOS₃ 257.0003, Found 257.0008.

The reaction of 1-adamantanethiol (0.22 mmol, 1.1 equivalents, 37 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded

compound **71** in 89% yield (62.2 mg) as a white solid according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 4.06 (s, 2H), 2.08 (s, 3H), 1.88 (m, 6H), 1.74-1.63 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 132.2, 130.1, 118.7, 111.1, 50.8, 42.4, 42.3, 35.9, 29.8; **IR** (film) 2905, 2851, 2229, 1607, 1504, 1448, 1414, 1295, 1038, 908, 840, 732, 651; **HRMS** (EI) Calcd for C₁₈H₂₁NS₃ 347.0836, Found 347.0829.

The reaction of 4-(tert-butyl)benzyl mercaptan (0.22 mmol, 1.1 equivalents, 39.8 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent,

42.3 mg) in DCM (2 mL) at r.t. for 8 hours afforded compound **7m** in 92% yield (66.4 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 4.04 (s, 2H), 3.98 (s, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 142.2, 133.1, 132.3, 130.1, 129.1, 125.6, 118.6, 111.4, 42.9, 42.3, 34.5, 31.3. **IR** (film) 3055, 2956, 2228, 1606, 1508, 1362, 1293, 1200, 970, 836, 657. **HRMS** (EI) Calcd for C₁₉H₂₁NS₃ 359.0836, Found 359.0838.

The reaction of 4-(Methoxy)benzyl mercaptan (0.22 mmol, 1.1 equivalents, 34 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 8 hours afforded compound **7n** in 87% yield (58.2

42.3 mg) in DCM (2 mL) at r.t. for 8 hours afforded compound **7n** in 87% yield (58.2 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 4.01 (s, 4H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 142.3, 132.3, 132.3, 130.5, 130.1, 128.1, 118.6, 114.1, 114.0, 111.3, 55.3, 42.6, 42.2. **IR** (film) 3065, 2929, 2838, 2229, 1607, 1509, 1300, 1250, 1174, 1032, 825, 741, 649. **HRMS** (EI) Calcd for C₁₆H₁₅NOS₃ 333.0316, Found 333.0323.

The reaction of 2-pyrazinylethanethiol (0.22 mmol, 1.1 equivalents, 30.8 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 8 hours afforded compound **70** in 84%

yield (53.8 mg) as a colorless oil according to the general procedure E. ¹**H** NMR (400 MHz, CDCl₃) δ 8.54 - 8.40 (m, 3H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 4.06 (s, 2H), 3.25 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 145.0, 144.3, 142.7, 142.0, 132.3, 130.1, 118.6, 111.4, 42.2, 37.3, 34.2. **IR** (film) 2974, 2229, 1720, 1517, 1476, 1403, 1212, 1160, 1058, 1017, 768. **HRMS** (ESI) Calcd for C₁₄H₁₃N₃S₃ (M+H⁺) 320.0344, Found 320.0311.

The reaction of 4-methoxythiophenol (0.22 mmol, 1.1 equivalents, 30.9 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t.

for 5 hours afforded compound **7p** in 86% yield (55.4mg) as a colorless oil according to the general procedure E. ¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.53 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 3.99 (s, 2H), 3.82 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 160.7, 142.1, 134.3, 132.2, 130.1, 127.2, 118.6, 114.8, 111.2, 55.4, 42.2. **IR** (film) 3056, 2974, 2226, 1587, 1490, 1459, 1291, 1245, 1174, 1024, 822, 634. **HRMS** (EI) Calcd for C₁₅H₁₃NOS₃ 319.0159, Found 319.0154.

The reaction of 2-methylthiophenol (0.22 mmol, 1.1 equivalents, 27.4 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 8 hours afforded

compound **7q** in 95% yield (58.8 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.65 (m, 1H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.31-7.19 (m, 5H), 3.99 (s, 2H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 139.8, 135.2, 132.7, 132.3, 130.7, 130.1, 129.2, 126.7, 118.6, 111.4, 42.2, 20.7. **IR** (film) 2970, 2228, 1918, 1605, 1503, 1463, 1413, 1045, 842, 749, 707, 649. **HRMS** (EI) Calcd for C₁₅H₁₃NS₃ 303.0210, Found 303.0211.

The reaction of RSH (0.22 mmol, 1.1 equivalents, 39 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (0.5 mL) at r.t. for 24 hours afforded

compound **7r** in 65% yield (46.6 mg) as a white solid according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.9 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 6.38 (s, 1H), 4.94 (s, 1H), 4.08 (s, 2H), 3.76 (s, 3H), 3.38-3.29 (m, 2H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 141.8, 132.4, 130.2, 118.6, 111.5, 77.3, 77.0, 76.7, 52.8, 51.6, 42.2, 40.8, 23.2. **IR** (film) 3330, 2920, 2851, 2230, 1711, 1609,

1533, 1416, 1373, 1209, 1123, 969, 826, 730, 648. **HRMS** (ESI) Calcd for $C_{14}H_{16}N_2O_3S_3$ (M+Na⁺) 379.0215, Found 379.0208.

The reaction of 1,8-octanedithiol (0.11 mmol, 0.55 equivalent, 19.6 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1

equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7s** in 85% yield (46.1 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 4H), 7.43 (d, *J* = 8.2 Hz, 4H), 4.07 (s, 4H), 2.80 (t, *J* = 7.3 Hz, 4H), 1.69 (dt, *J* = 14.7, 7.3 Hz, 4H), 1.37-1.30 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.3, 130.1, 118.7, 111.3, 42.1, 38.7, 28.9, 28.6, 28.2. IR (film) 2924, 2853, 2227, 1606, 1503, 1413, 1291, 1233, 1051, 843, 721, 650. HRMS (ESI) Calcd for C₂₂H₂₄N₂O₂S₆ (M+Na⁺) 559.0469, Found 559.0462.

