ISSCR

Stem Cell Reports

Report
OPEN ACCESS

Automated Deep Learning-Based System to Identify Endothelial Cells
Derived from Induced Pluripotent Stem Cells

Dai Kusumoto,!-2# Mark Lachmann, -# Takeshi Kunihiro,?# Shinsuke Yuasa,-* Yoshikazu Kishino,!

Mai Kimura,' Toshiomi Katsuki,' Shogo Itoh,! Tomohisa Seki,-? and Keiichi Fukuda'

1Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

2Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan

3LE Development Department, R&D Division, Medical Business Group, Sony Imaging Products & Solutions Inc., 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa
243-0014, Japan

4Co-first author

*Correspondence: yuasa@keio.jp

https://doi.org/10.1016/j.stemcr.2018.04.007

SUMMARY

Deep learning technology is rapidly advancing and is now used to solve complex problems. Here, we used deep learning in convolutional
neural networks to establish an automated method to identify endothelial cells derived from induced pluripotent stem cells (iPSCs),
without the need for immunostaining or lineage tracing. Networks were trained to predict whether phase-contrast images contain endo-
thelial cells based on morphology only. Predictions were validated by comparison to immunofluorescence staining for CD31, a marker of
endothelial cells. Method parameters were then automatically and iteratively optimized to increase prediction accuracy. We found that
prediction accuracy was correlated with network depth and pixel size of images to be analyzed. Finally, K-fold cross-validation confirmed

that optimized convolutional neural networks can identify endothelial cells with high performance, based only on morphology.

INTRODUCTION

Machine learning consists of automated algorithms that
enable learning from large datasets to resolve complex
problems, including those encountered in medical science
(Gorodeski et al., 2011; Heylman et al., 2015; Hsich et al.,
2011). In deep learning, a form of machine learning, pat-
terns from several types of data are automatically extracted
(Lecun et al., 2015) to accomplish complex tasks such as
image classification, which in conventional machine
learning requires feature extraction by a human expert.
Deep learning eliminates this requirement by identifying
the most informative features using multiple layers in neu-
ral networks, i.e., deep neural networks (Hatipoglu and Bil-
gin, 2014), which were first conceived in the 1940s to
mimic human neural circuits (McCulloch and Pitts,
1943). In such neural networks, each neuron receives
weighted data from upstream neurons, which are then pro-
cessed and transmitted to downstream neurons. Ulti-
mately, terminal neurons calculate a predicted value based
on processed data, and weights are then iteratively opti-
mized to increase the agreement between predicted and
observed values. This technique is rapidly advancing due
to innovative algorithms and improved computing power
(Bengio et al., 2006; Hinton et al., 2006). For example, con-
volutional neural networks have now achieved almost the
same accuracy as a clinical specialist in diagnosing diabetic
retinopathy and skin cancer (Esteva et al., 2017; Gulshan
et al.,, 2016). Convolutional neural networks have also
proved useful in cell biology such as morphological classi-
fication of hematopoietic cells, C2C12 myoblasts, and
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induced pluripotent stem cells (iPSCs) (Buggenthin et al.,
2017; Niioka et al., 2018; Yuan-Hsiang et al., 2017).

iPSCs, which can be established from somatic cells by
expression of defined genes (Takahashi and Yamanaka,
2006), hold great promise in regenerative medicine (Yuasa
and Fukuda, 2008), disease modeling (Tanaka et al., 2014),
drug screening (Avior et al., 2016), and precision medicine
(Chen et al., 2016). iPSCs can differentiate into numerous
cell types, although differentiation efficiencies vary among
cell lines and are sensitive to experimental conditions (Hu
et al., 2010; Osafune et al., 2008). In addition, differenti-
ated cell types are difficult to identify without molecular
techniques such as immunostaining and lineage tracing.
We hypothesized that phase-contrast images contain
discriminative morphological information that can be
used by a convolutional neural network to identify endo-
thelial cells. Accordingly, we investigated whether deep
learning techniques can be used to identify iPSC-derived
endothelial cells automatically based only on morphology.

RESULTS

Development of an Automated System to Identify
Endothelial Cells

We differentiated iPSCs as previously described (Patsch
et al., 2015), obtaining mesodermal cells at around
day 3 and specialized endothelial cells at around day 5
(Figure ST1A). At day 6, structures that resemble vascular
tubes were formed (Figure S1B). CD31 staining
confirmed that endothelial cells were obtained at an
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efficiency of 20%-35%, as assessed by flow cytometry.
Differentiation efficiency was strongly variable (Fig-
ure S1C), highlighting the need for an automated cell
identification system to assess iPSC differentiation or
to identify and quantify the cell types formed.

The basic strategy to identify endothelial cells by convo-
lutional neural networks is shown in Figure 1A. In brief,
differentiated iPSCs were imaged by phase contrast and
by immunofluorescence staining for CD31, a marker of
endothelial cells. The latter were then binarized into white
and black pixels corresponding to raw pixels above and
below a threshold value, respectively. Subsequently, input
blocks were extracted randomly from phase-contrast im-
ages, and matching target blocks equivalent to or within
input blocks were extracted from both phase-contrast and
binarized immunofluorescence images. Binarized target
blocks were then classified as unstained (0) or stained (1)
depending on the ratio of white pixels to black, to generate
answers. Finally, input blocks were analyzed in LeNet, a
small network (Lecun et al., 1998), and AlexNet, a large
network (Krizhevsky et al., 2012), to predict phase-contrast
target blocks as unstained or stained. Predictions were
compared with answers obtained from binarized target
blocks, and weights were automatically and iteratively
optimized to train the neural networks and thereby in-
crease accuracy (Figure 1A).

Networks were then optimized according to Figure 1B.
Number of blocks, input block size, and target block size
were first optimized using the small network, along with
staining threshold, the ratio of white pixels to black for a
target block to be classified as stained. To improve perfor-
mance, as assessed by F1 score and accuracy, the small
network was compared with the large network, observed
errors were analyzed, and binarized target blocks were rebi-
narized by visual comparison of raw fluorescent images
with phase-contrast images. Finally, the optimized network
was validated by K-fold cross-validation (Figure 1B). To this
end, we obtained 200 images from each of four indepen-
dent experiments, of which 640 were used for training
and 160 for validation to collect data shown in Figures 2
and 3. From each image, 200 blocks were randomly ex-
tracted, and 500-128,000 of the blocks were used for
training while 32,000 blocks were used for validation
(Figure 1C).

Improvement of F1 Score and Accuracy by
Optimization

To train the networks we optimized several experimental
conditions, including number of input blocks, target block
size, and input block size. Performance was evaluated based
on F1 scores, which aggregates recall and precision, and on
accuracy, which is the fraction of correct predictions. As
noted, we first used 500-128,000 blocks for training (Fig-
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ure 1C) to determine the number of blocks required to
achieved convergence (Table S1). Inflection points in F1
scores and accuracy were observed at 16,000 blocks, and
convergence was achieved at 32,000 blocks for an input
and target block size of 128 x 128 pixels, as well as for an
input block size of 512 x 512 pixels and a target block
size of 32 x 32 pixels (Figure 2A). Hence, 32,000 blocks
were used for training in subsequent experiments. Next,
the optimal combination of block size and staining
threshold was determined by input blocks of 32 x 32,
64 x 64, 128 x 128, 256 x 256, and 512 x 512 pixels.
We note that 32 X 32-pixel blocks contained only single
cells, while 512 x 512-pixel blocks contained entire col-
onies and surrounding areas (Figure S2A). Based on F1
scores, performance was best from an input block size of
512 x 512 pixels combined with a staining threshold of
0.3 (Figures 2B and 2C; Table S2). Both F1 score and accu-
racy increased with input block size (Figures 2D, S2B, and
$2C), indicating that areas surrounding cells should be
included to increase accuracy. In contrast, target block
size did not affect predictive power (Figure 2E) or the corre-
lation between input block size and F1 scores and accuracy
(Figure S2D and Table S3).

