Supplementary Information

Integrated metabolomic and transcriptomic analyses revealed the distribution of saponins in Panax

notoginseng

Guangfei Wei^{a,b,†}, Linlin Dong^{a,†}, Juan Yang^a, Lianjuan Zhang^a, Jiang Xu^a, Feng Yang^a, Ruiyang Cheng^a, Ran Xu^a, Shilin Chen^{a,*} ^aKey Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China ^bShandong University of Traditional Chinese Medicine, Jinan 250355, China *Corresponding author. Tel.: 86 10 57203877; fax: 86 10 62899776.

E-mail address: slchen@icmm.ac.cn (Shilin Chen)

These authors made equal contributions to this work.

Results

The resulting dataset of all components between different parts were analyzed to examine the clustering of each group using multivariate statistical analysis. Five parts of two-year *P. notoginseng* showed separation; in the five parts of three-year *P. notoginseng*, principal component 1, which is the key component for sample separation, identified the underground parts (root and fibril) and the aerial parts (stem, leaf, flower); however, the flower overlapped the stem, and the root clustered with the fibril (Fig. S1). Meanwhile, chemical components in *P. notoginseng* at different developmental stages were also compared; differences are found between two- and three-year-old *P. notoginseng* and principal component 1 identified all parts between two- and three-year-old *P. notoginseng* (Fig. S2).

Fable S1 Calibration curves, lin	nearity, precision,	repeatability, stability and	recovery rate of seven	saponins.
----------------------------------	---------------------	------------------------------	------------------------	-----------

Saponins	Calibration curves	R ²	Linearity (ug)	RSD% (<i>n</i> =5)			Recovery rate
				Precision	Repeatability	Stability	(%) (RSD%)
NG-R1	<i>Y</i> =278.3 <i>X</i> +8.81	0.9997	0.102-2.04	0.1	1.55	2.08	95.84(2.09)
G-Rg1	<i>Y</i> =112.83 <i>X</i> +21.97	0.9998	0.101-10.1	0.03	0.94	2.99	98.25(2.87)
G-Re	Y=237.94X+20.335	0.9998	0.098-1.96	0.06	2.03	2.22	102.37(1.41)
G-Rb1	Y=298.38X+3.3239	0.9999	0.096-1.92	0.2	0.19	2.94	100.43(0.56)
G-Rc	<i>Y</i> =181.18 <i>X</i> +2.2452	0.9991	0.099-1.98	0.52	0.41	2.63	100.60(1.25)
G-Rb2	Y=231.26X+3.6762	0.9999	0.094-1.88	1.12	2.68	2.80	96.68(2.13)
G-Rd	<i>Y</i> =290.72 <i>X</i> +1.686	1.0000	0.099-1.98	0.07	0.93	1.21	100.31(1.22)

NG: notoginsenoside; G: ginsenoside

Figure S1 Metabolic analysis of all components in the five parts during the two- and three-year-old of *P. notoginseng* plants. (A, C) PCA score plots and S-plot of the five parts in two-year-old *P. notoginseng*; (B, D) PCA score plots and S-plot of the five parts in three-year-old *P. notoginseng*.

Figure S2 Metabolic analysis of all components in the same parts of two- and three-year-old of *P. notoginseng* plants. (A, B, C, D, E) PCA score plots of root, fibril, stem, leaf and flower at two developmental stages, respectively; (F, G, H, I, J) S-plot of root, fibril, stem, leaf and flower at three developmental stages, respectively.

Figure S3 VIP of saponins in the five parts at the same developmental stages. (A) VIP of root, fibril, stem, leaf and flower in two-year-old *P. notoginseng*. (B) VIP of root, fibril, stem, leaf, and flower in three-year-old *P. notoginseng*.

Figure S4 VIP of saponins in the same parts of two- and three-year-old *P. notoginseng*. (A–E) VIP of roots, fibrils, stems, leafs and flowers in two- and three-year-old *P. notoginseng*.

Figure S5 Biosynthetic pathways of triterpene saponins in *P. notoginseng* plants. MVA pathway: AACT acetoacetyl-CoA acyltransferase; HMGS 3-hydroxy-3-methylglutaryl-CoA synthase; HMGR 3-hydroxy-3-methylglutaryl-CoA reductase; MVK mevalonate kinase; PMK phosphomevalonate kinase; MVDD mevalonate diphosphate decarboxylase; IPPI isopentenyl pyrophosphate isomerase; GDPS gerenyl diphosphatesynthase. MEP pathway: DXPS 1-deoxy-o-xylulose 5-phosphate synthase; ISPD 2-C-methylerythritol 4-phosphatecytidyl transferase; ISPE 4-(cytidine-5'-diphospho)-2-C-methylerythritol kinase; MECPS 2-C-methylerythritol-2,4-cyclophosphate synthase; HDS 1-hydroxy-2-methyl-2-(*E*)-butenyl 4-diphosphate synthase; ISPH 1-hydroxy-2-methyl-2-(*E*)-butenyl 4-diphosphate synthase; SS squalene synthase; SE squalene epoxidase; DS dammarenediol-II synthase; P450 P450-monooxygenase.