The reaction of 3,6-dioxa-1,8-octanedithiol (0.11 mmol, 0.55 equivalent, 20.1 mg), $B(C_6F_5)_3$ (0.005

mmol, 2.5 mol%, 2.6 mg), 4-NCC₆H₄CH₂SSOMe (0.2 mmol, 1 equivalent, 42.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7t** in 79% yield (42.9 mg) as a white solid according to the general procedure E. ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 4H), 7.43 (d, *J* = 8.2 Hz, 4H), 4.07 (s, 4H), 3.76 (t, *J* = 6.6 Hz, 4H), 3.63 (s, 4H), 3.01 (t, *J* = 6.6 Hz, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.1, 132.3, 130.1, 118.6, 111.3, 70.4, 69.1, 42.0, 38.0. **IR** (film) 3063, 2854, 2227, 1605, 1503, 1417, 1325, 1290, 1196, 1103, 1068, 845, 737, 650. **HRMS** (ESI) Calcd for C₂₂H₂₄N₂O₂S₆ (M+NH₄⁺) 558.0500, Found 558.0449.

The reaction of 1-dodecanethiol (0.22 mmol, 1.1 equivalents, 44.5 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NO₂C₆H₄CH₂SSOMe (0.2 mmol, 1

equivalent, 46.3 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound 7u in 99% yield (79.4 mg) as a white solid according to the general procedure E. ¹H NMR (400

MHz, CDCl₃) δ 8.19 (d, J = 8.7 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H), 4.11 (s, 2H), 2.81 (t, J = 7.2 Hz, 2H), 1.76-1.63 (m, 2H), 1.40-1.23 (m, 18H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 147.2, 144.4, 130.2, 123.7, 41.6, 38.8, 31.9, 29.6, 29.5(8), 29.5, 29.4, 29.3, 29.1, 28.7, 28.4, 22.6, 14.1. **IR** (film) 2925, 2849, 1601, 1521, 1344, 1178, 962, 800, 705. **HRMS** (EI) Calcd for C₁₉H₃₁NO₂S₃ 401.1517, Found 401.1519.

The reaction of 1-dodecanethiol (0.22 mmol, 1.1 equivalents, 44.5 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-NC(CH₂)₃SSOMe (0.2 mmol, 1 equivalent,

32.7 mg) in DCM (2 mL) at r.t. for 5 hours afforded compound **7v** in 99% yield (60.7 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 2.97 (t, J = 6.7 Hz, 2H), 2.86 (t, J = 7.2 Hz, 2H), 2.54 (t, J = 7.0 Hz, 2H), 2.19-2.12 (m, 2H), 1.76-1.69 (m, 2H), 1.41-1.21 (m, 18H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 118.9, 38.8, 36.4, 31.8, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 28.6, 28.4, 24.0, 22.6, 15.7, 14.1. **IR** (film) 2924, 2849, 2248, 1462, 1296, 971, 806, 723. **HRMS** (EI) Calcd for C₁₆H₃₁NS₃ 333.1619, Found 333.1619.

The reaction of 1-dodecanethiol (0.22 mmol, 1.1 equivalents, 44.5 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 85.3 mg) in DCM (0.5 mL) at r.t. for 5 hours afforded

compound **7w** in 88% yield (60.7 mg) as a white solid according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 5.24-5.21 (m, 1H), 5.17-5.02 (m, 2H), 4.65 (d, J = 9.8 Hz, 1H), 4.26 (d of ABq, J = 12.5, 4.6 Hz, 1H), 4.12 (d of ABq, J = 12.4, 1.8 Hz, 1H), 3.76 (ddd, J = 9.8, 4.3, 2.0 Hz, 1H), 2.85 (t, J = 6.9 Hz, 2H), 2.05 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H), 1.97 (s, 3H), 1.71-1.63 (m, 2H), 1.42-1.16 (m, 18H), 0.84 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.0, 169.2, 169.0, 87.6, 76.3, 73.7, 69.6, 67.9, 61.8, 39.2, 31.8, 29.5, 29.4(5), 29.3, 29.2, 29.1, 28.6, 28.3, 22.6, 20.6(4), 20.6(3), 20.5(7), 20.5(6), 20.4(5), 14.0. IR (film) 2978, 2904, 1745, 1403, 1227, 1005, 892. HRMS (ESI) Calcd for C₂₆H₄₄O₉S₃ (M+Na⁺) 619.2039, Found 619.2040.

The reaction of RSH (0.22 mmol, 1.1 equivalents, 39 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 84.9 mg) in DCM (0.5 mL) at r.t. for 5 hours afforded compound **7x** in 60% yield

(68.3 mg) as a colorless oil according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 6.48 (d, J = 7.1 Hz, 1H), 5.85 (d, J = 3.6 Hz, 1H), 5.25 (s, 1H), 4.92 (dt, J = 7.7, 4.9 Hz, 1H), 4.46 (d, J = 3.6 Hz, 1H), 4.16 (s, 2H), 4.09-4.04 (m, 1H), 4.01-3.94 (m, 1H), 3.75 (s, 3H), 3.45-3.27 (m, 2H), 2.90 (t, J = 7.0 Hz, 2H), 2.48 (t, J = 7.1 Hz, 2H), 2.14-2.01 (m, 5H), 1.48 (s, 3H), 1.37 (s, 3H), 1.28 (s, 3H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 170.6, 169.8, 112.2, 109.3, 105.0, 83.3, 79.8, 76.1, 72.4, 67.3, 52.7, 51.6, 40.6, 37.4, 32.4, 26.8, 26.6, 26.1, 25.2, 23.6, 23.0. IR (film) 3304, 2986, 2939, 1743, 1660, 1528, 1375, 1213, 1162, 1073, 1021, 846, 732, 642. HRMS (ESI) Calcd for C₂₂H₃₅NO₁₀S₃ (M+Na⁺) 592.1315, Found 592.1344.