Effect of Network Size on Predictive Power

As network architecture is critical to performance, we
compared the predictive power of the small network LeNet
(Lecun et al., 1998) after training on 128,000 blocks with
that of the large network AlexNet (Krizhevsky et al.,
2012) (Figure 3A). F1 scores and accuracy from the latter
were higher (Figures 3B and S3A), suggesting that extrac-
tion of complex features by a large network improves cell
identification by morphology. Performance was further
enhanced by analyzing true positives, true negatives, false
positives, and false negatives (Figures 3C and S3B). We
found that true positives and true negatives were typically
obtained in areas with uniformly distributed cells. In
contrast, areas with heterogeneous appearance, such as at
the border between abundantly and sparsely colonized sur-
faces, often led to false positives or false negatives. To
examine whether F1 scores are influenced by heteroge-
neous appearance (Figure S4A), we scored the complexity
of all 32,000 512 x 512-pixel validation blocks as the
average difference between adjacent pixels, normalized to
the dynamic range (Saha and Vemuri, 2000). Blocks with
complexity of <0.04 were considered sparsely colonized,
while blocks with complexity of 0.04 to 0.08 typically con-
tained uniformly distributed cells with clear boundaries.
All other images had complexity >0.08 and contained
dense colonies with indistinct cell borders. In both the
small and large networks (Figures S4B, S4C, and S$4D), F1
scores were highest for blocks with complexity of 0.04 to
0.08 (typically 0.06), implying that variations in cell
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Figure 1. Analysis of Induced Pluripotent Stem Cell-Derived Endothelial Cells Using Convolutional Neural Networks

(A) Training protocol. Input blocks were extracted from phase-contrast images and predicted by networks to be unstained (0) or stained
(1) for CD31. Target blocks containing single cells were extracted from immunofluorescent images of the same field, binarized based on
(D31 staining, and classified as stained or unstained based on the ratio of white pixels to black. Network weights were then automatically
and iteratively adjusted to maximize agreement between predicted and observed classification. Scale bars, 400 um (upper panels), 5 um
(middle panels), and 80 um (bottom panels).

(B) Optimization of experimental parameters to maximize F1 score and accuracy.

(C) Two hundred images each were obtained from four independent experiments. Images were randomized at 80:20 ratio into training and
evaluation sets, and 200 blocks were randomly extracted from each image.
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Figure 2. Dataset Adjustment

(A) F1 score and accuracy as a function of number of input blocks. Left: network performance using 128 x 128-pixel (px) input blocks and
128 x 128-px target blocks. Right: performance using 512 X 512-px input blocks and 32 X 32-px target blocks.

(B and C) F1 score as a function of input block size and staining threshold. The optimal threshold is boxed in red and the optimal input
block size is boxed in blue.

(D) Average F1 score for different input block sizes.

(E) F1 score for different target block sizes.

See also Figure S2 and Tables S1-S3.

density and morphology affect network performance, in staining, non-specific fluorescence, and autofluorescence
line with incorrect predictions as shown in Figures 3C in dense colonies may also degrade performance. Accord-
and S3B. In light of this result, we speculated that weak ingly, we rebinarized target blocks by visual comparison
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with raw fluorescent images (Figure 3D). Following this
step, 26,861 of 128,000 blocks (21%) were classified as
stained, while fully automated binarization scored 40,852
of 128,000 blocks (32%) as stained (Table S4A). Notably,
the F1 score and accuracy rose above 0.9 and 0.95, respec-
tively, in the large network (Figure 3E and Table S4A).

K-Fold Cross-Validation

Finally, we assessed network performance and generaliza-
tion by K-fold cross-validation, in which k subsets of data
are divided into k — 1 training datasets and one validation
dataset. Training and validation are then performed k times
using different combinations of training and validation da-
tasets. In our case, 800 images were collected in four inde-
pendent experiments, of which various combinations of
600 images from three experiments were used for training
and 200 images from one experiment were used for valida-
tion (Figure 4A). The F1 score and accuracy were approxi-
mately 0.7 and higher than 0.7 for the small network
with automatically binarized target blocks, but over 0.75
and over 0.9, respectively, for the large network with rebi-
narized target blocks (Figures 4B and 4C; Table S4B).

DISCUSSION

In this study, we demonstrated that deep learning tech-
niques are effective in identifying iPSC-derived endothelial
cells. Following optimization of parameters such as number
of input blocks, target block size, input block size, staining
threshold, and network size, we achieved satisfactory F1
scores and accuracy. Notably, we found that a larger input
block increases prediction accuracy, indicating that the envi-
ronment surrounding cells is an essential feature, as was also
observed for differentiated C2C12 myoblasts (Niioka et al.,
2018). We note that the immediate microenvironment is
also an essential determinant of differentiation (Adams
and Alitalo, 2007; Lindblom et al., 2003; Takakura et al.,
2000), and that the positive correlation between input block
size and F1 score or accuracy may prove helpful in future stra-
tegies to identify differentiated cells by morphology.

In comparison with other machine learning techniques,
deep learning is straightforward and achieves high accu-
racies. Indeed, deep learning algorithms have won the Im-

ageNet Large-Scale Visual Recognition Challenge since
2012 (He et al., 2015; Krizhevsky et al., 2012; Szegedy
et al., 2014; Zeng et al., 2016), and have also proved useful
in cell biology (Buggenthin et al., 2017; Niioka et al., 2018;
Van Valen et al., 2016; Yuan-Hsiang et al., 2017). Although
we used the older-generation networks LeNet and AlexNet,
newer networks achieve even better accuracy in image clas-
sification (Esteva et al., 2017; Gulshan et al., 2016). Several
techniques, such as increasing network depth (Simonyan
and Zisserman, 2014), residual learning (He et al., 2015),
and batch normalization (loffe and Szegedy, 2015), may
also enhance performance, although these were not imple-
mented in this study, since results were already satisfactory.

Inspection revealed some issues in binarizing heteroge-
neous areas in images with weak staining, non-specific
fluorescence, and autofluorescence. To lower the number
of false positives and improve performance, we rebinarized
these images by comparing raw fluorescent images with
phase-contrast images. In addition, cell density signifi-
cantly affected F1 scores, implying that cells should be
cultured carefully to a suitable density, or that networks
should be trained to distinguish between true and false pos-
itives, especially when images are heterogeneous. Finally,
K-fold cross-validation showed that iPSC-derived endothe-
lial cells were identified with accuracy approximately 0.9
and F1 score 0.75, in line with similar attempts (Buggen-
thin et al., 2017; Niioka et al., 2018; Yuan-Hsiang et al.,
2017).

Importantly, the data show that iPSC-derived endothe-
lial cells can be identified based on morphology alone,
requiring only 100 ps per block in a small network and
275 ps per block in a large network (Figure S4E). As
morphology-based identification does not depend on la-
beling, genetic manipulation, or immunostaining, it can
be used for various applications requiring native, living
cells. Thus, this system may enable analysis of large data-
sets and advance cardiovascular research and medicine.

