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SUMMARY
Deep learning technology is rapidly advancing and is nowused to solve complex problems. Here, we used deep learning in convolutional

neural networks to establish an automated method to identify endothelial cells derived from induced pluripotent stem cells (iPSCs),

without the need for immunostaining or lineage tracing. Networks were trained to predict whether phase-contrast images contain endo-

thelial cells based onmorphology only. Predictions were validated by comparison to immunofluorescence staining for CD31, amarker of

endothelial cells. Method parameters were then automatically and iteratively optimized to increase prediction accuracy. We found that

prediction accuracy was correlated with network depth and pixel size of images to be analyzed. Finally, K-fold cross-validation confirmed

that optimized convolutional neural networks can identify endothelial cells with high performance, based only on morphology.
INTRODUCTION

Machine learning consists of automated algorithms that

enable learning from large datasets to resolve complex

problems, including those encountered in medical science

(Gorodeski et al., 2011; Heylman et al., 2015; Hsich et al.,

2011). In deep learning, a form of machine learning, pat-

terns from several types of data are automatically extracted

(Lecun et al., 2015) to accomplish complex tasks such as

image classification, which in conventional machine

learning requires feature extraction by a human expert.

Deep learning eliminates this requirement by identifying

the most informative features using multiple layers in neu-

ral networks, i.e., deep neural networks (Hatipoglu and Bil-

gin, 2014), which were first conceived in the 1940s to

mimic human neural circuits (McCulloch and Pitts,

1943). In such neural networks, each neuron receives

weighted data from upstreamneurons, which are then pro-

cessed and transmitted to downstream neurons. Ulti-

mately, terminal neurons calculate a predicted value based

on processed data, and weights are then iteratively opti-

mized to increase the agreement between predicted and

observed values. This technique is rapidly advancing due

to innovative algorithms and improved computing power

(Bengio et al., 2006; Hinton et al., 2006). For example, con-

volutional neural networks have now achieved almost the

same accuracy as a clinical specialist in diagnosing diabetic

retinopathy and skin cancer (Esteva et al., 2017; Gulshan

et al., 2016). Convolutional neural networks have also

proved useful in cell biology such as morphological classi-

fication of hematopoietic cells, C2C12 myoblasts, and
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induced pluripotent stem cells (iPSCs) (Buggenthin et al.,

2017; Niioka et al., 2018; Yuan-Hsiang et al., 2017).

iPSCs, which can be established from somatic cells by

expression of defined genes (Takahashi and Yamanaka,

2006), hold great promise in regenerative medicine (Yuasa

and Fukuda, 2008), disease modeling (Tanaka et al., 2014),

drug screening (Avior et al., 2016), and precision medicine

(Chen et al., 2016). iPSCs can differentiate into numerous

cell types, although differentiation efficiencies vary among

cell lines and are sensitive to experimental conditions (Hu

et al., 2010; Osafune et al., 2008). In addition, differenti-

ated cell types are difficult to identify without molecular

techniques such as immunostaining and lineage tracing.

We hypothesized that phase-contrast images contain

discriminative morphological information that can be

used by a convolutional neural network to identify endo-

thelial cells. Accordingly, we investigated whether deep

learning techniques can be used to identify iPSC-derived

endothelial cells automatically based only onmorphology.
RESULTS

Development of an Automated System to Identify

Endothelial Cells

We differentiated iPSCs as previously described (Patsch

et al., 2015), obtaining mesodermal cells at around

day 3 and specialized endothelial cells at around day 5

(Figure S1A). At day 6, structures that resemble vascular

tubes were formed (Figure S1B). CD31 staining

confirmed that endothelial cells were obtained at an
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efficiency of 20%–35%, as assessed by flow cytometry.

Differentiation efficiency was strongly variable (Fig-

ure S1C), highlighting the need for an automated cell

identification system to assess iPSC differentiation or

to identify and quantify the cell types formed.

The basic strategy to identify endothelial cells by convo-

lutional neural networks is shown in Figure 1A. In brief,

differentiated iPSCs were imaged by phase contrast and

by immunofluorescence staining for CD31, a marker of

endothelial cells. The latter were then binarized into white

and black pixels corresponding to raw pixels above and

below a threshold value, respectively. Subsequently, input

blocks were extracted randomly from phase-contrast im-

ages, and matching target blocks equivalent to or within

input blocks were extracted from both phase-contrast and

binarized immunofluorescence images. Binarized target

blocks were then classified as unstained (0) or stained (1)

depending on the ratio of white pixels to black, to generate

answers. Finally, input blocks were analyzed in LeNet, a

small network (Lecun et al., 1998), and AlexNet, a large

network (Krizhevsky et al., 2012), to predict phase-contrast

target blocks as unstained or stained. Predictions were

compared with answers obtained from binarized target

blocks, and weights were automatically and iteratively

optimized to train the neural networks and thereby in-

crease accuracy (Figure 1A).

Networks were then optimized according to Figure 1B.

Number of blocks, input block size, and target block size

were first optimized using the small network, along with

staining threshold, the ratio of white pixels to black for a

target block to be classified as stained. To improve perfor-

mance, as assessed by F1 score and accuracy, the small

network was compared with the large network, observed

errors were analyzed, and binarized target blocks were rebi-

narized by visual comparison of raw fluorescent images

with phase-contrast images. Finally, the optimized network

was validated by K-fold cross-validation (Figure 1B). To this

end, we obtained 200 images from each of four indepen-

dent experiments, of which 640 were used for training

and 160 for validation to collect data shown in Figures 2

and 3. From each image, 200 blocks were randomly ex-

tracted, and 500–128,000 of the blocks were used for

training while 32,000 blocks were used for validation

(Figure 1C).

Improvement of F1 Score and Accuracy by

Optimization

To train the networks we optimized several experimental

conditions, including number of input blocks, target block

size, and input block size. Performancewas evaluated based

on F1 scores, which aggregates recall and precision, and on

accuracy, which is the fraction of correct predictions. As

noted, we first used 500–128,000 blocks for training (Fig-
1688 Stem Cell Reports j Vol. 10 j 1687–1695 j June 5, 2018
ure 1C) to determine the number of blocks required to

achieved convergence (Table S1). Inflection points in F1

scores and accuracy were observed at 16,000 blocks, and

convergence was achieved at 32,000 blocks for an input

and target block size of 128 3 128 pixels, as well as for an

input block size of 512 3 512 pixels and a target block

size of 32 3 32 pixels (Figure 2A). Hence, 32,000 blocks

were used for training in subsequent experiments. Next,

the optimal combination of block size and staining

threshold was determined by input blocks of 32 3 32,

64 3 64, 128 3 128, 256 3 256, and 512 3 512 pixels.