The reaction of RSH (0.22 mmol, 1.1 equivalents, 39 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 134.2 mg) in DCM (0.5 mL) at r.t. for 5 hours afforded compound **7y** in 40% yield (65.2 mg) as a white

solid according to the general procedure E. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.3 Hz, 2H), 7.99 (d, *J* = 7.4 Hz, 2H), 7.88 (d, *J* = 7.3 Hz, 2H), 7.59-7.48 (m, 3H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.40-7.34 (m, 4H), 6.52 (d, *J* = 7.5 Hz, 1H), 5.91-5.77 (m, 2H), 5.60 (d of ABq, *J* = 10.6, 3.6 Hz, 1H), 5.22 (d, *J* = 3.5 Hz, 1H), 4.93 (dt, *J* = 7.6, 5.0 Hz, 1H), 4.53-4.48 (m, 2H), 4.39-4.33 (m, 1H), 3.75 (s, 3H), 3.47 (s, 3H), 3.37-3.36 (m, 2H), 2.89-2.74 (m, 2H), 2.62 (t, *J* = 7.2 Hz, 2H), 2.09-1.99 (m, 5H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 170.7, 169.8, 166.1, 166.0, 165.4, 133.4, 133.3(1), 133.3(0),129.8, 129.7, 129.5, 129.4, 129.2, 129.1, 128.5, 128.4, 97.6, 68.9, 68.6, 68.4, 66.5, 62.3, 55.7, 52.7, 51.6, 40.7, 37.5, 32.1, 23.5, 23.1. **IR** (film) 3376, 2976, 2904, 1723, 1678, 1375, 1262, 1066, 710. **HRMS** (ESI) Calcd for C₃₈H₄₁NO₁₃S₃ (M+Na⁺) 838.1632, Found 838.1664.

The reaction of RSH (0.22 mmol, 1.1 equivalents, 39 mg), B(C₆F₅)₃ (0.005 mmol, 2.5 mol%, 2.6 mg), 4-RSSOMe (0.2 mmol, 1 equivalent, 59.5 mg) in DCM (0.5 mL) at r.t. for 24 hours afforded compound **7z** in 98% yield (86.7

mg) as a white solid according to the general procedure E. ¹H NMR (400 MHz, CDCl₃) δ 6.69 (brs, 1H), 5.49 (brs, 1H), 4.86 (s, 1H), 4.61 (s, 1H), 3.72 (s, 3H), 3.72 (s, 3H), 3.35-3.31 (m, 4H), 2.01 (s, 3H), 1.39 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.6, 170.0, 154.9, 80.2, 52.7, 52.7, 52.6, 51.5, 41.3, 40.6, 28.1, 22.9. IR (film) 3337, 2973, 1743, 1712, 1664, 1517, 1369, 1216, 1163, 1050, 782. HRMS (EI) Calcd for C₁₅H₂₆N₂O₇S₃ 442.0902, Found 442.0907.

The reaction of RSH (0.22 mmol, 1.1 equivalents, 91.2 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), RSSOMe (0.2 mmol, 1 equivalent, 59.5 mg) in DMF (0.5 mL) at r.t. for

8 hours afforded compound **7aa** in 52% yield (70.6 mg) as a colorless oil according to the general procedure E. ¹**H NMR** (400 MHz, DMSO-d₆) δ 8.53 (t, *J* = 5.6 Hz, 1H), 7.89 (d, *J* = 7.5 Hz, 2H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.73 (d, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 3H), 7.33 (t, *J* = 7.4 Hz, 2H), 4.55-4.30 (m, 3H), 4.29-4.20 (m, 2H), 3.96-3.76 (m, 2H), 3.65 (s, 3H), 3.63 (s, 3H), 3.34-3.22 (m, 2H), 3.12 (td, *J* = 14.0, 10.1 Hz, 2H), 1.38 (s, 9H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ 170.6, 169.9, 169.4, 155.4, 154.8, 143.3, 140.2, 127.1, 126.5, 124.8, 119.6, 78.1, 65.3, 53.1, 52.1, 51.7, 51.2, 46.1, 40.6, 39.7, 38.5, 27.6. **IR** (film) 3330, 2977,2903, 1691, 1519, 1403, 1223, 1163, 1049, 866, 739. **HRMS** (EI) Calcd for C₃₀H₃₇N₃O₉S₃ (M+Na⁺) 702.1584, Found 702.1598.

The reaction of RSH (0.22 mmol, 1.1 equivalents, 91.2 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.2 mmol, 1 equivalent,

47.3 mg) in DCM (2 mL) at r.t. for 8 hours afforded compound **7ab** in 60% yield (74.3 mg) as a colorless oil according to the general procedure E. ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.33-7.29 (m, 2H), 6.90 (s, 1H), 5.80 (s, 1H), 4.65 (s, 1H), 4.47-4.45 (d, *J* = 6.7 Hz, 2H), 4.23 (t, *J* = 6.8 Hz, 1H), 4.12-3.99 (m, 2H), 3.75 (s, 3H), 3.44-3.35 (m, 1H),

3.27-3.22 (m, 1H), 2.87 (t, J = 7.3 Hz, 2H), 1.75-1.68 (m, 2H), 1.39-1.34 (m, 2H), 1.30-1.22 (m, 12H), 0.88 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.1, 169.8, 156.1, 143.7, 141.3, 127.8, 127.1, 125.1, 120.0, 67.4, 53.8, 52.5, 47.2, 41.4, 41.2, 38.9, 31.9, 29.5, 29.4(9), 29.3, 29.2, 28.8, 28.5, 22.7, 14.1. **IR** (film) 3293, 2976, 2908, 1741, 1692, 1651, 1533, 1403, 1255, 1051, 893, 734, 663. **HRMS** (ESI) Calcd for C₃₁H₄₂N₂O₅S₃ (M+H⁺) 619.2329, Found 619.2326.

The reaction of RSH (0.22 mmol, 1.1 equivalents, 103.8 mg), $B(C_6F_5)_3$ (0.005 mmol, 2.5 mol%, 2.6 mg), $Me(CH_2)_9SSOMe$ (0.2 mmol, 1 equivalent, 47.3 mg) in DCM (2 mL) at

r.t. for 8 hours afforded compound **7ab** in 50% yield (67.5mg) as a colorless oil according to the general procedure E. ¹**H** NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.21 (brs, 1H), 6.98 (brs, 1H), 5.94 (brs, 1H), 4.57 (s, 1H), 4.44 (m, 2H), 4.21 (t, *J* = 6.8 Hz, 1H), 4.16 - 3.84 (m, 4H), 3.69 (s, 3H), 3.31 (d, *J* = 4.7 Hz, 2H), 2.85 (t, *J* = 7.3 Hz, 2H), 1.70 (m, 2H), 1.40 - 1.21 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 168.8, 156.3, 143.6, 141.3, 127.8, 127.1, 125.0, 120.0, 67.4, 54.1, 52.3, 47.1, 43.1, 41.1, 40.6, 38.8, 31.8, 29.5, 29.4(5), 29.2, 29.1, 28.7, 28.5, 22.6, 14.1. **IR** (film) 3292, 2970, 2921, 1742, 1689, 1644, 1529, 1404, 1257, 1068, 802, 736, 668. **HRMS** (ESI) Calcd for C₃₃H₄₅N₃O₆S₃ (M+Na⁺) 698.2363, Found 698.2362.