EXPERIMENTAL PROCEDURES

iPSC Culture
iPSCs were maintained in mTeSR with 0.5% penicillin/strepto-
mycin on culture dishes coated with growth factor-reduced

Figure 3. Network Optimization

(A) Comparison of LeNet and AlexNet, which are small and large deep neural networks.

(B) F1 score learning curves from the small and large network.

(C) Representative true positive, false positive, true negative, and false negative images. Scale bars, 80 um.
(D) Immunofluorescent images were binarized automatically, or rebinarized by manual comparison of raw fluorescent images to phase-

contrast images. Scale bars, 100 um.

(E) F1 score and accuracy were compared following training of the small and large network on automatically binarized or rebinarized target

blocks.
See also Figures S3 and S4; Table S4.
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Matrigel, and routinely passaged every week. Media were changed
every other day. Detailed protocols are described in Supplemental
Experimental Procedures.

Endothelial Cell Differentiation

iPSCs cultured on Matrigel-coated 6-well plates were enzymatically
detached on day 7, and differentiated into endothelial cells as
described in Supplemental Experimental Procedures.

Flow Cytometry

At day 6 of differentiation, cells were dissociated, stained with
APC-conjugated anti-CD31, and sorted on BD FACSAria III. As a
negative control, we used unstained cells. Detailed protocols are
described in Supplemental Experimental Procedures.

Immunocytochemistry

At day 6 of differentiation, cells were fixed with 4% paraformalde-
hyde, blocked with ImmunoBlock, probed with primary anti-
bodies to CD31, and labeled with secondary antibodies as
described in Supplemental Experimental Procedures.

Preparation of Datasets

All phase-contrast and immunofluorescent images were acquired
at day 6 of differentiation. Two hundred images were automati-
cally obtained from each of four independent experiments. Of
these, 640 were used for training and 160 were used for validation
in Figures 2 and 3. For K-fold validation in Figure 4, 600 images
from three experiments were used for training and 200 images
from one experiment were used for validation, in all possible com-
binations. Datasets were constructed by randomly extracting 200

input blocks from each phase-contrast image. On the other
hand, target blocks were extracted from binarized immunofluores-
cent images. Detailed procedures are described in Supplemental
Experimental Procedures.

Deep Neural Networks

We used LeNet, a small network that contains two convolution
layers, two max pooling layers, and two fully connected layers,
as well as AlexNet, a large network that contains five convolution
layers, three max pooling layers, and three fully connected layers.
Network structures are shown in Figure 3A and Supplemental
Experimental Procedures.

Performance Evaluation

Performance was evaluated based on F1 scores, an aggregate of
recall and precision, and on accuracy, the fraction of correct predic-
tions. Detailed information is provided in Supplemental Experi-
mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental
Procedures, four figures, and four tables and can be found with
this article online at https://doi.org/10.1016/j.stemcr.2018.04.
007.
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Supplemental Figure Legends

Figure S1. Generation of iPSC-derived Endothelial Cells

(A) Differentiation of endothelial cells. iPSCs were seeded onto Matrigel-coated dishes, cultured in indicated
conditions, and examined at day 6.

(B) Phase-contrast images at day 1 to 6. Scale bars, 500 pum.

(C) Phase-contrast images (upper panels), immunofluorescent staining for CD31 (middle panels), and FACS analysis
(bottom panels) showed variability in differentiation at day 6 in various experiments. Left, middle, and right panels

show experiments with high, intermediate, and low differentiation efficiency. Scale bars, 200 um.

Figure S2. Network Performance Depending on Input Block Size, Staining Threshold and Target Block Size,
Related to Figure 2, Tables S1 and S2.

(A) Phase-contrast and binarized fluorescent images of 512 x 512 px, 256 x 256 px, 128 x 128 px, 64 x 64 px, and 32
x 32 px blocks. Scale bars, 80 um, 40 um, 20 um, 10 um, and 5 um, respectively.

(B) and (C) Accuracy obtained from networks trained on 32 x 32 px, 64 x 64 px, 128 x 128 px, 256 x 256 px, and
512 x 512 px input blocks, using 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 as staining threshold, i.e., the ratio of
white pixels to black for a binarized image to be classified as stained..

(D) F1 score and accuracy obtained from networks trained on input and target blocks of various sizes.

Figure S3. Optimization of Network Performance, Related to Figure 3.

(A) Learning curve of the small and large network, as assessed by accuracy.

(B) Representative images of true positives and true negatives (blue) and of false positives and false negatives (red).
Yellow areas are CD31-stained. Scale bars, 200 um.

Figure S4. Correlation Between Image Complexity and F1 score, Related to Figure 3.

(A) Representative phase-contrast images with complexity 0.00-0.04 (group 1), 0.04-0.08 (group 2), and over 0.08
(group 3). Scale bars, 80 pum.

(B) F1 score in each group using the small and large network (left), and relationship between F1 score and image
complexity (right).

(C) and (D) Performance statistics from each group (C) and over increasing complexity (D). True positive: TP, True
negative: TN, False positive: FP, and False negative: FN

(E) Time required to classify each block.



Supplemental Table Legends

Table S1. Number of Blocks Required for Learning, Related to Figure 2.

Networks were trained on 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, and 128,000 blocks. Accuracy,
recall, precision, and F1 score were assessed using 128 x 128 px input blocks and 128 x 128 px target blocks (left),
or using 512 x 512 px input blocks and 32 x 32 px target blocks (right).

Table S2. Network Performance Depending on Input Block Size and Staining Threshold, Related to Figures 2
and S2.

Networks were trained using 32 x 32 px, 64 x 64 px, 128 x 128 px, 256 x 256 px, and 512 x 512 px input blocks,
using 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 as staining threshold, i.e., the ratio of white pixels to black for a
binarized image to be classified as stained. Accuracy, recall, precision, and F1 score were calculated.

Table S3. Network Performance Depending on Target Block Size, Related to Figures 2 and S2.
F1 score, accuracy and other indices obtained from networks trained on input and target blocks of various sizes.

Table S4. Network Performance, Related to Figures 3 and 4.

(A) Network performance was compared following training on automatically binarized or rebinarized fluorescent
images.

(B) K-fold cross validation of the small network trained on automatically binarized fluorescent images (left), and of
the large network trained on rebinarized fluorescent images (right). Independent training and validation were
performed according to Figure 4.



Supplemental Experimental Procedures

iPSC Culture

iPSCs were maintained in mTeSR1 (Stem Cell Technologies, Vancouver, BC, Canada) media with 0.5 %
penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) on culture dishes coated with growth factor-
reduced Matrigel (BD Biosciences, San Jose, CA, USA). iPSCs were routinely passaged every week by washing in
PBS, incubating in TrypLE Select (Thermo Fisher Scientific) for 3 min at 37 °C, detaching with a cell scraper,
harvesting, and reseeding at a split ratio of 1:5 to 1:8 in mTeSR1 with 0.5 % penicillin/streptomycin and 10 uM ROCK
inhibitor Y-27632 (Wako, Osaka, Japan). Media were changed every other day.