We note that 32 3 32-pixel blocks contained only single

cells, while 512 3 512-pixel blocks contained entire col-

onies and surrounding areas (Figure S2A). Based on F1

scores, performance was best from an input block size of

512 3 512 pixels combined with a staining threshold of

0.3 (Figures 2B and 2C; Table S2). Both F1 score and accu-

racy increased with input block size (Figures 2D, S2B, and

S2C), indicating that areas surrounding cells should be

included to increase accuracy. In contrast, target block

size did not affect predictive power (Figure 2E) or the corre-

lation between input block size and F1 scores and accuracy

(Figure S2D and Table S3).

Effect of Network Size on Predictive Power

As network architecture is critical to performance, we

compared the predictive power of the small network LeNet

(Lecun et al., 1998) after training on 128,000 blocks with

that of the large network AlexNet (Krizhevsky et al.,

2012) (Figure 3A). F1 scores and accuracy from the latter

were higher (Figures 3B and S3A), suggesting that extrac-

tion of complex features by a large network improves cell

identification by morphology. Performance was further

enhanced by analyzing true positives, true negatives, false

positives, and false negatives (Figures 3C and S3B). We

found that true positives and true negatives were typically

obtained in areas with uniformly distributed cells. In

contrast, areas with heterogeneous appearance, such as at

the border between abundantly and sparsely colonized sur-

faces, often led to false positives or false negatives. To

examine whether F1 scores are influenced by heteroge-

neous appearance (Figure S4A), we scored the complexity

of all 32,000 512 3 512-pixel validation blocks as the

average difference between adjacent pixels, normalized to

the dynamic range (Saha and Vemuri, 2000). Blocks with

complexity of <0.04 were considered sparsely colonized,

while blocks with complexity of 0.04 to 0.08 typically con-

tained uniformly distributed cells with clear boundaries.

All other images had complexity >0.08 and contained

dense colonies with indistinct cell borders. In both the

small and large networks (Figures S4B, S4C, and S4D), F1

scores were highest for blocks with complexity of 0.04 to

0.08 (typically 0.06), implying that variations in cell
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Figure 1. Analysis of Induced Pluripotent Stem Cell-Derived Endothelial Cells Using Convolutional Neural Networks
(A) Training protocol. Input blocks were extracted from phase-contrast images and predicted by networks to be unstained (0) or stained
(1) for CD31. Target blocks containing single cells were extracted from immunofluorescent images of the same field, binarized based on
CD31 staining, and classified as stained or unstained based on the ratio of white pixels to black. Network weights were then automatically
and iteratively adjusted to maximize agreement between predicted and observed classification. Scale bars, 400 mm (upper panels), 5 mm
(middle panels), and 80 mm (bottom panels).
(B) Optimization of experimental parameters to maximize F1 score and accuracy.
(C) Two hundred images each were obtained from four independent experiments. Images were randomized at 80:20 ratio into training and
evaluation sets, and 200 blocks were randomly extracted from each image.
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Figure 2. Dataset Adjustment
(A) F1 score and accuracy as a function of number of input blocks. Left: network performance using 1283 128-pixel (px) input blocks and
128 3 128-px target blocks. Right: performance using 512 3 512-px input blocks and 32 3 32-px target blocks.
(B and C) F1 score as a function of input block size and staining threshold. The optimal threshold is boxed in red and the optimal input
block size is boxed in blue.
(D) Average F1 score for different input block sizes.
(E) F1 score for different target block sizes.
See also Figure S2 and Tables S1–S3.
density and morphology affect network performance, in

line with incorrect predictions as shown in Figures 3C

and S3B. In light of this result, we speculated that weak
1690 Stem Cell Reports j Vol. 10 j 1687–1695 j June 5, 2018
staining, non-specific fluorescence, and autofluorescence

in dense colonies may also degrade performance. Accord-

ingly, we rebinarized target blocks by visual comparison
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with raw fluorescent images (Figure 3D). Following this

step, 26,861 of 128,000 blocks (21%) were classified as

stained, while fully automated binarization scored 40,852

of 128,000 blocks (32%) as stained (Table S4A). Notably,

the F1 score and accuracy rose above 0.9 and 0.95, respec-

tively, in the large network (Figure 3E and Table S4A).

K-Fold Cross-Validation

Finally, we assessed network performance and generaliza-

tion by K-fold cross-validation, in which k subsets of data

are divided into k � 1 training datasets and one validation

dataset. Training and validation are then performed k times

using different combinations of training and validation da-

tasets. In our case, 800 images were collected in four inde-

pendent experiments, of which various combinations of

600 images from three experiments were used for training

and 200 images from one experiment were used for valida-

tion (Figure 4A). The F1 score and accuracy were approxi-

mately 0.7 and higher than 0.7 for the small network

with automatically binarized target blocks, but over 0.75

and over 0.9, respectively, for the large network with rebi-

narized target blocks (Figures 4B and 4C; Table S4B).
DISCUSSION

In this study, we demonstrated that deep learning tech-

niques are effective in identifying iPSC-derived endothelial

cells. Following optimization of parameters such as number

of input blocks, target block size, input block size, staining

threshold, and network size, we achieved satisfactory F1

scores and accuracy. Notably, we found that a larger input

block increasespredictionaccuracy, indicating that the envi-

ronment surrounding cells is an essential feature, aswas also

observed for differentiated C2C12 myoblasts (Niioka et al.,

2018). We note that the immediate microenvironment is

also an essential determinant of differentiation (Adams

and Alitalo, 2007; Lindblom et al., 2003; Takakura et al.,

2000), and that the positive correlation between input block

sizeandF1scoreoraccuracymayprovehelpful in future stra-

tegies to identify differentiated cells by morphology.

In comparison with other machine learning techniques,

deep learning is straightforward and achieves high accu-

racies. Indeed, deep learning algorithms have won the Im-
Figure 3. Network Optimization
(A) Comparison of LeNet and AlexNet, which are small and large deep
(B) F1 score learning curves from the small and large network.
(C) Representative true positive, false positive, true negative, and fa
(D) Immunofluorescent images were binarized automatically, or rebin
contrast images. Scale bars, 100 mm.
(E) F1 score and accuracy were compared following training of the sma
blocks.
See also Figures S3 and S4; Table S4.
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ageNet Large-Scale Visual Recognition Challenge since

2012 (He et al., 2015; Krizhevsky et al., 2012; Szegedy

et al., 2014; Zeng et al., 2016), and have also proved useful

in cell biology (Buggenthin et al., 2017; Niioka et al., 2018;

Van Valen et al., 2016; Yuan-Hsiang et al., 2017). Although

we used the older-generation networks LeNet and AlexNet,

newer networks achieve even better accuracy in image clas-

sification (Esteva et al., 2017; Gulshan et al., 2016). Several

techniques, such as increasing network depth (Simonyan

and Zisserman, 2014), residual learning (He et al., 2015),

and batch normalization (Ioffe and Szegedy, 2015), may

also enhance performance, although these were not imple-

mented in this study, since results were already satisfactory.

