
Precision medicine and Dynamic Treatment Regimes 

 

 

Personalized medicine, that is the specific tailoring of disease treatment to a 

patient according to their individual characteristics, is somewhat an obvious 

notion, and dates back through the history of medicine.51,52 Indeed, R. Murugan, 

writing in the Lancet Respiratory Medicine, refers to Hippocrates as a 'proponent 

of personalized medicine', who 'assessed several factors, such as a patient's 

constitution, age, and build, and the time of year to help his decision-making when 

prescribing treatment.'52 The covariates of age, gender and race are clear 

contenders for important personalized medicine factors, well-known to be related to 

treatment outcomes, and are often included in subgroup and regression analyses.53,54 

In many fields, such as oncology, a decision whether to prolong treatment or not 

may depend on a patient’s current quality of life.55 In short we are used to the 

idea of personalizing medical decisions. 

 

 

Similarly the idea that chronic treatment should take into account the on-going 

patient response is certainly not new. On the one hand, if a disease is cured, 

treatment should likely cease. On the other, if a patient fails to respond to a 

first line treatment, often the decision is made to switch to a second or third. 

Examples include treatment of diseases with antibiotic resistant strains, such as 

tuberculosis, and treatment of cancers when a line of chemotherapy does not reduce 

a tumor.56,57 

 

   

What is a fairly recent idea however, is that in the age of big data, high 

performance computing, artificial intelligence and machine-learning, the 

opportunity to tailor treatment to the individual algorithmically now exists.18,19 

To distinguish the notion of using precise algorithmic, formulaic and somewhat 



mathematical rules of how a patient should be treated, often factoring in advanced 

measurements and variables such as those involving genomics and proteomics, from 

the basic notion that each patient should be treated as an individual, the term 

precision-medicine is often used.58 And with the advance of computing and 

technology, the opportunity for precision-medicine is blossoming.20 

 

 

In the statistical literature precision-medicine rules/algorithms to treat each 

individual patient are often referred to as either individualized treatment rules, 

emphasizing the dependence on individual patient characteristics, or else either 

adaptive treatment strategies, or dynamic treatment regimes, emphasizing the 

dependence on patient response to on-going treatment.59,60 In this article we just 

use the designation of dynamic treatment regime (DTR) to denote these concepts. 

 

 

The precise notion of a dynamic treatment rule that is then optimal for the 

population, may be formulated as follows: 

 

First consider the problem of deciding on a one-off treatment for a patient, where 

N treatment options exist. We notate the treatment option a patient is given by T, 

and then we assume T=1,…,N. For each patient we have an outcome Y, a (one-

dimensional) measure of the success of treatment – we assume a convention that 

higher values of Y correspond to more successful treatment, and thus are 

preferable. We denote the ith patient’s potential outcome were they to be given 

treatment T as Y*i(T). Assume now that the clinicians have collected information X 

from each patient (X may be a vector including many different covariates), which 

they believe provide potentially predictive information as to the results of 

treatment T for the patient. Then to the clinicians' best knowledge, the ith 

patient with potential outcome Y*i(T), may be predicted to have an expected outcome 

of E[Y*(T)|Xi], where the random variable Y*(T) is the potential outcome for a given 



treatment, over patients sampled from the appropriate population. That is, 

conditional on the treatment and patients' particular covariates Xi, we cannot 

distinguish patients' outcomes. The clinicians' task then becomes for each patient, 

choose T to maximize the expected outcome E[Y*(T)|X]. We will term this T as the 

optimal treatment choice. 

 

 

We note that this is of course not the sole definition of the optimal treatment. 

For example, perhaps the optimal treatment might reasonably be defined to be the 

one which gives the highest median, not mean, outcome over the population.61 Or 

perhaps we may want to consider a multidimensional Y, which contains different 

(possibly competing) outcome measures.62,63 Or perhaps we might want to balance the 

success of treatment with its cost, regarding a small increase in success not 

worthwhile if it is accompanied by a dramatic rise in treatment cost.64 Such 

extensions have been considered. However defining the optimal treatment as simply 

that which maximizes the mean outcome is perhaps the most interpretable definition, 

perhaps the definition most amenable to analysis, and certainly the most prevalent 

definition in the precision-medicine literature. 