Endothelial Cell Differentiation

iPSCs cultured on Matrigel-coated 6-well plates were detached using TrypLE Select on day 7, and clumps with
diameter 100-200 um were reseeded on Matrigel-coated dishes and incubated for 24 hours in mTeSR1 media with 10
MM ROCK inhibitor Y-27632. On day 1, mesoderm was induced in N2B27 media (1:1 mixture of DMEM/F12 and
Neurobasal media containing N2 and B27, all reagents from Thermo Fisher Scientific) supplemented with B-
mercaptoethanol, 8 UM CHIR-99021 (Cayman Chemical, Ann Arbor, MI, USA), and 25 ng/mL BMP4 (R&D Systems,
Minneapolis, MN, USA). At day 3 and 4, media were replaced with StemPro-34 SFM (Thermo Fisher Scientific)
containing 200 ng/mL VEGF (Wako) and 2 uM forskolin (Abcam, Cambridge, UK) to induce endothelial cell
specification (Patsch et al., 2015). Endothelial cell clusters were reliably obtained on day 6. After sorting by flow
cytometry, cells expressing CD31 were cultured for another four days in StemPro-34 SFM containing 50 ng/mL VEGF.

Flow Cytometry

At day 6 of differentiation, cells were dissociated into singe cells using Accutase (Innovative Cell Technologies, San
Diego, CA, USA), suspended in PBS with 0.5 % BSA, and stained with a 1:50 dilution of APC-conjugated anti-CD31
(Miltenyi Biotec, Bergisch Gladbach, NRW, Germany, catalog no. 130-092-652) according to the manufacturer’s
instructions. As a negative control, we used unstained cells. Cells were then sorted on a BD FACS Aria Il (Becton
Dickinson, Franklin Lakes, NJ, USA), and data were collected from at least 10,000 events.

Immunocytochemistry

Cells were fixed in 4 % paraformaldehyde (MUTO Pure Chemicals, Tokyo, Japan) for 20 min at room temperature,
washed with PBS, blocked with ImmunoBlock (DS Pharma Biomedical, Osaka, Japan) for 1 h, and probed at 4 °C
overnight with 1:20 primary antibodies to CD31 (R&D Systems, catalog no. AF806). Specimens were then washed
thrice in PBS, labeled for 1 h with 1:200 secondary anti-sheep 1gG (Thermo Fisher Scientific, catalog no. A-11015),
and imaged on an inverted fluorescence phase-contrast microscope.

Preparation of Datasets

Phase-contrast and immunofluorescent images were acquired at day 6 of differentiation. Two hundred images were
automatically acquired from each of four independent experiments. Phase contrast and fluorescent images were taken
on an SI8000 Research Microscope (SONY, Tokyo, Japan) at 10x and 0.454 um/pixel. Each image was saved as a



2752 x 2200 px grayscale image in BMP format at 8 bits per pixel. To generate datasets for training and evaluation,
200 input blocks of 32 x 32 px, 64 x 64 px, 128 x 128 px, 256 x 256 px, and 512 x 512 px were randomly extracted
from each phase-contrast image. The 256 x 256 px and 512 x 512 px input blocks were resized to 128 x 128 px as
needed. Immunofluorescent images of CD31 were binarized using in-house software to distinguish specific signals
from nonspecific signals. In particular, pixels were binarized to white if its value (0-255 in raw immunofluorescent
images) is above a threshold value empirically determined based on the complete image. All other pixels were
binarized to black. Finally, 32 x 32 px and 128 x 128 px target blocks were extracted, corresponding to the center of
input blocks.

Data in Figure 2 and 3 were generated based on 640 training images and 160 validation images. In both
experiments in Figure 2A, 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, and 128,000 blocks were used for
training, and 32,000 blocks were used for validation. In Figure 2B, 32,000 blocks were used for training, and 32,000
blocks were used for validation. In Figure 2C to 3E, all 128,000 blocks were used for training, and 32,000 blocks were
used for validation. For K-fold validation in Figure 4, four independent data sets of 200 images each were obtained,
of which three were used as training sets and one was used as validation set in all possible combinations, such that the
number of folds is 4. To rebinarize target blocks, we compared raw fluorescent images to phase-contrast images in
GNU Image Manipulation Program, and rebinarized weakly stained, dense colonies as black pixels. All 800 images
were processed in this manner.

Deep Neural Networks

We used LeNet, a small convolutional neural network with two convolution layers, two max pooling layers, and two
fully-connected layers, as well as AlexNet, a large network with five convolution layers, three max pooling layers,
and three fully-connected layers (Figure 3A). In both networks, each convolutional layer is connected to Rectified
Linear Units for activation (Nair and Hinton, 2010). In the output layer, we used a sigmoid function, consistent with
binary classification. We used mini-batch training with stochastic gradient descent, learning rate 0.01, cross-entropy
error as loss function. Weights were initialized using the Xavier algorithm (Glorot and Bengio, 2010). To avoid
overfitting, dropout techniques were used in the large network. Networks were trained using the TensorFlow/Keras
framework (Cholle, 2015) on a computer with a Core i7-6700 CPU (Intel, Santa Clara, CA, USA), 16 GB memory,
and GeForce GTX980Ti GPU (NVIDIA, Santa Clara, CA, USA).

Image Complexity

We calculated image complexity (activity), which we used as an index of cell density, in all

32,000 512 x 512 px validation blocks used in the small and large network. This value was I(i-j) n

SISO ) = 1G + L)+ Z S5 ) — 13,7 + 1)
{(m — 1n+ m(n — 1)} {max(/) — min(1)}

Activity =

calculated according to

where m is the image width in pixels, n is the image height in pixels, | is the pixel value, and (i, j) are coordinates (x-
axis, y-axis). Essentially, image complexity is the average difference between adjacent pixels normalized to the
dynamic range (Saha and Vemuri, 2000). Thus, the numerator is the sum of differences in adjacent pixels on both x



and y axes, while the denominator is the product of image size and dynamic range, which is the difference between
the maximum and minimum pixel value.

Evaluation of Prediction Performance

Network performance was evaluated based on accuracy and F1 score, which combines recall (sensitivity) and
precision (true positive rate). Accordingly, the F1 score is 1 for perfect predictions and 0.5 for random predictions.
On the other hand, precision is the fraction of true positives among predicted positives, while recall is the fraction of
true positives detected among all positives:

2Recall X Precision TP TP
F1 score = — ,Precision = ———,Recall = ———
Recall + Precision

Precision and recall for negative predictions were calculated in a similar manner:

TN
,Recall (negative) =

TN
P . . t' — —_— -
recision (negative) TN + FN TN + FP

Finally, accuracy is the ratio of correct predictions to all predictions:

| ~ TP + TN
Couracy =Tp Y FP+TN + FP
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Supplementary Figure 2

Phase contrast images

P

Input blocks Target blocks
B C
W065-0.7 MO0.7-0.75 M0.75-0.8 1 0.8-0.85 Accuracy
Input block size (px)
32 64 128 256 512 | Average
» 0.1 06786 0.6919 0.7121 0.7230 0.7529 | 0.7117
_‘>‘_<J 0.2 | 0.6624 0.7019 0.7364 0.7685 0.7978 | 0.7334
by q__f"— 0.3 | 0.7028 0.7389 0.7626 0.7988 0.8304 | 0.7667
g 08 0.4 | 0.6986 0.7546 0.7900 0.8084 0.8366 | 0.7776
g S5 0507144 07599 07925 0.8258 0.8448 | 0.7875
< cc\:UQ 0.6 | 0.7143 0.7509 0.7745 0.8304 0.8444 | 0.7829
© 0.7 | 07295 0.7635 0.8027 0.8140 0.8431| 0.7906
€ 0.8 |0.7364 0.7639 0.7994 0.8448 0.8448 | 0.7979
2 0.9 | 07491 07752 0.7954 0.8147 0.8360 | 0.7941
Average | 0.7096 0.7445 0.7740 0.8032 0.8256
D . .
- Target block size: 32 x 32 (px) Target block size: 128 x 128 (px)
>
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Q
(@] —
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3 0.5 3 0.5
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Supplementary Figure 3
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Supplementary Figure 4