Inspection revealed some issues in binarizing heteroge-

neous areas in images with weak staining, non-specific

fluorescence, and autofluorescence. To lower the number

of false positives and improve performance, we rebinarized

these images by comparing raw fluorescent images with

phase-contrast images. In addition, cell density signifi-

cantly affected F1 scores, implying that cells should be

cultured carefully to a suitable density, or that networks

should be trained to distinguish between true and false pos-

itives, especially when images are heterogeneous. Finally,

K-fold cross-validation showed that iPSC-derived endothe-

lial cells were identified with accuracy approximately 0.9

and F1 score 0.75, in line with similar attempts (Buggen-

thin et al., 2017; Niioka et al., 2018; Yuan-Hsiang et al.,

2017).

Importantly, the data show that iPSC-derived endothe-

lial cells can be identified based on morphology alone,

requiring only 100 ms per block in a small network and

275 ms per block in a large network (Figure S4E). As

morphology-based identification does not depend on la-

beling, genetic manipulation, or immunostaining, it can

be used for various applications requiring native, living

cells. Thus, this system may enable analysis of large data-

sets and advance cardiovascular research and medicine.
EXPERIMENTAL PROCEDURES

iPSC Culture
iPSCs were maintained in mTeSR with 0.5% penicillin/strepto-

mycin on culture dishes coated with growth factor-reduced
neural networks.

lse negative images. Scale bars, 80 mm.
arized by manual comparison of raw fluorescent images to phase-

ll and large network on automatically binarized or rebinarized target
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See also Table S4.
Matrigel, and routinely passaged every week. Media were changed

every other day. Detailed protocols are described in Supplemental

Experimental Procedures.

Endothelial Cell Differentiation
iPSCs cultured onMatrigel-coated 6-well plates were enzymatically

detached on day 7, and differentiated into endothelial cells as

described in Supplemental Experimental Procedures.

Flow Cytometry
At day 6 of differentiation, cells were dissociated, stained with

APC-conjugated anti-CD31, and sorted on BD FACSAria III. As a

negative control, we used unstained cells. Detailed protocols are

described in Supplemental Experimental Procedures.

Immunocytochemistry
At day 6 of differentiation, cells were fixed with 4% paraformalde-

hyde, blocked with ImmunoBlock, probed with primary anti-

bodies to CD31, and labeled with secondary antibodies as

described in Supplemental Experimental Procedures.

Preparation of Datasets
All phase-contrast and immunofluorescent images were acquired

at day 6 of differentiation. Two hundred images were automati-

cally obtained from each of four independent experiments. Of

these, 640 were used for training and 160 were used for validation

in Figures 2 and 3. For K-fold validation in Figure 4, 600 images

from three experiments were used for training and 200 images

from one experiment were used for validation, in all possible com-

binations. Datasets were constructed by randomly extracting 200
input blocks from each phase-contrast image. On the other

hand, target blocks were extracted from binarized immunofluores-

cent images. Detailed procedures are described in Supplemental

Experimental Procedures.
Deep Neural Networks
We used LeNet, a small network that contains two convolution

layers, two max pooling layers, and two fully connected layers,

as well as AlexNet, a large network that contains five convolution

layers, three max pooling layers, and three fully connected layers.

Network structures are shown in Figure 3A and Supplemental

Experimental Procedures.
Performance Evaluation
Performance was evaluated based on F1 scores, an aggregate of

recall and precision, and on accuracy, the fraction of correct predic-

tions. Detailed information is provided in Supplemental Experi-

mental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, four figures, and four tables and can be found with

this article online at https://doi.org/10.1016/j.stemcr.2018.04.

007.
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Supplemental Figure Legends 
 
Figure S1. Generation of iPSC-derived Endothelial Cells 
(A) Differentiation of endothelial cells. iPSCs were seeded onto Matrigel-coated dishes, cultured in indicated 
conditions, and examined at day 6. 

(B) Phase-contrast images at day 1 to 6. Scale bars, 500  µm. 
(C) Phase-contrast images (upper panels), immunofluorescent staining for CD31 (middle panels), and FACS analysis 
(bottom panels) showed variability in differentiation at day 6 in various experiments. Left, middle, and right panels 

show experiments with high, intermediate, and low differentiation efficiency. Scale bars, 200 µm. 
 
Figure S2. Network Performance Depending on Input Block Size, Staining Threshold and Target Block Size, 
Related to Figure 2, Tables S1 and S2. 
(A) Phase-contrast and binarized fluorescent images of 512 × 512 px, 256 × 256 px, 128 × 128 px, 64 × 64 px, and 32 

× 32 px blocks. Scale bars, 80 µm, 40 µm, 20 µm, 10 µm, and 5 µm, respectively. 
(B) and (C) Accuracy obtained from networks trained on 32 × 32 px, 64 × 64 px, 128 × 128 px, 256 × 256 px, and 
512 × 512 px input blocks, using 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 as staining threshold, i.e., the ratio of 
white pixels to black for a binarized image to be classified as stained..  
(D) F1 score and accuracy obtained from networks trained on input and target blocks of various sizes. 
 

Figure S3. Optimization of Network Performance, Related to Figure 3. 
(A) Learning curve of the small and large network, as assessed by accuracy. 
(B) Representative images of true positives and true negatives (blue) and of false positives and false negatives (red). 

Yellow areas are CD31-stained. Scale bars, 200 µm. 
 

Figure S4. Correlation Between Image Complexity and F1 score, Related to Figure 3. 
(A) Representative phase-contrast images with complexity 0.00-0.04 (group 1), 0.04-0.08 (group 2), and over 0.08 

(group 3). Scale bars, 80 µm. 
(B) F1 score in each group using the small and large network (left), and relationship between F1 score and image 
complexity (right). 
(C) and (D) Performance statistics from each group (C) and over increasing complexity (D). True positive: TP, True 
negative: TN, False positive: FP, and False negative: FN 
(E) Time required to classify each block. 

 
  



Supplemental Table Legends 
 
Table S1. Number of Blocks Required for Learning, Related to Figure 2. 
Networks were trained on 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, and 128,000 blocks. Accuracy, 
recall, precision, and F1 score were assessed using 128 × 128 px input blocks and 128 × 128 px target blocks (left), 
or using 512 × 512 px input blocks and 32 × 32 px target blocks (right). 
 