 

 

So the task of assigning an optimal treatment, that is maximizing the expected 

outcome E[Y*(T)|X], becomes essentially bound up with the problem of estimating how 

E[Y*(T)|X] varies with X for a given T, that is with estimating the function 

E[Y*(T)|X]=f(X,T). One obvious way of doing this would be to posit and solve a 

regression model for Y* in terms of X and T, for which standard and well-practiced 

techniques and methods may be used. However other methods are certainly available. 

The fact that we often might require the covariate space X to be high-dimensional 

could cause problems with the modeling. To ameliorate this problem we might turn to 

machine-learning methods to assist with the regression.65,66,67 Alternatively, other 

techniques may be used. For example, instead of regarding the problem as a 



regression where the treatment outcome must be estimated, it might be regarded as a 

classification problem, where each patient is classified by their personal optimal 

treatment group. In this way the problem of estimating the outcome Y*(T|X) is 

circumvented. Outcome-weighted-learning is a technique of this type, which employs 

the support vector machinery to give decent performance with a higher dimensional 

covariate space.68,69 In short, there are a large number of methods to estimate the 

optimal treatment, and these topics are a very active area of biostatistical 

research.34,29,33,35 

 

 

The situation becomes more elaborate when there are a number of treatment decisions 

to be made. We may model this situation as having a (discrete) number, M, of 

timepoints t1, t2,…, tM, and at timepoint tj, we have treatment options Tj=1,…,Nj 

(where Tj=1 might represent an entirely different treatment from Ti=1 if i≠j). 

Again we consider maximizing an ultimate hypothetical outcome Y*(T1,…,TM|X), which 

is now dependent on each of the M treatment choices, and again conditional on 

patient covariates X. However the situation is different from the single treatment 

circumstance above, in that it is complicated by the fact that the covariate space 

X may include not only time varying coefficients that may be changing between 

timepoints, but also measured response to treatments already given. The problem is 

often stated as to repeatedly select treatment at each subsequent timepoint to 

maximize the patients ultimate outcome as a function of treatment at that timepoint 

Y*(Tj|X(j)), where the patient covariates X(j) at timepoint tj now include the 

patient history of all measured covariates, from timepoints t1 to tj, including the 

previous treatments assigned at timepoints t1,…,tj-1. 

 

 

As before this may be regarded as a sequence of regression problems, positing 

models for Y*(Tj|X(j)) in terms of X(j), and then choosing Tj at each timepoint tj 

to maximize the patient's expected final outcome, measuring results at timepoint 



tj+1, and selecting a next hoped for optimal treatment until the patient finishes 

treatment at timepoint tM. However we now have the problem of low power, that is if 

there are many treatment options at a number of timepoints, the total number of 

treatment combinations may be very large. Hence, the number of patients we observe 

at each timepoint on each treatment path may be very low and not sufficient to 

estimate the regression parameters accurately. 

 

 

Q-learning is one work around for this issue of low power when there are many 

potential treatment sequences.29,33,34,35 This compensates for a low number of samples 

of each treatment path by estimating the optimal outcome achievable for each 

particular patient at a timepoint, and then (theoretically) reassigning them so 

that the optimal treatment path has a significant number of patients on it. More 

specifically, Q-learning begins by looking at the last timepoint M and regressing 

to find the optimal treatment T*M, and predicted optimal outcome Y*(TM|X(M)), for 

each patient dependent on their covariates and history. Then it pretends each 

patient in fact received the best treatment possible at timepoint tM, replacing the 

actual outcome of the patient Y(TM) with the estimated E[Y*(T*M|X(M)]. In this way 

it estimates for each patient at timepoint tM-1 the optimal expected outcome if the 

best treatment had been given at the subsequent timepoints (in this case only one 

final stage). This is termed the Q-function. Then the optimal final expected 

outcomes of patients currently at timepoint tM-1 can be regressed as a function of 

TM-1 and X(M-1), and then the best treatment for each patient at timepoint tM-1 may 

be estimated, along with corresponding outcome. The Q-function is updated to 

represent the optimal final expected outcome of the patients as a function of X(M-