Gram scale operation

To a Schlenk tube were added indole (5.5 mmol, 1.1 equivalents, 644 mg), $B(C_6F_5)_3$ (0.01 mmol, 0.2 mol%, 5.1 mg), RSSOMe (5 mmol, 1 equivalent, 1.057 g), and toluene (1 mL), the mixture was stirred at 0 °C for 48 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product in yield of 93% (1.38 g).

To a Schlenk tube were added amine (5 mmol, 1 equivalent, 465.7 mg), $B(C_6F_5)_3$ (0.0125 mmol, 0.25 mol%, 6.5 mg), RSSOMe (0.2 mmol, 1 equivalent, 1.057 g), and toluene (1 mL), the mixture was stirred at r.t. for 24 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product in yield of 81% (1.1 g).

To a Schlenk tube were added thiol (5.25 mmol, 1.05 equivalents, 1.063 g), RSSOMe (0.2 mmol, 1 equivalent, 1.057 g), and DCM (10 mL), the mixture was stirred at r.t. for 6 hours before it was concentrated under vacuum. Purification by column chromatography afforded the desired product in yield of 92% (1.76 g).

X-ray Crystallography Analysis

Compound 3a (CCDC-1565934)

Datablock: z

Bond precision:	C-C = 0.0112	A Wavelength=0.71073
Cell: a=7	.509(3) b=7.8	26(3) c=12.235(5)
alpi	ha=76.567(13) beta=	86.274(15) gamma=79.030(13)
Temperature: 296	K	
	Calculated	Reported
Volume	686.4(5)	686.5(4)
Space group	P -1	P-1
Hall group	-P 1	?
Moiety formula	C13 H13 N O2 S	2 ?
Sum formula	C13 H13 N O2 S	2 C13 H13 N O2 S2
Mr	279.36	279.36
Dx,g cm-3	1.352	1.352
Z	2	2
Mu (mm-1)	0.381	0.381
F000	292.0	292.0
F000"	292.60	
h,k,lmax	8,9,14	8,9,14
Nref	2419	2398
Tmin, Tmax	0.852,0.920	0.857,0.921
Tmin'	0.852	
Correction metho AbsCorr = MULTI-	od= # Reported T Lim -SCAN	its: Tmin=0.857 Tmax=0.921
Data completenes	s= 0.991	(heta(max) = 25.010
R(reflections) =	0.0990(1287)	wR2(reflections) = 0.3072(2398)
5 = 1.036	Npar= 163	
The following ALE test-name_ Click on the hyper	RTS were generated. Ea ALERT_alert-type_ale links for more details of	ch ALERT has the format rt-level . ¹ the test.
Alert leve	B B Low Bond Precision	on C-C Bonds 0.01125 Ang.
Alert leve PLAT084_ALERT_3	C 3_C High wR2 Value (i.e	
PLAT005_ALERT_S PLAT005_ALERT_S PLAT066_ALERT_S PLAT066_ALERT_S PLAT380_ALERT_4 PLAT380_ALERT_4 PLAT380_ALERT_4 PLAT310_ALERT_4 N1 - C1	I G 5_G No Embedded Refir 5_G Number of Unrefine 1_G Predicted and Repo 2_G SHELXL First Parau 4_G Incorrectly? Orient 4_G Delete 1-2-3 or 2-3 C2 - C3 72.00 13.00 1_G Delete 1-2-3 or 2-3	ement Details found in the CIF Please Do ! id Donor-H Atoms 1 Report rted Tmin&Tmax Range Identical ? Check neter in WGHT Unusually Large 0.18 Report cd X(sp2)-Methyl Moiety C11 Check cd X(sp2)-Methyl Moiety C13 Check 1-4 Linear Torsion Angle # 1-555 1.555 1-555 1.555

Supplementary Figure 1. Single-Crystal X-ray Crystallography of 3a.

Compound 5o (CCDC-1565935)

Datablock: z

Bond precisi	on: C-	C = 0.0021 A	Wavelength=0.71073			
Cell:	a=9.2933(2)	b=8.8912(2)	c=17.7846(4)			
alpha=90 beta=103.798(1) g		beta=103.798(1)	gamma=90			
Temperature:	296 K					
	Calc	ulated	Reported			
Volume	/olume 1427.11(6)		1427.11(5)			
Space group	P 21	/c	P2(1)/c			
Hall group	-P 2	ybc	?			
Moiety formu	la C16	H12 N2 S2	?			
Sum formula	C16	H12 N2 S2	C16 H12 N2 S2			
Mr	296.	40	296.40			
Dx,g cm-3	1.38	0	1.380			
Z	4		4			
Mu (mm-1)	0.36	3	0.363			
F000	616.	0	616.0			
F000"	617.	16				
h,k,lmax	11,1	0,21	11,10,21			
Nref	2517		2512			
Tmin, Tmax	0.88	1,0.927	0.839,0.928			
Tmin"	0.83	4				
Correction m AbsCorr = MU	ethod= # Repo LTI-SCAN	orted T Limits: Tmin=0	.839 Tmax=0.928			
Data complet	eness= 0.998	Theta(max) =	25.010			
R(reflection	s)= 0.0286(2	2301) wR2(refl	ections) = 0.0828(2512)			
S = 0.988	1	Npar= 181				
The following A test-nam Click on the hy	ALERTS were ge e_ALERT_ale vperlinks for mo	enerated. Each ALERT has rt-type_alert-level. re details of the test.	the format			
Alert le PLAT005_ALER PLAT007_ALER PLAT2066_ALER PLAT210_ALER C11 -C PLAT710_ALER C13 -C PLAT899_ALER	VELG RT_5_G No Emb RT_5_G Number RT_1_G Predicte RT_2_G Hirshfel C12 -C16 -N2 RT_4_G Delete C12 -C16 -N2 RT_4_G SHELXL	edded Refinement Details r of Unrefined Donor-H Ato ed and Reported Tmin&Tm d Test Diff for C12 1-2-3 or 2-3-4 Linear Tors -85.00 5.00 1.555 1.5 1-2-3 or 2-3-4 Linear Tors 92.00 5.00 1.555 1.5 .97 is Deprecated and Su	found in the CIF Please Do ! ms			
0 ALERT lev 0 ALERT lev	vel A = Most lik vel B = A poten	ely a serious problem - re itially serious problem, co	solve or explain nsider carefully			