Table S2. Network Performance Depending on Input Block Size and Staining Threshold, Related to Figures 2 
and S2. 
Networks were trained using 32 × 32 px, 64 × 64 px, 128 × 128 px, 256 × 256 px, and 512 × 512 px input blocks, 
using 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 as staining threshold, i.e., the ratio of white pixels to black for a 
binarized image to be classified as stained. Accuracy, recall, precision, and F1 score were calculated. 

 
Table S3. Network Performance Depending on Target Block Size, Related to Figures 2 and S2. 
F1 score, accuracy and other indices obtained from networks trained on input and target blocks of various sizes. 
 

Table S4. Network Performance, Related to Figures 3 and 4. 
(A) Network performance was compared following training on automatically binarized or rebinarized fluorescent 
images. 
(B) K-fold cross validation of the small network trained on automatically binarized fluorescent images (left), and of 
the large network trained on rebinarized fluorescent images (right). Independent training and validation were 
performed according to Figure 4. 

  



Supplemental Experimental Procedures 
 
iPSC Culture  
iPSCs were maintained in mTeSR1 (Stem Cell Technologies, Vancouver, BC, Canada) media with 0.5 % 
penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) on culture dishes coated with growth factor-
reduced Matrigel (BD Biosciences, San Jose, CA, USA). iPSCs were routinely passaged every week by washing in 
PBS, incubating in TrypLE Select (Thermo Fisher Scientific) for 3 min at 37 °C, detaching with a cell scraper, 
harvesting, and reseeding at a split ratio of 1:5 to 1:8 in mTeSR1 with 0.5 % penicillin/streptomycin and 10 µM ROCK 
inhibitor Y-27632 (Wako, Osaka, Japan). Media were changed every other day. 
 

Endothelial Cell Differentiation 
iPSCs cultured on Matrigel-coated 6-well plates were detached using TrypLE Select on day 7, and clumps with 
diameter 100-200 µm were reseeded on Matrigel-coated dishes and incubated for 24 hours in mTeSR1 media with 10 
µM ROCK inhibitor Y-27632. On day 1, mesoderm was induced in N2B27 media (1:1 mixture of DMEM/F12 and 
Neurobasal media containing N2 and B27, all reagents from Thermo Fisher Scientific) supplemented with β-
mercaptoethanol, 8 µM CHIR-99021 (Cayman Chemical, Ann Arbor, MI, USA), and 25 ng/mL BMP4 (R&D Systems, 
Minneapolis, MN, USA). At day 3 and 4, media were replaced with StemPro-34 SFM (Thermo Fisher Scientific) 
containing 200 ng/mL VEGF (Wako) and 2 µM forskolin (Abcam, Cambridge, UK) to induce endothelial cell 
specification (Patsch et al., 2015). Endothelial cell clusters were reliably obtained on day 6. After sorting by flow 
cytometry, cells expressing CD31 were cultured for another four days in StemPro-34 SFM containing 50 ng/mL VEGF. 
 

Flow Cytometry 
At day 6 of differentiation, cells were dissociated into singe cells using Accutase (Innovative Cell Technologies, San 
Diego, CA, USA), suspended in PBS with 0.5 % BSA, and stained with a 1:50 dilution of APC-conjugated anti-CD31 
(Miltenyi Biotec, Bergisch Gladbach, NRW, Germany, catalog no. 130-092-652) according to the manufacturer’s 
instructions. As a negative control, we used unstained cells. Cells were then sorted on a BD FACS Aria III (Becton 
Dickinson, Franklin Lakes, NJ, USA), and data were collected from at least 10,000 events. 
 

Immunocytochemistry 
Cells were fixed in 4 % paraformaldehyde (MUTO Pure Chemicals, Tokyo, Japan) for 20 min at room temperature, 
washed with PBS, blocked with ImmunoBlock (DS Pharma Biomedical, Osaka, Japan) for 1 h, and probed at 4 °C 
overnight with 1:20 primary antibodies to CD31 (R&D Systems, catalog no. AF806). Specimens were then washed 
thrice in PBS, labeled for 1 h with 1:200 secondary anti-sheep IgG (Thermo Fisher Scientific, catalog no. A-11015), 
and imaged on an inverted fluorescence phase-contrast microscope.  
 

Preparation of Datasets 
Phase-contrast and immunofluorescent images were acquired at day 6 of differentiation. Two hundred images were 
automatically acquired from each of four independent experiments. Phase contrast and fluorescent images were taken 
on an SI8000 Research Microscope (SONY, Tokyo, Japan) at 10× and 0.454 µm/pixel. Each image was saved as a 



2752 × 2200 px grayscale image in BMP format at 8 bits per pixel. To generate datasets for training and evaluation, 
200 input blocks of 32 × 32 px, 64 × 64 px, 128 × 128 px, 256 × 256 px, and 512 × 512 px were randomly extracted 
from each phase-contrast image. The 256 × 256 px and 512 × 512 px input blocks were resized to 128 × 128 px as 
needed. Immunofluorescent images of CD31 were binarized using in-house software to distinguish specific signals 
from nonspecific signals. In particular, pixels were binarized to white if its value (0-255 in raw immunofluorescent 
images) is above a threshold value empirically determined based on the complete image. All other pixels were 
binarized to black. Finally, 32 × 32 px and 128 × 128 px target blocks were extracted, corresponding to the center of 
input blocks. 

Data in Figure 2 and 3 were generated based on 640 training images and 160 validation images. In both 
experiments in Figure 2A, 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, and 128,000 blocks were used for 
training, and 32,000 blocks were used for validation. In Figure 2B, 32,000 blocks were used for training, and 32,000 
blocks were used for validation. In Figure 2C to 3E, all 128,000 blocks were used for training, and 32,000 blocks were 
used for validation. For K-fold validation in Figure 4, four independent data sets of 200 images each were obtained, 
of which three were used as training sets and one was used as validation set in all possible combinations, such that the 
number of folds is 4. To rebinarize target blocks, we compared raw fluorescent images to phase-contrast images in 
GNU Image Manipulation Program, and rebinarized weakly stained, dense colonies as black pixels. All 800 images 
were processed in this manner. 
 