2) and TM-2 assuming the optimal treatments are then given subsequently. Again the 

optimal TM-2 is chosen and this recursive choice of best onwards treatment and 

updating of the optimal final expected outcome is repeated, moving back through all 

the stages, until the best treatment T1 at timepoint t1 is estimated. At this point 

the optimal treatment sequence for each patient, and the optimal expected outcome 



if this best treatment regime is adhered to, has been estimated, and each of the 

solved regressions provides a decision rule for how to assign optimal treatment to 

a new patient at each stage. In effect we have found the optimal dynamic treatment 

rule. 29,33,34,35 

 

 

Other machine-learning methods instead of Q-learning may be applied. Outcome-

weighted-learning has extensions for example that also attempt to combat the low 

power due to the possible large number of treatment options, such as backwards-

outcome-weighted-learning and simultaneous-outcome-weighted-learning.68,69 Again the 

various possible methods for finding dynamic treatment regimes and their pros and 

cons are a subject of very active biostatistical research.29,33,34,35 

 

 

One major statistical issue with the estimation of dynamic treatment regimes is 

that few of the methods have satisfactory inference methods. That is, while the 

optimal dynamic treatment regime may be estimated, the results of following this 

and, importantly, how close this estimate is (in some sense) to the true optimal 

treatment regime are very non-trivial to estimate.70,71 Progress continues to be 

made on this subject.72,73 

 

 

 

SMART Studies and Dynamic Treatment Regimes 

 

 

To calculate dynamic treatment regimes, whether by a regression based method of 

estimating E[Y*(Tj)|X(j)] at a given timepoint j, as essentially required in Q-

learning, or whether by classifying patients into groups corresponding to their 

optimal treatment, as required in outcome-weighted-learning, will require high 



quality data, detailing measurements of outcomes and relevant covariates at each 

timepoint. 

 

 

Observational data may certainly be used to calculate dynamic treatment regimes, 

however certain assumptions are necessary.33,74 We must make the consistency 

assumption, which states the actual outcome Y for each patient (and the covariates 

X(j)) observed at each timepoint tj is indeed the potential outcome for that 

treatment sequence (that is Yi=Yi*(T) when the ith patient does receive treatment 

T).75 We must make the stable unit treatment value assumption, which states that a 

patient's outcomes and covariates are not affected by how treatment is assigned to 

them (or assigned to the other patients).76 And we must make the assumption of no 

unmeasured confounders, essentially an assumption that treatment assignment is 

independent of any unmeasured patient covariates.75 

 

 

The important assumption of no unmeasured confounders is unverifiable from 

observational data.77 However if treatment is assigned at random (conditional on 

measured covariates X(j) at timepoint tj) it is automatically met.34 Hence one 

proposed method for generating data amenable to calculate dynamic treatment regimes 

is the Sequential Multiple Assignment Randomized Trial (SMART).25,28 

 

 

In a SMART, patients may be re-randomized to different treatments at subsequent 

timepoints, with the randomization options and possibilities based on patient 

characteristics, including previous treatments received and response to them.28,29 

In this way, the investigator hopes that enough relevant treatment combinations are 

explored over time so that the statistical analysis may pick out salient features 

influencing outcome, and from this predict how future patients should be treated to 

maximize each patient’s expected individual outcome. 



 

 

It may be argued that a SMART study may be more realistic than a classical clinical 

trial (where patients are randomized independent of response), as it permits non-

responders to be switched to a different treatment, as often rightly happens in 

real-life clinical decisions.59,78 Nevertheless, there are perhaps inherent 

difficulties in the implementation (and more so in the associated analyses as 

discussed above) of a SMART beyond those for classical clinical trials. Increased 

efforts may need to be made to collect, and process, large enough amounts of data 

to hope to data-mine dynamic treatment regimes with enough precision, and the 

possible large number of treatment paths may give requirements for extra and 

unfamiliar administration and logistics, particularly if treatment re-randomization 

depends on real time patient responses. 