7 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected

Supplementary Figure 2. Single-Crystal X-ray Crystallography of 50.

Compound 6a (CCDC-1565936)

Datablock: z

Bond precis	ion: C-C =	0.0042 A	Wavelength=0.71073					
Cell:	a=15.913(3)	b=11.4032(17)	c=7.8620(12)					
	alpha=90	beta=103.384(5)	gamma=90					
Temperature	:296 K							
	Calcula	ted	Reported					
Volume	1387.9(4)	1387.9(4)					
Space group	ace group P 21/c		P2(1)/c					
Hall group	all group -P 2ybc		?					
Moiety form	ula C14 H12	N2 S2	2					
Sum formula	C14 H12	N2 52	C14 H12 N2 S2					
Mr	272.38		272.38					
Dx,g cm-3	1.304		1.304					
Z	4		4					
Mu (mm-1)	0.367		0.367					
F000	568.0		568.0					
F000'	569.14							
h,k,lmax	18,13,9		18,13,9					
Nref	2445		2444					
Tmin, Tmax	0.851,0	.971	0.855,0.971					
Tmin'	0.851							
Correction n AbsCorr = M	method= # Reporte ULTI-SCAN	d T Limits: Tmin=0	0.855 Tmax=0.971					
Data complet	teness= 1.000	Theta(max) =	- 25.010					
R(reflection	ns)= 0.0405(1731	.) wR2(refl	lections)= 0.1038(2444)					
S = 1.027	Npar	= 163						
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.								
Alert le	EVEL C High Mair	Mol' Llog og Compore	ad to Neighbors of CE Chack					
PLAT241_ALEKT_2_C rigin mainMoi Ueg as compared to Neighbors of C5 Check								
PLAT340 ALE	RT 3 C Low Bond F	recision on C-C Bond	ds 0.00421 Ang.					
PLATO05_ALE PLAT007_ALE PLAT066_ALE PLAT710_ALE C10 - PLAT710_ALE	RT_5_G No Embedd RT_5_G No Embedd RT_1_G Predicted a RT_4_G Delete 1-2- -C11 -C14 -N2 0 RT_4_G Delete 1-2-	led Refinement Details Unrefined Donor-H At nd Reported Tmin&Tn -3 or 2-3-4 Linear Tors -00 8.00 1.555 1.5 -3 or 2-3-4 Linear Tors	Is found in the CIF Please Do ! toms					
C12 -C11 -C14 -N2 18:00 0.00 1.555 1.555 1.555 PI AT899 ALERT 4 G SHEI XI 97 is Deprecated and Succeeded by SHEI XI 2014 Note								

0 ALERT level A = Most likely a serious problem - resolve or explain

Supplementary Figure 3. Single-Crystal X-ray Crystallography of 6a.

Compound 7d (CCDC-1565937)

Datablock: z

Bond precis	ion:	C-C = (0.0030 A	1	Navelength=0.71073			
Cell:	a=15.2714	714(5) b=7.7707(2)		c=12.0037(4)				
alpha=90 beta=93.036(1) g		gamma=9	gamma=90					
Temperature	:296 K							
	0	Calculat	ed		Reported			
Volume	1	1422.47(8)		1422.47(8)			
Space group	Space group P 21/c			P2(1)/c				
Hall group	-	-P 2ybc			?			
Moiety form	ula C	C12 H15	N S3		?			
Sum formula		C12 H15	N 53		C12 H15 N S3			
Mr	2	269.43			269.43			
Dx,g cm-3	1	1.258			1.258			
Z	4	4			4			
Mu (mm-1)	0	0.496			0.496			
F000	5	568.0			568.0			
F000"	5	569.61						
h,k,lmax	1	18,9,14			18,9,14			
Nref	2	2511			2505			
Tmin, Tmax	0	0.841,0.	915		0.838,0.916			
Tmin"	C	0.832						
AbsCorr = M Data comple R(reflectio	ULTI-SCAN teness= 0.9	998 8(2125)	Theta(max) = 3 wR2(refle	25.010 ctions)	- 0.0899(2505)			
s = 1.031		Npar=	145					
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test. • Alert level C								
PLAT242_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note C12 H15 N S3								
PLATO05_ALE PLAT005_ALE PLAT066_ALE PLAT710_ALE C2 PLAT710_ALE C4 PLAT899_ALE	RT_5_G No I RT_1_G Pred RT_4_G Dele C3 -C7 -N1 RT_4_G Dele C3 -C7 -N1 RT_4_G Dele C3 -C7 -N1 RT_4_G SHE	Embedde dicted and ete 1-2-3 . 32.00 ete 1-2-3 . 15.00 ELXL97 i	d Refinement Details d Reported Tmin&Tm or 2-3-4 Linear Torsi 75.00 1.555 1.55 or 2-3-4 Linear Torsi 0.00 1.555 1.55 s Deprecated and Su	found in ax Range on Angle 5 1.555 on Angle 5 1.555 cceeded l	the CIF Please Do ! Identical ? Check # 13 Do ! 1.555 # 14 Do ! 1.555 py SHELXL 2014 Note			
0 ALERT le	vel A = Mos	st likely a	serious problem - res	solve or e	xplain			

0 ALERT level B = A potentially serious problem, consider carefully

Supplementary Figure 4. Single-Crystal X-ray Crystallography of 7d.