Deep Neural Networks 
We used LeNet, a small convolutional neural network with two convolution layers, two max pooling layers, and two 
fully-connected layers, as well as AlexNet, a large network with five convolution layers, three max pooling layers, 
and three fully-connected layers (Figure 3A). In both networks, each convolutional layer is connected to Rectified 
Linear Units for activation (Nair and Hinton, 2010). In the output layer, we used a sigmoid function, consistent with 
binary classification. We used mini-batch training with stochastic gradient descent, learning rate 0.01, cross-entropy 
error as loss function. Weights were initialized using the Xavier algorithm (Glorot and Bengio, 2010). To avoid 
overfitting, dropout techniques were used in the large network. Networks were trained using the TensorFlow/Keras 
framework (Cholle, 2015) on a computer with a Core i7-6700 CPU (Intel, Santa Clara, CA, USA), 16 GB memory, 
and GeForce GTX980Ti GPU (NVIDIA, Santa Clara, CA, USA). 
 

Image Complexity 
We calculated image complexity (activity), which we used as an index of cell density, in all 
32,000 512 × 512 px validation blocks used in the small and large network. This value was 

calculated according to 
 
where m is the image width in pixels, n is the image height in pixels, I is the pixel value, and (i, j) are coordinates (x-
axis, y-axis). Essentially, image complexity is the average difference between adjacent pixels normalized to the 
dynamic range (Saha and Vemuri, 2000). Thus, the numerator is the sum of differences in adjacent pixels on both x 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ ∑ |𝐼𝐼(𝐴𝐴, 𝑗𝑗) − 𝐼𝐼(𝐴𝐴 + 1, 𝑗𝑗)| + ∑ ∑ |𝐼𝐼(𝐴𝐴, 𝑗𝑗) − 𝐼𝐼(𝐴𝐴, 𝑗𝑗 + 1)|𝑛𝑛−2

𝑗𝑗=0
𝑚𝑚−1
𝑖𝑖=0

𝑛𝑛−1
𝑗𝑗=0

𝑚𝑚−2
𝑖𝑖=0

{(m − 1)n + m(n − 1)} {max(𝐼𝐼)− min(𝐼𝐼)}
 



and y axes, while the denominator is the product of image size and dynamic range, which is the difference between 
the maximum and minimum pixel value. 
 

Evaluation of Prediction Performance 
Network performance was evaluated based on accuracy and F1 score, which combines recall (sensitivity) and 
precision (true positive rate). Accordingly, the F1 score is 1 for perfect predictions and 0.5 for random predictions. 
On the other hand, precision is the fraction of true positives among predicted positives, while recall is the fraction of 
true positives detected among all positives: 

𝐹𝐹1 𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 =  
2𝑅𝑅𝑠𝑠𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 ×  𝑃𝑃𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑃𝑃
𝑅𝑅𝑠𝑠𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑃𝑃

,𝑃𝑃𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑃𝑃 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
,𝑅𝑅𝑠𝑠𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

 

 
Precision and recall for negative predictions were calculated in a similar manner: 

𝑃𝑃𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑃𝑃 (𝑃𝑃𝑠𝑠𝑛𝑛𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠) =  
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
,𝑅𝑅𝑠𝑠𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 (𝑃𝑃𝑠𝑠𝑛𝑛𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠)  =

𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃

 

 
Finally, accuracy is the ratio of correct predictions to all predictions: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑅𝑅𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝐹𝐹 +  𝐹𝐹𝑃𝑃
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C

D
Image complexity TN FN FP TP Precision Recall Accuracy F1 score

0.00-0.02 4,595 165 16 21 0.567568 0.112903 0.962268 0.188341
0.02-0.04 4,062 542 530 985 0.650165 0.645056 0.824808 0.6476
0.04-0.06 1,105 475 395 3,991 0.909941 0.893641 0.854174 0.901717
0.06-0.08 1,653 517 238 2,201 0.902419 0.809787 0.83619 0.853597
0.08-0.10 3,078 487 219 1,014 0.822384 0.67555 0.852855 0.74177

0.10- 3,550 538 385 1,238 0.762785 0.697072 0.838382 0.72845

Image complexity TN FN FP TP Precision Recall Accuracy F1 score
0.00-0.02 4,602 128 9 58 0.865672 0.311828 0.97144 0.458498
0.02-0.04 4,268 324 324 1,203 0.787819 0.787819 0.8941 0.787819
0.04-0.06 1,149 251 351 4,215 0.923127 0.943798 0.899095 0.933348
0.06-0.08 1,669 162 222 2,556 0.920086 0.940397 0.916685 0.930131
0.08-0.10 3,039 247 258 1,254 0.829365 0.835443 0.894748 0.832393

0.10- 3,564 462 371 1,314 0.779822 0.739865 0.854141 0.759318

Group Image complexity TN FN FP TP Precision Recall Accuracy F1 score
1 0.00-0.04 8,657 707 546 1,006 0.648196 0.587274 0.885214 0.616233
2 0.04-0.08 2,758 992 633 6,192 0.907253 0.861915 0.846336 0.884003
3 0.08- 6,628 1,025 604 2,252 0.788515 0.687214 0.84499 0.734388
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Supplementary Table 1
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Input block size: 128 x 128 (px) 
Target block size: 128 x 128 (px) 

Input block size: 512 x 512 (px)
Target block size: 32 x 32 (px)

Pred = “Prediction” ; Ans = “Answer” ; 0 = “unstained” ; 1 = “stained”

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 21,261 0 21,261 1 Ans=0 21,148 0 21,148 1
Ans=1 10,739 0 10,739 0 Ans=1 10,852 0 10,852 0
Total 32,000 0 32,000 Total 32,000 0 32,000

Precision 0.6644 0 Precision 0.6609 0
F1 score 0.7984 0 F1 score 0.7958 0
Accuracy 0.6644 Accuracy 0.6609

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 21,261 0 21,261 1 Ans=0 21,148 0 21,148 1
Ans=1 10,737 2 10,739 0.0002 Ans=1 10,852 0 10,852 0
Total 31,998 2 32,000 Total 32,000 0 32,000

Precision 0.6644 1 Precision 0.6609 0
F1 score 0.7984 0.0004 F1 score 0.7958 0
Accuracy 0.6645 Accuracy 0.6609

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 21,261 0 21,261 1 Ans=0 21,129 19 21,148 0.9991
Ans=1 10,738 1 10,739 0.0001 Ans=1 10,774 78 10,852 0.0072
Total 31,999 1 32,000 Total 31,903 97 32,000

Precision 0.6644 1 Precision 0.6623 0.8041
F1 score 0.7984 0.0002 F1 score 0.7966 0.0142
Accuracy 0.6644 Accuracy 0.6627

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 20,913 348 21,261 0.9836 Ans=0 18,684 2,464 21,148 0.8835
Ans=1 9,901 838 10,739 0.078 Ans=1 8,276 2,576 10,852 0.2374
Total 30,814 1,186 32,000 Total 26,960 5,040 32,000

Precision 0.6787 0.7066 Precision 0.693 0.5111
F1 score 0.8032 0.1405 F1 score 0.7768 0.3242
Accuracy 0.6797 Accuracy 0.6644