 

 

One major issue with the design and implementation of a SMART is that the lack of 

inference methods regarding the estimation of optimal treatment regimes means  

powering a SMART for the sole purpose of estimating these is difficult.73 While 

theoretical progress on the problem continues to be made, one way around this is to 

explore the performance through simulation studies. Another simple solution is to 

power the SMART to perform a classical analysis for a question of interest, such as 

treatment of embedded fixed non-dynamic treatment regime (or even a pre-chosen 

dynamic treatment regime).28,48,17 In the LIBERTI trial we show how this may be done, 

where the ultimate question of interest is establishing whether there are treatment 

effects. 

 

 

Thus SMART studies and their designs, protocols, and analyses may tend to be more 

complicated than classic randomized clinical trials, and this means extra care may 

need to be taken in detailing, presenting and explaining these to the appropriate 



stakeholders. These issues notwithstanding, SMART studies have already been very 

usefully employed in many areas, with researchers in psychiatry, oncology and 

behavioral medicine in particular exploring their advantages and 

benefits.79,80,81,82,83,84,34 

 

 

 

Short-Term Effect Statistical Modeling/Power Calculations 

 

 

We study the short-term effect using the change in Vancouver Scar Score at four 

months and testing three hypotheses regarding the short-term effect. Denoting the 

change in patient Vancouver Scar Score at four months after treatment with CO2 

laser, pulsed-dye laser and just medical therapy as VCO2, VPDL, VMED respectively, we 

may rewrite the short-term null hypotheses as: 

 

Short-Term Null Hypothesis 1: E[VPDL]=E[VMED]. 

 

Short-Term Null Hypothesis 2: E[VCO2]=E[VMED]. 

 

Short-Term Null Hypothesis 3: E[VCO2]=E[VPDL]. 

 

 

We will test the short-term hypotheses, using 2-sided t-tests and (a Hochberg 

modification of) the Bonferroni multiple comparison procedure, with an overall Type 

I error rate of 5%.45,85 We will reject any of the short-term hypotheses with 80% 

power, at overall size 5%, adjusting for multiple comparisons, if there is an 

effect size of more than 0.63 standardized units (using standard t-test theory). 

Pilot studies suggest that we then have an 80% power of observing a minimal 

clinically significant difference of 0.9 Vancouver Scar Score units in treatment 



effect. 

 

 

 

Long-Term Effect Statistical Modeling/Power Calculations 

 

 

Our proposed comparison of the long-term (two-year) change in Vancouver Scar Score 

between sequences of three treatment blocks is less standard than the simple short-

term (four-month) change examination. We study the long-term effect using the 

change in Vancouver Scar Score at twenty-four months and testing two hypotheses 

regarding the long-term effect. Due to the large number of possible treatment 

combinations possible over the twenty-four month period, and the need to isolate 

the effects of differing laser treatments from each other, we must set-up a non-

trivial regression model and structure tests carefully. 

 

 

Specifically, we propose a regression model applied to the treatment effects in 

each of the blocks. We denote a treatment sequence by a triplet (i,j,k) with each 

of i,j,k corresponding to (randomized) treatment in the first, second and third 

block, respectively, and being set to 0, 1, or 2, to represent solely non-surgical 

medical therapy, CO2 laser, and pulsed-dye laser, respectively. We let the change 

in Vancouver Scar Score over the study for any given participant on treatment 

sequence (i,j,k) be denoted by zi,j,k. We model the change in scar score by a normal 

variable, with a global constant variance, as: 

 

zi,j,k~N(µi,j,k,σ2), E[zi,j,k]= µi,j,k = µ + α1,i + α2,j + α3,k + βi,j + γi,k, 

 

subject to the constraints: 

 



∑iαx,i=0, ∑xαx,i=0,  ∑jβp,j=0, ∑iβi,q=0,  ∑aβa,a=0, ∑kγq,k=0, ∑jγj,r=0,  ∑aγa,a=0. 

 

 

This model we propose seems clinically reasonable; for example it contains the 

'usual' regression model of non-temporal effects and two-way interactions between 

first and second treatments and also between second and third treatments. The 

imposed constraints should force the model to identify 'better' and 'worse' 

treatment options at a given timepoint, as well as 'better' and 'worse' treatment 

interactions between treatments in the first and second blocks and also between 

treatments in the second and third blocks. This identification will simply 

correspond to the signs of the αx,p, βi,j, γj,k respectively. Focusing on the 

identification of 'better' and 'worse' treatments rather than exact estimation of 

average treatment group outcomes and effects will potentially give us increased 

power to determine whether or not there is a laser effect, and subsequently whether 

or not there is a difference in effect between lasers. 