A
| | | |
0.00 0.02 0.04 0.06 0.08 0.10
Image complexity
B B Small network M Large network
1 1
,F —
0.8 0.8 ~
y i
o)
206 © 0.6 /X
3 | 8 (/ /
— 0.4, 204 /
L ] o
0.2 0.2 —/
0. 0
Group 1 Group 2 Group 3 0.00 0.02 0.04 006 008 010 0.12
Group Image complexity
C :
Group | Image complexity TN FN FP TP Precision Recall | Accuracy | F1 score
1 0.00-0.04 8,657 707 546 1,006 | 0.648196|0.587274| 0.885214| 0.616233
Small network 2 0.04-0.08 2,758 992 633 6,192 |0.907253|0.861915| 0.846336| 0.884003
3 0.08- 6,628 1,025 604 2,252 | 0.788515[0.687214| 0.84499 | 0.734388
Group | Image complexity TN FN FP TP Precision Recall | Accuracy | F1 score
1 0.00-0.04 8,870 452 333 1,261 | 0.791092| 0.736135| 0.928087| 0.762625
Large network 2 0.04-0.08 2,818 413 573 6,771 | 0.921977(0.942511| 0.906761 0.932131
3 0.08- 6,603 709 629 2,568 | 0.803253| 0.783644| 0.872681| 0.793327
D
Image complexity TN FN FP TP Precision Recall | Accuracy | F1 score
0.00-0.02 4,595 165 16 21 0.567568| 0.112903 | 0.962268 | 0.188341
0.02-0.04 4,062 542 530 985 [0.650165| 0.645056 | 0.824808| 0.6476
Small network 0.04-0.06 1,105 475 395 3,991 |0.909941|0.893641 | 0.854174 | 0.901717
0.06-0.08 1,653 517 238 2,201 | 0.902419]|0.809787| 0.83619 | 0.853597
0.08-0.10 3,078 487 219 1,014 |0.822384| 0.67555 | 0.852855| 0.74177
0.10- 3,550 538 385 1,238 | 0.762785|0.697072| 0.838382| 0.72845
Image complexity TN FN FP TP Precision Recall | Accuracy | F1 score
0.00-0.02 4,602 128 9 58 0.865672| 0.311828| 0.97144 | 0.458498
0.02-0.04 4,268 324 324 1,203 |0.787819| 0.787819| 0.8941 |0.787819
Large network 0.04-0.06 1,149 251 351 4,215 |0.9231270.943798]| 0.899095 | 0.933348
0.06-0.08 1,669 162 222 2,556 | 0.920086 | 0.940397 | 0.916685 | 0.930131
0.08-0.10 3,039 247 258 1,254 |0.829365] 0.835443 | 0.894748 | 0.832393
0.10- 3,564 462 371 1,314 | 0.779822|0.739865| 0.854141| 0.759318
E Small network: 100 psec

Large network: 275 psec



Supplementary Table 1

Pred = “Prediction” ; Ans = “Answer” ; 0 = “unstained” ; 1 = “stained”

Input block size: 128 x 128 (px)
Target block size: 128 x 128 (px)

Number of input blocks

500

1,000

2,000

4,000

8,000

16,000

32,000

64,000

128,000

Input block size: 512 x 512 (px)
Target block size: 32 x 32 (px)

Pred=0 | Pred=1 Total Recall
Ans=0 | 21,261 0 21,261 1
Ans=1 10,739 0 10,739 0
Total 32,000 0 32,000
Precision| 0.6644 0
F1score| 0.7984 0
Accuracy| 0.6644

Pred=0 | Pred=1 Total Recall
Ans=0 | 21,261 0 21,261 1
Ans=1 10,737 2 10,739 | 0.0002
Total 31,998 2 32,000
Precision| 0.6644 1
F1score| 0.7984 | 0.0004
Accuracy| 0.6645

Pred=0 | Pred=1 Total Recall
Ans=0 | 21,261 0 21,261 1
Ans=1 10,738 1 10,739 | 0.0001
Total 31,999 1 32,000
Precision| 0.6644 1
F1score| 0.7984 | 0.0002
Accuracy| 0.6644

Pred=0 | Pred=1 Total Recall
Ans=0 | 20,913 348 21,261 | 0.9836
Ans=1 9,901 838 10,739 0.078
Total 30,814 1,186 32,000
Precision| 0.6787 | 0.7066
F1score| 0.8032 | 0.1405
Accuracy| 0.6797

Pred=0 | Pred=1 Total Recall
Ans=0 18,933 2,328 21,261 | 0.8905
Ans=1 6,646 4,093 10,739 | 0.3811
Total 25,579 6,421 32,000
Precision| 0.7402 | 0.6374
F1score| 0.8084 0.477
Accuracy| 0.7196

Pred=0 | Pred=1 Total Recall
Ans=0 19,298 1,963 21,261 0.9077
Ans=1 5,765 4,974 10,739 | 0.4632
Total 25,063 6,937 32,000
Precision 0.77 0.717
F1score| 0.8332 | 0.5628
Accuracy| 0.7585

Pred=0 | Pred=1 Total Recall
Ans=0 18,649 2,612 21,261 0.8771
Ans=1 4,635 6,104 10,739 | 0.5684
Total 23,284 8,716 32,000
Precision| 0.8009 | 0.7003
F1score| 0.8373 | 0.6275
Accuracy| 0.7735

Pred=0 | Pred=1 Total Recall
Ans=0 19,007 2,254 21,261 0.894
Ans=1 4,019 6,720 10,739 | 0.6258
Total 23,026 8,974 32,,000
Precision| 0.8255 | 0.7488
F1score| 0.8584 | 0.6818
Accuracy| 0.804

Pred=0 | Pred=1 Total Recall
Ans=0 18,409 2,852 21,261 | 0.8659
Ans=1 3,388 7,351 10,739 | 0.6845
Total 21,797 | 10,203 | 32,000
Precision| 0.8446 | 0.7205
F1 score| 0.8551 0.702
Accuracy|[ 0.805

Pred=0 | Pred=1 Total Recall
Ans=0 21,148 0 21,148 1
Ans=1 10,852 0 10,852 0
Total 32,000 0 32,000
Precision| 0.6609 0
F1score| 0.7958 0
Accuracy| 0.6609

Pred=0 | Pred=1 Total Recall
Ans=0 | 21,148 0 21,148 1
Ans=1 10,852 0 10,852 0
Total 32,000 0 32,000
Precision| 0.6609 0
F1 score| 0.7958 0
Accuracy| 0.6609

Pred=0 | Pred=1 Total Recall
Ans=0 | 21,129 19 21,148 | 0.9991
Ans=1 10,774 78 10,852 | 0.0072
Total 31,903 97 32,000
Precision| 0.6623 | 0.8041
F1score| 0.7966 | 0.0142
Accuracy| 0.6627

Pred=0 | Pred=1 Total Recall
Ans=0 18,684 2,464 21,148 | 0.8835
Ans=1 8,276 2,576 10,852 | 0.2374
Total 26,960 5,040 32,000
Precision| 0.693 0.5111
F1score| 0.7768 | 0.3242
Accuracy| 0.6644

Pred=0 | Pred=1 Total Recall
Ans=0 18,836 2,312 21,148 | 0.8907
Ans=1 6,514 4,338 10,852 | 0.3997
Total 25,350 6,650 32,000
Precision| 0.743 0.6523
F1score| 0.8102 | 0.4957
Accuracy| 0.7242