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 18,933 2,328 21,261 0.8905 Ans=0 18,836 2,312 21,148 0.8907
Ans=1 6,646 4,093 10,739 0.3811 Ans=1 6,514 4,338 10,852 0.3997
Total 25,579 6,421 32,000 Total 25,350 6,650 32,000

Precision 0.7402 0.6374 Precision 0.743 0.6523
F1 score 0.8084 0.477 F1 score 0.8102 0.4957
Accuracy 0.7196 Accuracy 0.7242

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 19,298 1,963 21,261 0.9077 Ans=0 18,816 2,332 21,148 0.8897
Ans=1 5,765 4,974 10,739 0.4632 Ans=1 4,113 6,739 10,852 0.621
Total 25,063 6,937 32,000 Total 22,929 9,071 32,000

Precision 0.77 0.717 Precision 0.8206 0.7429
F1 score 0.8332 0.5628 F1 score 0.8538 0.6765
Accuracy 0.7585 Accuracy 0.7986

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 18,649 2,612 21,261 0.8771 Ans=0 18,743 2,405 21,148 0.8863
Ans=1 4,635 6,104 10,739 0.5684 Ans=1 3,865 6,987 10,852 0.6438
Total 23,284 8,716 32,000 Total 22,608 9,392 32,000

Precision 0.8009 0.7003 Precision 0.829 0.7439
F1 score 0.8373 0.6275 F1 score 0.8567 0.6903
Accuracy 0.7735 Accuracy 0.8041

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 19,007 2,254 21,261 0.894 Ans=0 18,754 2,394 21,148 0.8868
Ans=1 4,019 6,720 10,739 0.6258 Ans=1 3,225 7,627 10,852 0.7028
Total 23,026 8,974 32,,000 Total 21,979 10,021 32,000

Precision 0.8255 0.7488 Precision 0.8533 0.7611
F1 score 0.8584 0.6818 F1 score 0.8697 0.7308
Accuracy 0.804 Accuracy 0.8244

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 18,409 2,852 21,261 0.8659 Ans=0 18,558 2,590 21,148 0.8775
Ans=1 3,388 7,351 10,739 0.6845 Ans=1 2,730 8,122 10,852 0.7484
Total 21,797 10,203 32,000 Total 21,288 10,712 32,000

Precision 0.8446 0.7205 Precision 0.8718 0.7582
F1 score 0.8551 0.702 F1 score 0.8746 0.7533
Accuracy 0.805 Accuracy 0.8337
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Pred = “Prediction” : 0 = “unstained” , 1 = “stained”
Ans = “Answer”       : 0 = “unstained” , 1 = “stained”

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 16,467 2,885 19,352 0.8509 Ans=0 14,370 4,256 18,626 0.7715 Ans=0 13,616 4,235 17,851 0.7628 Ans=0 14,587 2,392 16,979 0.8591 Ans=0 13,447 2,771 16,218 0.8291
Ans=1 7,401 5,247 12,648 0.4148 Ans=1 5,602 7,772 13,374 0.5811 Ans=1 4,979 9,170 14,149 0.6481 Ans=1 6,471 8,550 15,021 0.5692 Ans=1 5,137 10,645 15,782 0.6745
Total 23,868 8,132 32,000 Total 19,972 120,28 32,000 Total 18,595 13,405 32,000 Total 21,058 10,942 32,000 Total 18,584 13,416 32,000

Precision 0.6899 0.6452 Precision 0.7195 0.6462 Precision 0.7322 0.6841 Precision 0.6927 0.7814 Precision 0.7236 0.7935
F1 score 0.762 0.505 F1 score 0.7446 0.6119 F1 score 0.7472 0.6656 F1 score 0.767 0.6586 F1 score 0.7728 0.7292
Accuracy 0.6786 Accuracy 0.6919 Accuracy 0.7121 Accuracy 0.723 Accuracy 0.7529

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 13,946 5,999 19,945 0.6992 Ans=0 14,719 4,817 19,536 0.7534 Ans=0 15,570 3,594 19,164 0.8125 Ans=0 16,199 2,723 18,922 0.8561 Ans=0 15,390 3,067 18,457 0.8338
Ans=1 4,805 7,250 12,055 0.6014 Ans=1 4,721 7,743 12,464 0.6212 Ans=1 4,840 7,996 12,836 0.6229 Ans=1 4,685 8,393 13,078 0.6418 Ans=1 3,403 10,140 13,543 0.7487
Total 18,751 13,249 32,000 Total 19,440 12,560 32,000 Total 20,410 11,590 32,000 Total 20,884 11,116 32,000 Total 18,793 13,207 32,000

Precision 0.7437 0.5472 Precision 0.7572 0.6165 Precision 0.7629 0.6899 Precision 0.7757 0.755 Precision 0.8189 0.7678
F1 score 0.7208 0.573 F1 score 0.7553 0.6188 F1 score 0.7869 0.6547 F1 score 0.8139 0.6938 F1 score 0.8263 0.7581
Accuracy 0.6624 Accuracy 0.7019 Accuracy 0.7364 Accuracy 0.7685 Accuracy 0.7978

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 16,304 4,081 20,385 0.7998 Ans=0 17,128 3,042 20,170 0.8492 Ans=0 17,085 2,975 20,060 0.8517 Ans=0 17,001 3,035 20,036 0.8485 Ans=0 17,963 1,863 19,826 0.906
Ans=1 5,430 6,185 11,615 0.5325 Ans=1 5,314 6,516 11,830 0.5508 Ans=1 4,623 7,317 11,940 0.6128 Ans=1 3,404 8,560 11,964 0.7155 Ans=1 3,564 8,610 12,174 0.7072
Total 21,734 10,266 32,000 Total 22,442 9,558 32,000 Total 21,708 102,92 32,000 Total 20,405 11,595 32,000 Total 21,527 10,473 32,000

Precision 0.7502 0.6025 Precision 0.7632 0.6817 Precision 0.787 0.7109 Precision 0.8332 0.7382 Precision 0.8344 0.8221
F1 score 0.7742 0.5653 F1 score 0.8039 0.6093 F1 score 0.8181 0.6582 F1 score 0.8408 0.7267 F1 score 0.8688 0.7604
Accuracy 0.7028 Accuracy 0.7389 Accuracy 0.7626 Accuracy 0.7988 Accuracy 0.8304

