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SUPPLEMENTARY NOTE 1

Including all Coulomb interactions beyond the nearest-neighbor approximation leads to the full matter Hamiltonian within the
dipole approximation
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encode the renomalizations due to the interaction with cavity-induced image dipoles of neighboring meta-atoms, and S, given
by equation (16) in the Methods, encodes renormalizations due to interactions with their self-images. We can recast the matter
Hamiltonian into matrix form as Hmat = 1

2
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We diagonalize Hmat via a Bogoliubov transformation Ψq = TqXq, where X†q = (χ†q, χ
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−q) and χ†q = (β†q+, β
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with quasistatic dispersion
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Supplementary Figure 1. Quasistatic dispersion beyond the nearest-neighbor approximation. a, Quasistatic dispersion within the nearest-
neighbor approximation for cavity heights of L = 1.3a (blue dashed line) and L = a (orange dot-dashed line), where a is the nearest-neighbor
separation. For comparison we have also plotted the quasistatic dispersion without a cavity (black solid line). One observes that the effect
of the image dipoles is to renormalize the resonant frequency and the Coulomb interaction strength, resulting in the quasistatic dispersion
shifting down in frequency and reducing in bandwidth. Panel b is the same as a but with the full quasistatic dispersion [see Supplementary
Equation (8)] that includes Coulomb interactions beyond nearest-neighbors until convergence is reached. Long-range Coulomb interactions
introduce an asymmetry between the upper and lower quasistatic bands as shown in b, but the type-I CDPs remain robust at the K and K′

points. As the cavity height is reduced, the image dipoles quench long-range Coulomb interactions, which become negligible for cavity heights
on the order of the nearest-neighbor separation. All plots obtained with Ω = 0.01ω0.

In Supplementary Figure 1a we plot the quasistatic dispersion within the nearest-neighbor approximation for different cavity
heights and compare it to the full quasistatic dispersion in Supplementary Figure 1b, which is given by Supplementary Equa-
tion (8). Indeed, due to the honeycomb symmetry, one observes that the type-I CDPs remain pinned at the K and K′ points.
To prove this robustness against long-range Coulomb interactions, one must show that the function fAB

q , given by Supplemen-
tary Equation (3), vanishes at the corners of the Brillouin zone, i.e., one must show that the phase factors associated with the
interactions with dipoles residing at the same separation distance and different sublattices sum to zero. To this aim, we define
separation vectors Al1l2

= l1a1 + l2a2 + e3 that connect meta-atoms residing on different sublattices, with primitive lattice

vectors a1 = a(
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√
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3
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and evaluating Supplementary Equation (3) at K one indeed finds fAB
K = 0.

Without a cavity, the fAA
q term, given by Supplementary Equation (2), introduces strong asymmetry between the upper and

lower quasistatic bands. Since the lower band corresponds to a dark (↑↓) configuration of the two sublattices, the dispersion
converges rapidly with increasing number of interactions taken into account as long-range Coulomb interactions quickly average
to zero. The most prominent change is seen in the upper band where the group velocity increases towards the Γ point, which is in
contrast to the dispersion within the nearest-neighbor approximation. This is because the upper quasistatic band corresponds to a
bright (↑↑) configuration of the two sublattices and therefore long-range Coulomb interactions do not average to zero, especially
near the Γ point. However, as the cavity height is reduced, the image dipoles quench long-range Coulomb interactions, which
eventually become negligible for cavity heights on the order of the nearest-neighbor separation.
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Supplementary Figure 2. Evolution of the polariton dispersion beyond the nearest-neighbor approximation. Full polariton dispersion
that includes long-range Coulomb interactions (solid black lines) compared to the polariton dispersion obtained within the nearest-neighbor
approximation (orange dashed lines) for a very large (L = 15a), b sub-critical (L = 5a), c critical (L = 1.75a), and d super-critical (L = a)
cavity heights, respectively, where a is the nearest-neighbor separation. Higher-order cavity modes can be observed for very large cavities as
seen in a. Along the Γ−K(K′) directions the band crossings between the photon dispersion and the lower quasistatic band are protected, which
gives rise to many additional linear-band degeneracies within the light-cone. As the cavity height is decreased, these additional Dirac points
are driven towards the Γ point (opposite direction to the SDPs emerging from the TEM mode) where they annihilate one another. Comparing
panels a and b, one can see that the dispersion near the CDPs does not noticeably change, and qualitative changes outside the light-cone only
occur for small cavity heights where the higher-order cavity modes become detuned from the dipole resonances (see panels b-d). For small
cavity heights, the nearest-neighbor approximation becomes increasingly accurate and indistinguishable from the full polariton dispersion (see
d for example). Plots obtained with parameters ωph

K0 = 2.5ω0 and Ω = 0.01ω0.