All these data can be obtained free of charge from Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/ci.

Supplementary Figure 5. ¹H NMR spectra for **2a**.

Supplementary Figure 6. ¹³C NMR spectra for **2a**.

Supplementary Figure 7. ¹H NMR spectra for Compound 2b.

Supplementary Figure 8. ¹³C NMR spectra for Compound 2b.

Supplementary Figure 9. ¹H NMR spectra for Compound 2c.

Supplementary Figure 10. ¹³C NMR spectra for Compound 2c.

Supplementary Figure 11. ¹H NMR spectra for Compound 2d.

Supplementary Figure 12. ¹³C NMR spectra for Compound 2d.

Supplementary Figure 13. ¹H NMR spectra for Compound 2e.

Supplementary Figure 14. ¹³C NMR spectra for Compound 2e.

Supplementary Figure 15. ¹H NMR spectra for Compound 2f.

Supplementary Figure 16. ¹³C NMR spectra for Compound 2f.

Supplementary Figure 17. ¹H NMR spectra for Compound 2g.

Supplementary Figure 18. ¹³C NMR spectra for Compound 2g.

Supplementary Figure 19. ¹H NMR spectra for Compound 2h.

Supplementary Figure 20. ¹³C NMR spectra for Compound 2h.

Supplementary Figure 21. ¹H NMR spectra for Compound 2i.

Supplementary Figure 22. ¹³C NMR spectra for Compound **2i**.

Supplementary Figure 23. ¹H NMR spectra for Compound 2j.

Supplementary Figure 24. ¹³C NMR spectra for Compound 2j.

Supplementary Figure 25. ¹H NMR spectra for Compound 2k.

Supplementary Figure 26. ¹³C NMR spectra for Compound 2k.

Supplementary Figure 27. ¹H NMR spectra for Compound **2**l.

Supplementary Figure 28. ¹³C NMR spectra for Compound 2l.

Supplementary Figure 29. ¹H NMR spectra for Compound 2m.

Supplementary Figure 30. ¹³C NMR spectra for Compound 2m.

Supplementary Figure 31. ¹H NMR spectra for Compound 2n.

Supplementary Figure 32. ¹³C NMR spectra for Compound 2n.

Supplementary Figure 33. ¹H NMR spectra for Compound **20**.

Supplementary Figure 34. ¹³C NMR spectra for Compound 20.

Supplementary Figure 35. ¹H NMR spectra for Compound **2p**.

Supplementary Figure 36. ¹³C NMR spectra for Compound 2p.

Supplementary Figure 37. ¹H NMR spectra for Compound 2q.

Supplementary Figure 38. ¹³C NMR spectra for Compound 2q.

Supplementary Figure 39. ¹H NMR spectra for Compound 2r.

Supplementary Figure 40. ¹³C NMR spectra for Compound 2r.

Supplementary Figure 41. ¹H NMR spectra for Compound 2s.

Supplementary Figure 42. ¹³C NMR spectra for Compound 2s.

Supplementary Figure 43. ¹H NMR spectra for Compound 2t.

Supplementary Figure 45. ¹H NMR spectra for Compound 3a.

Supplementary Figure 46. ¹³C NMR spectra for Compound 3a.

Supplementary Figure 47. ¹H NMR spectra for Compound 3b.

Supplementary Figure 48. ¹³C NMR spectra for Compound 3b.

Supplementary Figure 49. ¹H NMR spectra for Compound **3c**.

Supplementary Figure 50. ¹³C NMR spectra for Compound 3c.

Supplementary Figure 51. ¹H NMR spectra for Compound **3d**.

Supplementary Figure 52. ¹³C NMR spectra for Compound 3d.

Supplementary Figure 53. ¹H NMR spectra for Compound 3e.

Supplementary Figure 54. ¹³C NMR spectra for Compound **3e**.

Supplementary Figure 55. ¹H NMR spectra for Compound 3f.

Supplementary Figure 56. ¹³C NMR spectra for Compound 3f.

Supplementary Figure 57. ¹H NMR spectra for Compound **3g**.

Supplementary Figure 58. ¹³C NMR spectra for Compound 3g.

Supplementary Figure 59. ¹H NMR spectra for Compound 3h.

Supplementary Figure 60. ¹³C NMR spectra for Compound 3h.

Supplementary Figure 61. ¹H NMR spectra for Compound 3i.

Supplementary Figure 62. ¹³C NMR spectra for Compound **3i**.

Supplementary Figure 63. ¹H NMR spectra for Compound 3j.

Supplementary Figure 64. ¹³C NMR spectra for Compound 3j.

Supplementary Figure 65. ¹H NMR spectra for Compound 3k.

Supplementary Figure 66. ¹³C NMR spectra for Compound 3k.

Supplementary Figure 67. ¹H NMR spectra for Compound **3**l.

Supplementary Figure 68. ¹³C NMR spectra for Compound 3l.

Supplementary Figure 69. ¹H NMR spectra for Compound 4a.

Supplementary Figure 70. ¹³C NMR spectra for Compound 4a.

Supplementary Figure 71. ¹H NMR spectra for Compound **4b**.

Supplementary Figure 72. ¹³C NMR spectra for Compound 4b.

Supplementary Figure 73. ¹H NMR spectra for Compound **4c**.

Supplementary Figure 74. ¹³C NMR spectra for Compound **4c**.

Supplementary Figure 75. ¹H NMR spectra for Compound **4d**.

Supplementary Figure 76. ¹³C NMR spectra for Compound 4d.

Supplementary Figure 77. ¹H NMR spectra for Compound **5a**.

Supplementary Figure 78. ¹³C NMR spectra for Compound 5a.

Supplementary Figure 79. ¹H NMR spectra for Compound 5b.

Supplementary Figure 80. ¹³C NMR spectra for Compound 5b.

Supplementary Figure 81. ¹H NMR spectra for Compound **5c**.

Supplementary Figure 82. ¹³C NMR spectra for Compound 5c.

Supplementary Figure 83. ¹H NMR spectra for Compound 5d.

Supplementary Figure 84. ¹H NMR spectra for Compound 5d.