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 17,514 3,227 20,741 0.8444 Ans=0 17,807 2,872 20,679 0.8611 Ans=0 17,912 2,776 20,688 0.8658 Ans=0 18,601 2,219 20,820 0.8934 Ans=0 18,891 1,920 20,811 0.9077
Ans=1 6,419 4,840 11,259 0.4299 Ans=1 4982 6,339 11,321 0.5599 Ans=1 3,943 7,369 11,312 0.6514 Ans=1 3,913 7,267 11,180 0.65 Ans=1 3,310 7,879 11,189 0.7042
Total 23,933 8,067 32,000 Total 22,789 9,211 32,000 Total 21,855 10,145 32000 Total 22,514 9,486 32,000 Total 22,201 9,799 32,000

Precision 0.7318 0.6 Precision 0.7814 0.6882 Precision 0.8196 0.7264 Precision 0.8262 0.7661 Precision 0.8509 0.8041
F1 score 0.7841 0.5009 F1 score 0.8193 0.6175 F1 score 0.8421 0.6869 F1 score 0.8585 0.7033 F1 score 0.8784 0.7508
Accuracy 0.6986 Accuracy 0.7546 Accuracy 0.79 Accuracy 0.8084 Accuracy 0.8366

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 18,617 2,531 21,148 0.8803 Ans=0 18,507 2,607 21,114 0.8765 Ans=0 18,985 2,276 21,261 0.8929 Ans=0 19,629 1,789 21,418 0.9165 Ans=0 19,767 1,841 21,608 0.9148
Ans=1 6,609 4,243 10,852 0.391 Ans=1 5,077 5,809 10,886 0.5336 Ans=1 4,365 6,374 10,739 0.5935 Ans=1 3,784 6,798 10,582 0.6424 Ans=1 3,125 7,267 10392 0.6993
Total 25,226 6,774 32,000 Total 23,584 8,416 32,000 Total 23,350 8,650 32,000 Total 23,413 8,587 32,000 Total 22,892 9,108 32,000

Precision 0.738 0.6264 Precision 0.7847 0.6902 Precision 0.8131 0.7369 Precision 0.8384 0.7917 Precision 0.8635 0.7979
F1 score 0.8029 0.4814 F1 score 0.8281 0.6019 F1 score 0.8511 0.6575 F1 score 0.8757 0.7093 F1 score 0.8884 0.7453
Accuracy 0.7144 Accuracy 0.7599 Accuracy 0.7925 Accuracy 0.8258 Accuracy 0.8448

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 19,768 1,766 21,534 0.918 Ans=0 18,949 2,655 21,604 0.8771 Ans=0 19,315 2,492 21,807 0.8857 Ans=0 20,302 1,724 22,026 0.9217 Ans=0 20,958 1,359 22,317 0.9391
Ans=1 7,375 3,091 10,466 0.2953 Ans=1 5,315 5,081 10,396 0.4887 Ans=1 4,724 5,469 10,193 0.5365 Ans=1 3,703 6,271 9,974 0.6287 Ans=1 3,621 6,062 9,683 0.626
Total 27,143 4,857 32,000 Total 24,264 7,736 32,000 Total 24,039 7,961 32,000 Total 24,005 7,995 32,000 Total 24,579 7,421 32,000

Precision 0.7283 0.6364 Precision 0.781 0.6568 Precision 0.8035 0.687 Precision 0.8457 0.7844 Precision 0.8527 0.8169
F1 score 0.8122 0.4034 F1 score 0.8262 0.5604 F1 score 0.8426 0.6025 F1 score 0.8821 0.698 F1 score 0.8938 0.7088
Accuracy 0.7143 Accuracy 0.7509 Accuracy 0.7745 Accuracy 0.8304 Accuracy 0.8444

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 20,678 1,346 22,024 0.9389 Ans=0 19,789 2,391 22,180 0.8922 Ans=0 20,711 1,693 22,404 0.9244 Ans=0 20,217 2,448 22,665 0.892 Ans=0 21,223 1,864 23,087 0.9193
Ans=1 7,311 2,665 9,976 0.2671 Ans=1 5,177 4,643 9,820 0.4728 Ans=1 4,619 4,977 9,596 0.5187 Ans=1 3,503 5,832 9,335 0.6247 Ans=1 3,156 5,757 8,913 0.6459
Total 27,989 4,011 32,000 Total 24,966 7,034 32,000 Total 25,330 6,670 32,000 Total 23,720 8,280 32,000 Total 24,379 7,621 32,000

Precision 0.7388 0.6644 Precision 0.7926 0.6601 Precision 0.8176 0.7462 Precision 0.8523 0.7043 Precision 0.8705 0.7554
F1 score 0.8269 0.3811 F1 score 0.8395 0.551 F1 score 0.8678 0.612 F1 score 0.8717 0.6622 F1 score 0.8942 0.6964
Accuracy 0.7295 Accuracy 0.7635 Accuracy 0.8027 Accuracy 0.814 Accuracy 0.8431

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 21,310 1,364 22,674 0.9398 Ans=0 21,072 1,890 22,962 0.9177 Ans=0 21,369 1,938 23,307 0.9168 Ans=0 22,630 1,524 24,154 0.9369 Ans=0 22,630 1,524 24,154 0.9369
Ans=1 7,072 2,254 9,326 0.2417 Ans=1 5,666 3,372 9,038 0.3731 Ans=1 4,480 4,213 8,693 0.4846 Ans=1 3,442 4,404 7,846 0.5613 Ans=1 3,442 4,404 7,846 0.5613
Total 28,382 3,618 32,000 Total 26,738 5,262 32,000 Total 25,849 6,151 32,000 Total 26,072 5,928 32,000 Total 26,072 5,928 32,000

Precision 0.7508 0.623 Precision 0.7881 0.6408 Precision 0.8267 0.6849 Precision 0.868 0.7429 Precision 0.868 0.7429
F1 score 0.8348 0.3483 F1 score 0.848 0.4716 F1 score 0.8694 0.5676 F1 score 0.9011 0.6395 F1 score 0.9011 0.6395
Accuracy 0.7364 Accuracy 0.7639 Accuracy 0.7994 Accuracy 0.8448 Accuracy 0.8448

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 22,047 1,491 23,538 0.9367 Ans=0 22,950 1,345 24,295 0.9446 Ans=0 23,183 1,728 24,911 0.9306 Ans=0 24,022 1,513 25,535 0.9407 Ans=0 24,469 1,798 26,267 0.9315
Ans=1 6,538 1,924 8,462 0.2274 Ans=1 5,848 1,857 7,705 0.241 Ans=1 4,820 2,269 7,,089 0.3201 Ans=1 4,415 2,050 6,465 0.3171 Ans=1 3,449 2,284 5,733 0.3984
Total 28,585 3,415 32,000 Total 28,798 3,202 32,000 Total 28,003 3,997 32000 Total 28,437 3,563 32,000 Total 27,918 4,082 32,000