 

 

Our mean model has in total 28 parameters, allowing for all values i,j, and k 

(including those corresponding to unobserved treatment groups). However, the 

constraints ensure we have only eleven free parameters. As we have twelve overall 

treatment groups, only one more treatment group than free parameters, we cannot 

significantly relax the model further, and the requirement to have our given 

constraints is somewhat unavoidable (in particular a three-way interaction term 

must be omitted). 

 

  

We may interpret these parameters as follows: µ is the grand mean, αx,p represents 

the main order effect of having treatment p at timepoint x, βp,q represents the 

interactive effect of treatment p at the first timepoint and treatment q at the 



second, and γp,q represents the interactive effect of treatment p at the second 

timepoint and treatment q at the third. 

 

 

We note µ + αx,w corresponds to the expected outcome for participants assigned 

treatment w at timepoint x and randomized at other timepoints equally between 

treatments. Other more elaborate interpretations may similarly be given. Thus if, 

for example, αx,u - αx,0 ≥ q, we have an interpretation that there is a treatment, u, 

with an average outcome different from the current standard by more than q. 

 

 

Regarding this SMART trial as a subset of experimental runs of a full 33 factorial 

trial,17,31,32 the  αx,w have a nice interpretation as the main treatment effects and 

indeed µ + αx,w are then marginal effects in the sense that they average the 

treatment effects of specifying treatment in one block, or factor, over the levels 

of the remaining two factors. 

 

 

Under the null hypothesis of no laser effect, the model is certainly true, and all 

parameters except µ are 0, in particular all the αx,i must be 0. Further if there is 

no difference between the effect of CO2 and pulsed-dye laser, the standard 

regression estimators of the coefficients must yield αx,1 = αx,2 for each timepoint 

x. Testing αx,i to determine if they obey these relationships is then a valid test 

of the long-term null hypotheses. Focusing on determining whether there is a laser 

effect using just the αx,w, not all the coefficients in the model, should hopefully 

increase the power by reducing the degrees of freedom in the tests. We may write 

(relaxations of) our long-term hypotheses then as: 

 

Long-Term Null Hypothesis 1: (No laser effect) α1,0 =  α2,0 = α3,0 = 0. 



 

Long-Term Null Hypothesis 2: (No difference in lasers) α1,1–α1,2 =α2,1–α2,2 =α3,1–α3,2 =0. 

 

 

For testing both these long-term null hypotheses, we may then use this regression 

model and F(2,157)-tests with Type I errors of 5%. We regard the more important 

determination in the investigation of long-term effects to simply be whether there 

is any laser effect (that is testing Long-Term Null Hypothesis 1), as opposed to 

whether there is a difference between effects corresponding to different types of 

laser (that is testing Long-Term Null Hypothesis 2). Therefore to maximize power 

when we examine the more important aspect, we use step-down testing, first testing 

Long-Term Null Hypothesis 1, and only if this is rejected testing Long-Term Null 

Hypothesis 2. Step-down testing will preserve an overall total Type I error rate of 

5%.46,47,86 

 

 

The sample size will give good power to reject the long-term null hypotheses 

(according to standard linear model theory). The precise conditions on the 

coefficients which match with a particular test power are slightly difficult to 

interpret. However we may make the following observations: 

 

1: the power of rejecting Long-Term Null Hypotheses 1 is over 80%, if choosing 

solely non-surgical medical therapy at a particular timepoint, and assigning random 

treatment at the other timepoints, results in an outcome difference of more than 

0.35 standardized units in comparison to simply randomly assigning treatment at all 

timepoints. 

 

2: the power of rejecting Long-Term Null Hypotheses 2 (if Long-Term Null Hypotheses 

1 is rejected) is over 80%, if choosing CO2 laser therapy at a particular 



timepoint, and assigning random treatment at the other timepoints, results in an 

outcome difference of more than 0.37 standardized units in comparison to assigning 

pulsed-dye laser therapy at the given timepoint then assigning random treatment at 

the remaining two timepoints. 