Supplementary Figure 85. ¹H NMR spectra for Compound 5e.

Supplementary Figure 86. ¹³C NMR spectra for Compound 5e.

Supplementary Figure 87. ¹H NMR spectra for Compound **5f**.

Supplementary Figure 88. ¹³C NMR spectra for Compound 5f.

Supplementary Figure 89. ¹H NMR spectra for Compound 5g.

Supplementary Figure 90. ¹⁹F NMR spectra for Compound 5g.

Supplementary Figure 91. ¹³C NMR spectra for Compound 5g.

Supplementary Figure 92. ¹H NMR spectra for Compound 5h.

Supplementary Figure 93. ¹³C NMR spectra for Compound 5h.

Supplementary Figure 94. ¹H NMR spectra for Compound **5**i.

Supplementary Figure 95. ¹³C NMR spectra for Compound 5i.

Supplementary Figure 96. ¹H NMR spectra for Compound 5j.

Supplementary Figure 97. ¹³C NMR spectra for Compound 5j.

Supplementary Figure 98. ¹H NMR spectra for Compound 5k.

Supplementary Figure 99. ¹³C NMR spectra for Compound 5k.

Supplementary Figure 100. ¹H NMR spectra for Compound **5**l.

Supplementary Figure 101. ¹³C NMR spectra for Compound 51.

Supplementary Figure 102. ¹H NMR spectra for Compound 5m.

Supplementary Figure 103. ¹³C NMR spectra for Compound 5m.

Supplementary Figure 104. ¹H NMR spectra for Compound 5n.

Supplementary Figure 105. ¹³C NMR spectra for Compound 5n.

Supplementary Figure 106. ¹H NMR spectra for Compound 50.

Supplementary Figure 107. ¹³C NMR spectra for Compound **50**.

Supplementary Figure 108. ¹H NMR spectra for Compound 5p.

Supplementary Figure 109. ¹³C NMR spectra for Compound 5p.

Supplementary Figure 110. ¹H NMR spectra for Compound 5q.

Supplementary Figure 111. ¹³C NMR spectra for Compound **5q**.

Supplementary Figure 112. ¹H NMR spectra for Compound 5r.

Supplementary Figure 113. ¹³C NMR spectra for Compound 5r.

Supplementary Figure 114. ¹H NMR spectra for Compound 5s.

Supplementary Figure 115. ¹³C NMR spectra for Compound 5s.

Supplementary Figure 116. ¹H NMR spectra for Compound **5t**.

Supplementary Figure 117. ¹³C NMR spectra for Compound 5t.

Supplementary Figure 118. ¹H NMR spectra for Compound **5u**.

Supplementary Figure 119. ¹³C NMR spectra for Compound **5u**.

Supplementary Figure 120. ¹H NMR spectra for Compound 5v.

Supplementary Figure 121. ¹³C NMR spectra for Compound 5v.

Supplementary Figure 122. ¹H NMR spectra for Compound **5w**.

Supplementary Figure 123. ¹³C NMR spectra for Compound 5w.

Supplementary Figure 124. ¹H NMR spectra for Compound **5**x.

Supplementary Figure 125. ¹³C NMR spectra for Compound 5x.

Supplementary Figure 126. ¹H NMR spectra for Compound 5y.

Supplementary Figure 127. ¹³C NMR spectra for Compound 5y.

Supplementary Figure 128. ¹H NMR spectra for Compound **6a**.

Supplementary Figure 129. ¹³C NMR spectra for Compound 6a.

Supplementary Figure 130. ¹H NMR spectra for Compound **6b**.

Supplementary Figure 131. ¹³C NMR spectra for Compound 6b.

Supplementary Figure 132. ¹H NMR spectra for Compound 6c.

Supplementary Figure 133. ¹³C NMR spectra for Compound 6c.

Supplementary Figure 134. ¹H NMR spectra for Compound 6d.

Supplementary Figure 135. ¹³C NMR spectra for Compound **6d**.

Supplementary Figure 136. ¹H NMR spectra for Compound **6e**.

Supplementary Figure 137. ¹³C NMR spectra for Compound 6e.

Supplementary Figure 138. ¹H NMR spectra for Compound 6f.

Supplementary Figure 139. ¹³C NMR spectra for Compound 6f.

Supplementary Figure 140. ¹H NMR spectra for Compound 6g.

Supplementary Figure 141. ¹³C NMR spectra for Compound 6g.

Supplementary Figure 142. ¹H NMR spectra for Compound 6h.

Supplementary Figure 143. ¹³C NMR spectra for Compound **6h**.

Supplementary Figure 144. ¹H NMR spectra for Compound 6i.

Supplementary Figure 145. ¹³C NMR spectra for Compound 6i.

Supplementary Figure 146. ¹H NMR spectra for Compound 6j.

Supplementary Figure 147. ¹³C NMR spectra for Compound 6j.

Supplementary Figure 148. ¹H NMR spectra for Compound **6k**.

Supplementary Figure 149. ¹³C NMR spectra for Compound 6k.

Supplementary Figure 150. ¹H NMR spectra for Compound **6**l.

Supplementary Figure 151. ¹³C NMR spectra for Compound 6l.

Supplementary Figure 152. ¹H NMR spectra for Compound 6m.

Supplementary Figure 153. ¹³C NMR spectra for Compound 6m.

Supplementary Figure 154. ¹H NMR spectra for Compound 6n.

Supplementary Figure 155. ¹³C NMR spectra for Compound **6n**.

Supplementary Figure 156. ¹H NMR spectra for Compound 60.

Supplementary Figure 157. ¹³C NMR spectra for Compound 60.

Supplementary Figure 158. ¹H NMR spectra for Compound 6p.

Supplementary Figure 159. ¹³C NMR spectra for Compound 6p.

Supplementary Figure 160. ¹H NMR spectra for Compound 6q.

Supplementary Figure 161. ¹³C NMR spectra for Compound 6q.

Supplementary Figure 162. ¹H NMR spectra for Compound **6r**.

Supplementary Figure 163. ¹³C NMR spectra for Compound **6r**.

Supplementary Figure 164. ¹H NMR spectra for Compound 6s.

Supplementary Figure 165. ¹³C NMR spectra for Compound 6s.