Precision 0.7713 0.5634 Precision 0.7969 0.58 Precision 0.8279 0.5677 Precision 0.8447 0.5754 Precision 0.8765 0.5595
F1 score 0.846 0.324 F1 score 0.8645 0.3405 F1 score 0.8763 0.4093 F1 score 0.8902 0.4089 F1 score 0.9032 0.4654
Accuracy 0.7491 Accuracy 0.7752 Accuracy 0.7954 Accuracy 0.8147 Accuracy 0.836



Supplementary Table 3

Pred = “Prediction” : 0 = “unstained” , 1 = “stained”
Ans = “Answer”       : 0 = “unstained” , 1 = “stained”

Target block size: 128 x 128 (px)Target block size: 32 x 32 (px)

32 x 32
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256 x 256

512 x 512
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Pred=0 Pred=1 Total Recall
Ans=0 17,680 2,705 20,385 0.8673
Ans=1 6,259 5,356 11,615 0.4611
Total 23,939 8,061 32,000

Precision 0.7385 0.6644
F1 score 0.7978 0.5444
Accuracy 0.7199

Pred=0 Pred=1 Total Recall
Ans=0 17,991 2,394 20,385 0.8826
Ans=1 5,533 6,082 11,615 0.5236
Total 23,524 8,476 32,000

Precision 0.7648 0.7176
F1 score 0.8195 0.6054
Accuracy 0.7523

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 17,781 2,604 20,385 0.8723 Ans=0 18,409 2,852 21,261 0.8659
Ans=1 4,420 7,195 11,615 0.6195 Ans=1 3,388 7,351 10,739 0.6845
Total 22,201 9,799 32,000 Total 21,797 10,203 32,000

Precision 0.8009 0.7343 Precision 0.8446 0.7205
F1 score 0.8351 0.672 F1 score 0.8551 0.702
Accuracy 0.7805 Accuracy 0.805

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 17,888 2,497 20,385 0.8775 Ans=0 18,187 1,873 20,060 0.9066
Ans=1 3,656 7,959 11,615 0.6852 Ans=1 3,946 7,994 11,940 0.6695
Total 21,544 10,456 32,000 Total 22,133 9,867 32,000

Precision 0.8303 0.7612 Precision 0.8217 0.8102
F1 score 0.8533 0.7212 F1 score 0.8621 0.7332
Accuracy 0.8077 Accuracy 0.8182

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 18,397 1,988 20,385 0.9025 Ans=0 18,356 1,704 20,060 0.9151
Ans=1 3,173 8,442 11,615 0.7268 Ans=1 3,645 8,295 11,940 0.6947
Total 21,570 10,430 32,000 Total 22,001 9,999 32,000

Precision 0.8529 0.8094 Precision 0.8343 0.8296
F1 score 0.877 0.7659 F1 score 0.8728 0.7562
Accuracy 0.8387 Accuracy 0.8328



Supplementary Table 4

Fold 1

Fold 2

Fold 3

Fold 4

Small network
Automatically binarized

Large network
Rebinarized

Pred=0 Pred=1 Total Recall
Ans=0 17,764 12,928 30,692 0.5788
Ans=1 488 8,820 9,308 0.9476
Total 18,252 21,748 40,000

Precision 0.9733 0.4056
F1 score 0.7259 0.568
Accuracy 0.6646

Pred=0 Pred=1 Total Recall
Ans=0 14,204 3,980 18,184 0.7811
Ans=1 3,679 18,137 21,816 0.8314
Total 17,883 22,117 40,000

Precision 0.7943 0.82
F1 score 0.7876 0.8257
Accuracy 0.8085

Pred=0 Pred=1 Total Recall
Ans=0 20,037 1,934 21,971 0.912
Ans=1 6,803 11,226 18,029 0.6227
Total 26,840 13,160 40,000

Precision 0.7465 0.853
F1 score 0.821 0.7199
Accuracy 0.7816

Pred=0 Pred=1 Total Recall
Ans=0 23,713 5,601 29,314 0.8089
Ans=1 3,116 7,570 10,686 0.7084
Total 26,829 13,171 40,000

Precision 0.8839 0.5747
F1 score 0.8447 0.6346
Accuracy 0.7821

Pred=0 Pred=1 Total Recall
Ans=0 34,853 2,740 37,593 0.9271
Ans=1 972 1,435 2,407 0.5962
Total 35,825 4,175 40,000

Precision 0.9729 0.3437
F1 score 0.9494 0.436
Accuracy 0.9072

Pred=0 Pred=1 Total Recall
Ans=0 18,096 1,505 19,601 0.9232
Ans=1 3,984 16,415 20,399 0.8047
Total 22,080 17,920 40,000

Precision 0.8196 0.916
F1 score 0.8683 0.8568
Accuracy 0.8628

Pred=0 Pred=1 Total Recall
Ans=0 28,847 749 29,596 0.9747
Ans=1 2,245 8,159 10,404 0.7842
Total 31,092 8,908 40,000

Precision 0.9278 0.9159
F1 score 0.9507 0.845
Accuracy 0.9252

Pred=0 Pred=1 Total Recall
Ans=0 34,920 952 35,872 0.9735
Ans=1 734 3,394 4,128 0.8222
Total 35,654 4,346 40,000

Precision 0.9794 0.7809
F1 score 0.9764 0.801
Accuracy 0.9578

A

B

Small network Large network

Automatically
binarized

Rebinarized

Pred = “Prediction” : 0 = “unstained” , 1 = “stained”
Ans= “Answer”        : 0 = “unstained” , 1 = “stained”

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 18,043 1,783 19,826 0.9101 Ans=0 18,291 1,535 19,826 0.9226
Ans=1 2,724 9,450 12,174 0.7762 Ans=1 1,574 10,600 12,174 0.8707
Total 20,767 11,233 32,000 total 19,865 12,135 32,000

Precision 0.8688 0.8413 Precision 0.9208 0.8735
F1 score 0.889 0.8075 F1 score 0.9217 0.8721
Accuracy 0.8592 Accuracy 0.9028

Pred=0 Pred=1 Total Recall Pred=0 Pred=1 Total Recall
Ans=0 23,556 974 24,530 0.9603 Ans=0 23,927 603 24,530 0.9754
Ans=1 1,354 6,116 7,470 0.8187 Ans=1 622 6,848 7,470 0.9167
Total 24,910 7,090 32,000 Total 24,549 7,451 32,000

Precision 0.9456 0.8626 Precision 0.9747 0.9191
F1 score 0.9529 0.8401 F1 score 0.975 0.9179
Accuracy 0.9273 Accuracy 0.9617
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