Pred=0 | Pred=1 Total Recall
Ans=0 18,816 2,332 21,148 | 0.8897
Ans=1 4113 6,739 10,852 0.621
Total 22,929 9,071 32,000
Precision| 0.8206 | 0.7429
F1score| 0.8538 | 0.6765
Accuracy| 0.7986

Pred=0 | Pred=1 Total Recall
Ans=0 18,743 2,405 21,148 | 0.8863
Ans=1 3,865 6,987 10,852 | 0.6438
Total 22,608 9,392 32,000
Precision| 0.829 0.7439
F1score| 0.8567 | 0.6903
Accuracy| 0.8041

Pred=0 | Pred=1 Total Recall
Ans=0 18,754 2,394 21,148 | 0.8868
Ans=1 3,225 7,627 10,852 | 0.7028
Total 21,979 | 10,021 32,000
Precision| 0.8533 | 0.7611
F1score| 0.8697 | 0.7308
Accuracy| 0.8244

Pred=0 | Pred=1 Total Recall
Ans=0 18,558 2,590 21,148 | 0.8775
Ans=1 2,730 8,122 10,852 | 0.7484
Total 21,288 | 10,712 | 32,000
Precision| 0.8718 | 0.7582
F1score| 0.8746 | 0.7533
Accuracy| 0.8337




Supplementary Table 2
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Pred = “Prediction”

Ans = “Answer”

64 x 64

0=
:0

“unstained”

“unstained”

Input block size (px)
128 x 128

—

= “stained
= “stained”