 

 

More involved power estimates and their corresponding clinical interpretations 

convince us that we have more than sufficient power. We therefore believe this is a 

powerful and effective model to compare the overall population effects of the 

twelve sequences, with the focus being more to identify better and worse options 

than to precisely extrapolate other unobserved treatment sequences or effects. The 

model also seems statistically reasonable and it appears to have very good power 

for rejecting our hypotheses, despite having comparatively large degrees of freedom 

(as is needed to realistically model the effects of twelve treatment sequences). 

 

 

 

Precision Medicine Dynamic Treatment Statistical Modeling/Power Calculations 

 

 

We intend to analyze optimal patient individualized dynamic treatment regimes using 

machine-learning techniques involving Q-learning23,87,34 and Outcome-Weighted-

Learning.68,69 We will then contrast this with the estimated effects of a 

population-level treatment regime, hence obtaining insights into possible benefits 

of personalizing treatment, or otherwise, in this field. 

 

 

Accurate estimation of individualized dynamic treatment regimes is the Holy Grail 

of the research (providing answers automatically to the other hypotheses) but is 

also expected to be the most challenging, due to the complicated estimations that 



will need to be performed. 

 

 

We will not specify the precise analysis we will use, for we expect significant 

advances in the precision-medicine methodology whilst the study is underway, and we 

intend to take advantage of these. We do intend our first exploration to be with 

the Q-learning framework,34 and we will also explore the use of the simultaneous-

outcome-weighted-learning framework.68,69 

 

 

Explicit sample size calculations are not possible in any straightforward manner 

for applying Q-learning or outcome-weighted-learning to the data from LIBERTI. 

However the sample size of 180 (including 10% inflation to allow for dropout) is 

predicted to be sufficient to provide good insights into an individualized dynamic 

treatment regime. More specifically, we expect to find a superior personalized 

treatment (with results within approximately 90% of the true optimal treatment) 

with probability at least 80%, based on published simulation results for similar 

studies.50 

 

 

 

Simulation Studies 

 

 

The modeling and power calculations we detailed for testing the short-term 

hypotheses are standard and straightforward. However those for testing the long-

term hypotheses are less so, therefore for further reassurance we should explore 

somewhat the performance of our procedure through simulation studies. As explained, 

modeling and power calculations for a precision-medicine dynamic treatment regime 

is extremely difficult, and simulations should definitely be used to evaluate the 



feasibility of estimating these from data generated by the LIBERTI trial. 

 

 

Simulations suggest that our models and analysis will on the one hand have very 

good power to detect a laser effect, and on the other be likely to construct a 

beneficial dynamic treatment regime for patients. We present two of our simulations 

below for illustration. 

 

 

To demonstrate possible performance of the regression model to detect laser effect 

on a two-year outcome, we take a somewhat Bayesian stance. We simply model the two-

year mean expected change in Vancouver Scar Score for each of the twelve treatment 

sequences as random independent samples from a normal distribution with mean 0 and 

variance hyperparameter σµ2. That is we model µi,j,k~N(0,σµ2) for each of the twelve 

sequences (i,j,k) to be observed. We then model 168 patients, equally distributed 

between these twelve treatment sequences, who have a two-year change in Vancouver 

Score Scar given by independent samples from zi,j,k~N(µi,j,k,σ2), where zi,j,k is the 

outcome for a given participant on treatment path (i,j,k). As no relation is 

assumed between similar treatment paths (eg. knowing the results of even an 

apparently close treatment path imparts nothing at all about the results of 

another) this is a worst case scenario for our regression model, which benefits 

when there are predictable main effects and treatment interactions. 