Supplementary Figure 166. ¹H NMR spectra for Compound **6t**.

Supplementary Figure 167. ¹³C NMR spectra for Compound 6t.

Supplementary Figure 168. ¹H NMR spectra for Compound 6u.

Supplementary Figure 169. ¹³C NMR spectra for Compound **6u**.

Supplementary Figure 170. ¹H NMR spectra for Compound 6v.

Supplementary Figure 171. ¹³C NMR spectra for Compound 6v.

Supplementary Figure 172. ¹H NMR spectra for Compound **6w**.

Supplementary Figure 173. ¹³C NMR spectra for Compound 6w.

Supplementary Figure 174. ¹H NMR spectra for Compound **6x**.

Supplementary Figure 175. ¹³C NMR spectra for Compound 6x.

Supplementary Figure 176. ¹H NMR spectra for Compound 6y.

Supplementary Figure 177. ¹³C NMR spectra for Compound 6y.

Supplementary Figure 178. ¹H NMR spectra for Compound **7a**.

Supplementary Figure 179. ¹³C NMR spectra for Compound **7a**.

Supplementary Figure 180. ¹H NMR spectra for Compound 7b.

Supplementary Figure 181. ¹³C NMR spectra for Compound 7b.

Supplementary Figure 182. ¹H NMR spectra for Compound **7c**.

Supplementary Figure 183. ¹³C NMR spectra for Compound 7c.

Supplementary Figure 184. ¹H NMR spectra for Compound 7d.

Supplementary Figure 185. ¹³C NMR spectra for Compound 7d.

Supplementary Figure 186. ¹H NMR spectra for Compound 7e.

Supplementary Figure 187. ¹³C NMR spectra for Compound 7e.

Supplementary Figure 188. ¹H NMR spectra for Compound 7f.

Supplementary Figure 189. ¹³C NMR spectra for Compound 7f.

Supplementary Figure 190. ¹H NMR spectra for Compound 7g.

Supplementary Figure 191. ¹³C NMR spectra for Compound 7g.

Supplementary Figure 192. ¹H NMR spectra for Compound 7h.

Supplementary Figure 193. ¹³C NMR spectra for Compound 7h.

Supplementary Figure 194. ¹³H NMR spectra for Compound 7i.

Supplementary Figure 195. ¹⁹F NMR spectra for Compound 7i.

Supplementary Figure 196. ¹³C NMR spectra for Compound 7i.

Supplementary Figure 197. ¹H NMR spectra for Compound 7j.

Supplementary Figure 198. ¹³C NMR spectra for Compound 7j.

Supplementary Figure 199. ¹H NMR spectra for Compound 7k.

Supplementary Figure 200. ¹³C NMR spectra for Compound 7k.

Supplementary Figure 201. ¹H NMR spectra for Compound **71**.

Supplementary Figure 202. ¹³C NMR spectra for Compound 71.

Supplementary Figure 203. ¹H NMR spectra for Compound 7m.

Supplementary Figure 204. ¹³C NMR spectra for Compound 7m.

Supplementary Figure 205. ¹H NMR spectra for Compound 7n.

Supplementary Figure 206. ¹³C NMR spectra for Compound 7n.

Supplementary Figure 207. ¹H NMR spectra for Compound **70**.

Supplementary Figure 208. ¹³C NMR spectra for Compound 70.

Supplementary Figure 209. ¹H NMR spectra for Compound 7p.

Supplementary Figure 210. ¹³C NMR spectra for Compound 7p.

Supplementary Figure 211. ¹H NMR spectra for Compound 7q.

Supplementary Figure 212. ¹³C NMR spectra for Compound 7q.

Supplementary Figure 213. ¹H NMR spectra for Compound 7r.

Supplementary Figure 214. ¹³C NMR spectra for Compound 7r.

Supplementary Figure 215. ¹H NMR spectra for Compound 7s.

Supplementary Figure 216. ¹³C NMR spectra for Compound 7s.

Supplementary Figure 217. ¹H NMR spectra for Compound **7t**.

Supplementary Figure 218. ¹³C NMR spectra for Compound 7t.

Supplementary Figure 219. ¹H NMR spectra for Compound 7u.

Supplementary Figure 220. ¹³C NMR spectra for Compound 7u.

Supplementary Figure 221. ¹H NMR spectra for Compound **7v**.

Supplementary Figure 222. ¹³C NMR spectra for Compound 7v.

Supplementary Figure 223. ¹H NMR spectra for Compound **7w**.

Supplementary Figure 224. ¹³C NMR spectra for Compound 7w.

Supplementary Figure 225. ¹H NMR spectra for Compound **7x**.

Supplementary Figure 226. ¹³C NMR spectra for Compound 7x.

Supplementary Figure 227. ¹H NMR spectra for Compound 7y.

Supplementary Figure 228. ¹³C NMR spectra for Compound 7y.

Supplementary Figure 229. ¹H NMR spectra for Compound 7z.

Supplementary Figure 230. ¹³C NMR spectra for Compound 7z.

Supplementary Figure 231. ¹H NMR spectra for Compound 7aa.

Supplementary Figure 232. ¹³C NMR spectra for Compound 7aa.

Supplementary Figure 233. ¹H NMR spectra for Compound 7ab.

Supplementary Figure 235. ¹H NMR spectra for Compound 7ac.

Supplementary Figure 236. ¹³C NMR spectra for Compound 7ac.

Supplementary References

- Xiao, X., Feng, M. & Jiang, X. New design of disulfurating reagent: facile and straightforward pathway to unsymmetrical disulfanes via Cu-catalyzed oxidative cross coupling. *Angew. Chem. Int. Ed.*, 55, 14121-14121 (2016).
- Fiori, K. W. & Bois, J. D. Catalytic intermolecular amination of C-H bonds: Method development and mechanistic Insights. *J. Am. Chem. Soc.*, **129**, 526-568 (2007).
- Stang, P. J., Boehshar, M., Wingert, H. & Kitamura, T. Acetylenic esters. Preparation and characterization of alkynyl carboxylates via polyvalent iodonium species. J. Am. Chem. Soc., 110, 3272-3278 (1988).