256 x 256

512 x 512

Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
Ans=0 | 16467 | 2885 | 19,352 | 0.8509 Ans=0 | 14370 | 4256 | 18626 | 0.7715 Ans=0 | 13616 | 4235 | 17,851 | 0.7628 Ans=0 | 14,587 | 2392 | 16979 | 0.8591 Ans=0 | 13447 | 2771 | 16218 [ 0.8201
Ans=1 | 7.401 | 5247 | 12648 [ 0.4148 Ans=1 | 5602 | 7.772 | 13374 | 05811 Ans=1 | 4,979 | 9170 | 14,149 [ 0.6481 Ans=1 | 6471 | 8550 | 15021 | 05692 Ans=1 | 5137 | 10645 | 15782 [ 06745
Total | 23868 | 8132 | 32,000 Total | 19,972 | 120,28 | 32,000 Total | 18,595 | 13405 | 32,000 Total | 21,058 | 10942 | 32,000 Total | 18584 | 13416 | 32,000
Precision | 0.6899 | 0.6452 Precision | 0.7195 | 0.6462 Precision | 0.7322 | 0.6841 Precision | 0.6927 | 0.7814 Precision | 0.7236 | 0.7935
Fiscore| 0.762 | 0.505 F1score | 0.7446 | 0.6119 F1score | 0.7472 | 0.6656 Fiscore| 0.767 | 0.6586 F1score | 0.7728 | 0.7292
Accuracy| 0.6786 Accuracy| 0.6919 Accuracy| 0.7121 Accuracy| 0.723 Accuracy| 0.7529
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
13946 | 5999 | 19,945 [ 0.6992 Ans=0 | 14,719 | 4817 | 19,536 | 0.7534 Ans=0 | 15570 | 3594 | 19,164 | 0.8125 16,199 | 2723 | 18922 | 08561 Ans=0 | 15390 | 3067 | 18457 | 0.8338
4,805 | 7,250 | 12,055 | 06014 Ans=1 | 4721 | 7,743 | 12464 | 06212 Ans=1 | 4,840 | 7996 | 12836 | 0.6229 4685 | 8393 | 13078 | 06418 Ans=1_| 3403 | 10140 | 13543 | 0.7487
18,751 | 13,249 | 32,000 Total | 19,440 | 12,560 | 32,000 Total | 20,410 [ 11590 | 32,000 Total | 20,884 | 11,116 | 32,000 Total | 18,793 | 13207 | 32,000
Precision | 0.7437 | 0.5472 Precision | 0.7572 | 0.6165 Precision | 0.7629 | 0.6899 Precision | 0.7757 | 0.755 Precision | 0.8189 | 0.7678
F1score | 07208 | 0573 F1score | 0.7553 | 0.6188 F1score | 0.7869 | 0.6547 Fiscore | 0.8139 | 0.6938 F1score | 0.8263 | 0.7581
Accuracy| 0.6624 Accuracy| 0.7019 Accuracy| 0.7364 Accuracy| 0.7685 Accuracy| 0.7978
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
Ans=0 | 16,304 | 4,081 | 20385 [ 0.7998 Ans=0 | 17,128 | 3042 | 20,70 | 0.8492 Ans=0 | 17,085 | 2975 | 20,060 [ 0.8517 Ans=0 | 17,001 | 3035 | 20036 | 0.8485 Ans=0 | 17.963 | 1.863 | 19,826 | 0.906
Ans=1 | 5430 | 6185 | 11615 [ 05325 Ans=1 | 5314 | 6516 | 11.830 | 05508 Ans=1 | 4623 | 7317 | 11940 [ 06128 Ans=1 | 3404 | 8560 | 11.964 | 0.7155 Ans=1 | 3564 | 8610 | 12,174 [ 07072
Total | 21,734 | 10,266 | 32,000 Total | 22442 | 9,558 | 32,000 Total | 21,708 | 102,92 | 32,000 Total | 20405 [ 11,595 | 32,000 Total | 21,527 | 10473 | 32,000
Precision | 0.7502 | 0.6025 Precision | 0.7632 | 0.6817 Precision | 0.787 | 0.7109 Precision | 0.8332 | 0.7382 Precision | 0.8344 | 0.8221
F1score | 0.7742 | 0.5653 F1score | 0.8039 | 0.6093 F1score | 0.8181 | 0.6582 F1score | 0.8408 | 0.7267 F1score | 0.8688 | 0.7604
Accuracy| 0.7028 Accuracy| 0.7389 Accuracy| 0.7626 Accuracy| 0.7988 Accuracy| 0.8304
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
Ans=0 | 17,514 | 3227 | 20,741 | 08444 Ans=0 | 17,807 | 2872 | 20,679 | 08611 Ans=0 | 17912 | 2,776 | 20688 [ 0.8658 Ans=0 | 18601 | 2219 | 20820 | 0.8934 Ans=0 | 18891 | 1920 | 20811 | 0.9077
Ans=1 | 6419 | 4840 | 11,259 | 04209 Ans=1 | 4982 | 6339 | 11,321 | 05599 Ans=1 | 3943 | 7369 | 11312 | 0.6514 Ans=1 | 3913 | 7.267 | 11,180 | 0.65 Ans=1 | 3310 | 7,879 | 11,189 | 0.7042
Total | 23933 | 8067 | 32,000 Total | 22789 [ 9.211 [ 32,000 Total | 21,855 | 10,145 [ 32000 Total | 22,514 | 9486 | 32,000 Total | 22201 [ 9,799 [ 32,000
Precision| 0.7318 | 0.6 Precision | 0.7814 | 0.6882 Precision | 0.8196 | 0.7264 Precision | 0.8262 | 0.7661 Precision | 0.8509 | 0.8041
F1score | 0.7841 | 0.5009 F1score | 0.8193 | 0.6175 F1score | 0.8421 | 0.6869 F1score | 0.8585 | 0.7033 F1score | 0.8784 | 0.7508
Accuracy| 0.6986 Accuracy| 0.7546 Accuracy|  0.79 Accuracy| 0.8084 Accuracy| 0.8366
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
Ans=0 | 18617 | 2531 | 21,148 | 0.8803 Ans=0 | 18507 | 2607 | 21,114 | 0.8765 Ans=0 | 18985 | 2276 | 21261 [ 0.8929 Ans=0 | 19620 | 1.789 | 21418 | 09165 Ans=0 | 19767 | 1,841 | 21,608 | 0.9148
Ans=1 | 6609 | 4243 | 10852 | 0391 Ans=1 | 5077 | 5809 | 10886 | 0.5336 Ans=1 | 4,365 | 6374 | 10,739 [ 0.5935 Ans=1 | 3784 | 6798 | 10582 | 0.6424 Ans=1 | 3125 | 7,267 | 10392 | 0.6993
Total | 25226 | 6774 | 32,000 Total | 23584 | 8416 | 32,000 Total | 23350 | 8650 | 32,000 Total | 23413 | 8587 | 32,000 Total | 22892 | 9,108 | 32,000
Precision| 0.738 | 0.6264 Precision | 0.7847 | 0.6902 Precision | 0.8131 | 0.7369 Precision | 0.8384 | 0.7917 Precision | 0.8635 | 0.7979
Fiscore | 0.8029 | 0.4814 F1score | 0.8281 | 0.6019 F1score | 0.8511 | 0.6575 F1score | 0.8757 | 0.7093 F1score | 0.8884 | 0.7453
Accuracy| 0.7144 Accuracy| 0.7599 Accuracy| 0.7925 Accuracy| 0.8258 Accuracy| 0.8448
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
Ans=0 | 19768 | 1766 | 21534 | 0918 Ans=0 | 18949 | 2,655 | 21,604 | 0.8771 Ans=0_| 19315 | 2492 | 21807 | 0.8857 Ans=0 | 20302 | 1724 | 22026 | 0.9217 Ans=0 | 20958 | 1359 | 22317 | 0.9391
Ans=1 | 7,375 | 3001 | 10466 | 0.2053 Ans=1 | 5315 | 5081 | 10396 | 0.4887 Ans=1 | 4724 | 5469 | 10,193 | 0.5365 Ans=1 | 3703 | 6271 | 9,974 | 0.6287 Ans=1 | 3621 | 6062 | 9683 | 0.626
Total | 27,143 | 4.857 | 32,000 Total | 24,264 | 7,736 | 32,000 Total | 24,039 | 7,961 | 32,000 Total | 24,005 | 7,995 | 32,000 Total | 24579 | 7.421 | 32,000
Precision | 0.7283 | 0.6364 Precision | 0.781 | 0.6568 Precision | 0.8035 | 0.687 Precision | 0.8457 | 0.7844 Precision | 0.8527 | 0.8169
Fiscore | 0.8122 | 04034 F1score | 0.8262 | 0.5604 F1score | 0.8426 | 0.6025 Fiscore | 0.8821 | 0.698 F1score | 0.8938 | 0.7088
Accuracy| 0.7143 Accuracy| 0.7509 Accuracy| 0.7745 Accuracy| 0.8304 Accuracy| 0.8444
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
Ans=0 | 20678 | 1346 | 22024 | 0.9389 Ans=0 | 19780 | 2391 | 22180 | 0.8922 Ans=0 | 20711 | 1693 | 22404 [ 0.9244 Ans=0 | 20217 | 2448 | 22665 | 0.892 Ans=0 | 21,223 | 1864 | 23087 | 09193
Ans=1 | 7.311 | 2665 | 9976 | 0.2671 Ans=1 | 5177 | 4643 | 9820 | 04728 Ans=1 | 4619 | 4977 | 95% [ 05187 Ans=1 | 3503 | 5832 | 9335 | 0.6247 Ans=1 | 3156 | 5757 | 8913 | 0.6459
Total | 27,989 | 4,011 | 32,000 Total | 24,966 | 7.034 | 32,000 Total | 25330 | 6,670 | 32,000 Total | 23,720 | 8280 | 32,000 Total | 24379 | 7,621 | 32,000
Precision | 0.7383 | 0.6644 Precision | 0.7926 | 0.6601 Precision | 0.8176 | 0.7462 Precision | 0.8523 | 0.7043 Precision | 0.8705 | 0.7554
F1score | 0.8269 | 0.3811 F1score | 0.8395 | 0.551 Fiscore | 0.8678 | 0612 F1score | 0.8717 | 0.6622 F1score | 0.8942 | 0.6964
Accuracy| 0.7295 Accuracy| 0.7635 Accuracy| 0.8027 Accuracy| 0.814 Accuracy| 0.8431
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recal Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recal
Ans=0 | 21,310 | 1364 | 22674 | 09398 Ans=0 | 21072 | 1890 | 22,962 | 0.9177 Ans=0 | 21,369 | 1938 | 23307 | 0.9168 Ans=0 | 22630 | 1524 | 24,154 | 0.9369 Ans=0 | 22630 | 1524 | 24,154 | 0.9369
Ans=1 | 7,072 | 2254 | 9326 | 02417 Ans=1 | 5666 | 3372 | 9038 [ 03731 Ans=1 | 4480 | 4213 | 8693 [ 0.4846 Ans=1 | 3442 [ 4404 | 7846 [ 05613 Ans=1 | 3442 [ 4404 | 7846 | 05613
Total | 28382 | 3618 | 32,000 Total | 26,738 | 5262 | 32,000 Total | 25849 | 6,151 | 32,000 Total | 26,072 | 5928 | 32,000 Total | 26072 | 5928 | 32,000
Precision | 0.7508 | 0.623 Precision | 0.7881 | 0.6408 Precision | 0.8267 | 0.6849 Precision | 0.868 | 0.7429 Precision| 0.868 | 0.7429
F1score | 0.8348 | 0.3483 Fiscore| 0848 | 0.4716 F1score | 0.8694 | 0.5676 F1score | 0.9011 | 0.6395 F1score | 0.9011 | 0.6395
Accuracy| 0.7364 Accuracy| 0.7639 Accuracy| 0.7994 Accuracy| 0.8448 Accuracy| 0.8448
Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall Pred=0 | Pred=1 | Total | Recall
Ans=0 | 22,047 | 1491 | 23538 [ 0.9367 Ans=0 | 22950 | 1,345 | 24,205 | 0.9446 Ans=0 | 23,183 | 1728 | 24,911 [ 0.9306 Ans=0 | 24,022 | 1513 | 25535 | 0.9407 Ans=0 | 24469 | 1798 | 26,267 [ 0.9315
Ans=1 | 6538 | 1924 | 8462 | 02274 Ans=1 | 5848 | 1,857 | 7.705 | 0.241 Ans=1 | 4,820 | 2269 | 7,089 [ 03201 Ans=1 | 4415 | 2050 | 6465 | 03171 Ans=1 | 3449 | 2284 | 5733 [ 0.3984
Total | 28585 | 3415 | 32,000 Total | 28,798 | 3,202 | 32,000 Total | 28003 | 3,997 | 32000 Total | 28437 | 3563 | 32,000 Total | 27,918 | 4,082 | 32,000
Precision| 0.7713 | 0.5634 Precision | 0.7969 | 058 Precision| 0.8279 | 0.5677 Precision | 0.8447 | 0.5754 Precision | 0.8765 | 0.5595
Fiscore| 0.846 | 0324 F1 score | 0.8645 | 0.3405 F1score | 0.8763 | 0.4093 F1score | 0.8902 | 0.4089 F1score | 0.9032 | 0.4654
Accuracy| 0.7491 Accuracy| 07752 Accuracy| 0.7954 Accuracy| 0.8147 Accuracy| 0.836