The polariton dispersion plots presented in the main text (Fig. 2c-e) are within the nearest-neighbor approximation. In Sup-
plementary Figure 2a-d we present the polariton dispersion including all Coulomb interactions beyond nearest-neighbors until
convergence is reached, i.e., using Supplementary Equation (6) instead of equation (28) in the polariton Hamiltonian (see Meth-
ods). As expected from the quasistatic dispersion plots in Supplementary Figure 1b, long-range Coulomb interactions do not
qualitatively affect the physics near the K and K′ points. In fact, for small cavity heights, the nearest-neighbor approxima-
tion becomes increasingly accurate and indistinguishable from the full polariton dispersion (see Supplementary Figure 2d for
example).

As described in the main text, six inequivalent type-II SDPs emerge in the polariton spectrum due to the protected crossing
with the TEM mode along the Γ − K(K′) directions. Protected crossings with higher-order cavity modes (m 6= 0) result in a
large number of additional type-II Dirac points being generated within the light-cone for large cavity heights (see Supplementary
Figure 2a). However, as the cavity height is decreased, these additional Dirac points migrate towards the Γ point (opposite
direction to the SDPs emerging from the TEM mode), where they eventually merge with and annihilate one another. Comparing
Supplementary Figure 2a and Supplementary Figure 2b, one observes that the polariton dispersion near the CDPs does not
noticeably change, and qualitative changes outside the light-cone only occur at small cavity heights where the higher-order
cavity modes become detuned from the dipole resonances.

SUPPLEMENTARY NOTE 2

In the Methods section we performed a unitary Schrieffer-Wolff transformation on the polariton Hamiltonian and obtained a
two-band Hamiltonian in the matter sublattice space given by equation (36). In this section, we seek an effective Hamiltonian
describing the polaritons near the corners of the Brillouin zone by expanding the two-band Bloch Hamiltonian (37) near the K

point (see Methods). To quadratic order in k = q−K, the diagonal matrix elements expand as Wq ' W
(0)
K,k +W

(1)
K,k +W

(2)
K,k

and the off-diagonal elements as Fq ' F
(0)
K,k + F

(1)
K,k + F

(2)
K,k, where the superscript index denotes the corresponding order in

k. To determine the real and imaginary components in the expansion, we must sum the phase contributions from the degenerate
photons at the K point. To this aim, we define reciprocal lattice vectors Gn = n1b1 + n2b2 with primitive vectors b1 =
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with µ = ±1. Exploiting these symmetries one can rewrite the summations over photonic indices as
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where the factor of 1/6 is introduced to avoid over counting. First, the constant (zeroth order) term in the expansion of Wq is
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which illustrates that the light-matter interaction does not introduce anisotropic warping of the Dirac cone to first order. Finally,
the quadratic (second order) term is
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The constant (zeroth order) term in the expansion of Fq vanishes at the high-symmetry points as

F
(0)
K,k = −Ω

6

∑
mn

∆
(0)
Kmn

2∑
j=0

∑
µ=±

φ2njµ = 0, (19)

where φnjµ = exp
(
iaGjµ

n · ŷ
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Finally, the quadratic (second order) term is given by
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We can now identify the effective Hamiltonian H̄eff
K =

∑
k ψ
†
kH̄eff

K,kψk in the matter sublattice space, where the effective Bloch
Hamiltonian H̄eff

K,k is given by equation (9) in the main text.

Supplementary Figure 3. Numerical simulation of the polariton dispersion for a cavity-embedded honeycomb array of plasmonic
nanorods. We consider ellipsoidal nanorods (prolate spheroids) with semiminor axis and semimajor axis of lengths 10 nm and 20 nm,
respectively, and model them using the simple Drude model permittivity with plasma frequency ωp = 1.32 × 1016 rad s−1 and nonradiative
damping frequency γ = 6.9 × 1013 s−1. The plasmonic nanorods are arranged in a honeycomb array with nearest-neighbor separation
a = 45 nm. We apply perfect electric conductor boundary conditions for the cavity walls and periodic boundary conditions surrounding the
unit cell (see inset on panel c). a-c, Numerical simulations of the polariton dispersion for the lowest two bands, calculated using the eigenmode
solver in COMSOL Multiphysics, for cavity heights of a L = 3a, b L = 1.7a, and c L = 1.3a, respectively. The orange dots represent
numerical solutions and the dashed line is a guide for the eye. The frequencies are normalized with respect to ω0 = 5.3 × 1015 rad s−1.
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Supplementary Figure 4. Numerical simulation of the polariton dispersion for a cavity-embedded honeycomb array of microwave
helical resonators. We consider microwave helical resonators with minor radius 2 mm, major radius 6 mm, pitch 6 mm, and 5 turns (see inset
on panel c). We model the helices and cavity walls as perfect electric conductors, which is a good approximation at microwave frequencies,
and we apply periodic boundary conditions surrounding the unit cell. The helices are arranged in a honeycomb array with nearest-neighbor
separation a = 45 mm. a-c, Numerical simulations of the polariton dispersion for the lowest two bands, calculated using the eigenmode solver
in COMSOL Multiphysics, for cavity heights of a L = 3.33a, b L = 1.56a, and c L = 1.11a, respectively. The orange dots represent
numerical solutions and the dashed line is a guide for the eye. The frequencies are normalized with respect to ω0 = 6.2 × 109 rad s−1.