Supplementary Table 3

Input block size (px)

32x32

64 x 64

128 x 128

256 x 256

512 x 512

Pred = “Prediction” : 0 = “unstained” , 1

Ans = “Answer” : 0 = “unstained” , 1

Target block size: 32 x 32 (px)

“stained”
“stained”

Target block size: 128 x 128 (px)

Pred=0 | Pred=1 Total Recall
Ans=0 17,680 | 2,705 | 20,385 | 0.8673
Ans=1 6,259 5,356 11,615 | 0.4611
Total 23,939 | 8,061 32,000
Precision | 0.7385 | 0.6644
F1score | 0.7978 | 0.5444
Accuracy | 0.7199

Pred=0 | Pred=1 Total Recall
Ans=0 17,991 2,394 | 20,385 | 0.8826
Ans=1 5,533 6,082 11,615 | 0.5236
Total 23,524 | 8,476 | 32,000
Precision | 0.7648 | 0.7176
F1 score | 0.8195 | 0.6054
Accuracy | 0.7523

Pred=0 | Pred=1 Total Recall
Ans=0 17,781 2,604 | 20,385 | 0.8723
Ans=1 4,420 7,195 11,615 | 0.6195
Total 22,201 9,799 | 32,000
Precision | 0.8009 | 0.7343
F1 score | 0.8351 0.672
Accuracy | 0.7805

Pred=0 | Pred=1 Total Recall
Ans=0 17,888 | 2,497 | 20,385 | 0.8775
Ans=1 3,656 7,959 11,615 | 0.6852
Total 21,544 | 10,456 | 32,000
Precision | 0.8303 | 0.7612
F1score | 0.8533 | 0.7212
Accuracy | 0.8077

Pred=0 | Pred=1 Total Recall
Ans=0 18,397 1,988 | 20,385 | 0.9025
Ans=1 3,173 8,442 11,615 | 0.7268
Total 21,570 | 10,430 | 32,000
Precision [ 0.8529 | 0.8094
F1score | 0.877 0.7659
Accuracy | 0.8387

Pred=0 | Pred=1 Total Recall
Ans=0 | 18,409 | 2,852 | 21,261 | 0.8659
Ans=1 3,388 7,351 10,739 | 0.6845
Total 21,797 | 10,203 | 32,000
Precision| 0.8446 | 0.7205
F1 score| 0.8551 0.702
Accuracy| 0.805

Pred=0 | Pred=1 Total Recall
Ans=0 | 18,187 1,873 | 20,060 | 0.9066
Ans=1 3,946 7,994 11,940 | 0.6695
Total 22,133 | 9,867 | 32,000
Precision| 0.8217 | 0.8102
F1score| 0.8621 | 0.7332
Accuracy| 0.8182

Pred=0 | Pred=1 Total Recall
Ans=0 | 18,356 1,704 | 20,060 | 0.9151
Ans=1 3,645 8,295 11,940 | 0.6947
Total 22,001 9,999 | 32,000
Precision| 0.8343 | 0.8296
F1 score| 0.8728 | 0.7562
Accuracy| 0.8328




Supplementary Table 4

Pred = “Prediction” : 0 = “unstained” , 1 = “stained”
Ans= “Answer” : 0 = “unstained” , 1 = “stained”
A Small network Large network
Pred=0 | Pred=1 Total Recall Pred=0 | Pred=1 Total Recall
Ans=0 | 18,043 [ 1,783 | 19,826 | 0.9101 Ans=0 | 18,291 1,535 | 19,826 | 0.9226
Ans=1 2,724 9,450 | 12,174 | 0.7762 Ans=1 1,574 | 10,600 | 12,174 | 0.8707
Automatically Total 20,767 | 11,233 | 32,000 total 19,865 | 12,135 | 32,000
binarized |Precision| 0.8688 | 0.8413 Precision| 0.9208 | 0.8735
F1score| 0.889 | 0.8075 F1 score| 0.9217 | 0.8721
Accuracy| 0.8592 Accuracy| 0.9028
Pred=0 | Pred=1 Total Recall Pred=0 | Pred=1 Total Recall
Ans=0 | 23,556 974 24,530 | 0.9603 Ans=0 | 23,927 603 24,530 | 0.9754
Ans=1 1,354 6,116 7,470 | 0.8187 Ans=1 622 6,848 7,470 | 0.9167
Rebinarized ["To@m | 24910 | 7,090 | 32,000 Total | 24,549 | 7,451 | 32,000
Precision| 0.9456 | 0.8626 Precision| 0.9747 | 0.9191
F1 score| 0.9529 | 0.8401 F1score[ 0.975 | 0.9179
Accuracy| 0.9273 Accuracy] 0.9617
B Small network Large network
Automatically binarized Rebinarized
Pred=0 | Pred=1 Total Recall Pred=0 | Pred=1 Total Recall
Ans=0 | 17,764 | 12,928 | 30,692 | 0.5788 Ans=0 | 34,853 2,740 37,593 | 0.9271
Ans=1 488 8,820 9,308 0.9476 Ans=1 972 1,435 2,407 0.5962
Fold 1 Total 18,252 | 21,748 | 40,000 Total 35,825 | 4,175 | 40,000
Precision| 0.9733 | 0.4056 Precision| 0.9729 | 0.3437
F1 score| 0.7259 0.568 F1 score| 0.9494 0.436
Accuracy| 0.6646 Accuracy| 0.9072
Pred=0 | Pred=1 Total Recall Pred=0 | Pred=1 Total Recall
Ans=0 | 14,204 3,980 18,184 | 0.7811 Ans=0 | 18,096 1,505 19,601 | 0.9232
Ans=1 3,679 18,137 | 21,816 | 0.8314 Ans=1 3,984 16,415 | 20,399 | 0.8047
Fold 2 Total 17,883 | 22,117 | 40,000 Total 22,080 | 17,920 | 40,000
Precision| 0.7943 0.82 Precision| 0.8196 0.916
F1score| 0.7876 | 0.8257 F1 score| 0.8683 | 0.8568
Accuracy| 0.8085 Accuracy| 0.8628
Pred=0 | Pred=1 Total Recall Pred=0 | Pred=1 Total Recall
Ans=0 | 20,037 1,934 21,971 0.912 Ans=0 | 28,847 749 29,596 | 0.9747
Ans=1 6,803 11,226 | 18,029 | 0.6227 Ans=1 2,245 8,159 10,404 | 0.7842
Fold 3 | Total | 26,840 | 13,160 | 40,000 Total | 31,092 | 8908 | 40,000
Precision| 0.7465 0.853 Precision| 0.9278 | 0.9159
F1score| 0.821 0.7199 F1 score| 0.9507 0.845
Accuracy| 0.7816 Accuracy| 0.9252
Pred=0 | Pred=1 Total Recall Pred=0 | Pred=1 Total Recall
Ans=0 | 23,713 5,601 29,314 | 0.8089 Ans=0 | 34,920 952 35,872 | 0.9735
Ans=1 3,116 7,570 10,686 | 0.7084 Ans=1 734 3,394 4,128 0.8222
Fold 4 Total 26,829 | 13,171 | 40,000 Total 35,654 | 4,346 40,000
Precision| 0.8839 | 0.5747 Precision| 0.9794 | 0.7809
F1score| 0.8447 | 0.6346 F1 score| 0.9764 0.801
Accuracy| 0.7821 Accuracy| 0.9578
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