 

 

We apply the regression model to our simulated data and determine the power as a 

function of σµ/σ. The corresponding power curves for rejecting Long-Term Null 

Hypothesis 1, (no treatment effect), and for rejecting both firstly Long-Term Null 

Hypothesis 1, and then subsequently Long-Term Null Hypothesis 2 (no difference 

between types of lasers) are shown in Figure 2. It appears we have good power in 

these circumstances, with the power becoming acceptable when the variance between 



the expected mean outcomes of the treatment paths means, σµ2, approaches that of 

the variance of actual patients on each path, σ2. This can be regarded as an 

appropriate minimal clinically significant difference we would want to detect in 

this scenario. 

 

 

Next we also simulate two tailoring variables for each patient (which in this set-

up have no effect whatsoever on patient outcome, but just add challenging noise to 

the estimation of dynamic treatment regimes). We use basic Q-learning 

(approximating the Q-functions by linear regressions in tailoring variables, 

current treatment and interactions of current treatment and tailoring variable) to 

determine a dynamic treatment regime. The precise process is detailed further below 

in the details for the second main simulation. A further 1680 patients are 

simulated and treated according to this dynamic treatment regime. Figure 3 shows 

the results of the experiment. We might expect Q-learning to do very little in this 

scenario, as there is no structure to exploit between the treatment outcomes. We 

observe that while the dynamic treatment regime does not always produce a 

particularly good outcome (for example not infrequently the expected patient 

benefit under the dynamic treatment regime is above 0), it is reassuringly almost 

always superior to randomly assigned treatment (even though the Q-functions are 

extremely misspecified). 

 

 

To explore the effects of Q-learning in a more realistic set-up, we explore various 

models for the laser effect. For example we may model percentage change in scar 

score from one stage to the next as a log-normal variable with mean dependent on 

current scar score, and a binary time-independent variable representing race, with 

the added mechanism that the scar score may not increase by more than some 

percentage randomly assigned to each patient. We may choose coefficients to 

represent pilot data somewhat, and we may build in certain rules such as: a time 



varying effect with treatment in block 2 leading to greatest change, a race effect, 

such as one laser has no effect on one race, a scar score interaction effect such 

that one laser is likely beneficial for higher scar scores, but detrimental for 

lower scar scores, and complex interaction effects such as the effect of laser two 

being multiplied by the number of treatments of laser one received. 

 

 

Precisely, we present a simulation where Vancouver Scar Score (VSS) changes 

throughout treatment according to the following rules: 

 

Patients have tailoring variables of: (Race), which we simulate as binary, and VSS 

before each treatment is received. We denoted VSS after the ith treatment block is 

received as (VSS)i for 0≤i≤3. That is (VSS)0 is patient initial VSS before 

treatment, (VSS)1, that after the first treatment block, (VSS)2 that after the 

second, and (VSS)3 that after the third and final treatment. We assume no further 

improvement from the results of the final treatment to the longer-term Vancouver 

Scar Score at the two-year mark.   

 

 

Our population is initially simulated by generating 168 patients, with (Race) 

distributed binomially with p=0.5, and (VSS)0~min(N(10.2,1),13) a normal with mean 

10.2, variance 1, and truncated above at 13. 

 

For each patient, we simulate: 

 

(VSS)1~min((VSS)0x exp(N(a,0.32)), 0.800x(VSS)0 + U[0,0.4], 13), 

 

where N is a normal variable with the value of a determined by: 

 

a=-0.500(PDL1)(Race)-0.500((VSS)0-6)(CDL1)(1-5(Race)/6) 



 

with PDL1=1 if pulsed-dye laser is assigned in treatment block 1, 0 otherwise, and 

CDL1=1 if CO2 laser is assigned in treatment block 1, 0 otherwise, and U is a 

uniform random variable. 

 

Next, we simulate: 

 

(VSS)2~min((VSS)1 x exp(N(b,0.152)), 0.800x(VSS)0 + U[0,0.3], 13), 

 

where b is determined by: 

 

b=-0.625(PDL2)(Race)-0.625((VSS)1-6)(CDL2)(1+PDL1)(1-5(Race)/6) 

 

and now PDL2=1 if pulsed-dye laser is assigned in treatment block 2, 0 otherwise, 

and CDL2=1 if CO2 laser is assigned in treatment block 2, 0 otherwise. 

 

Finally, we simulate: 

 

(VSS)3~min((VSS)2 x exp(N(c,0.152)), 0.900x(VSS)0 + U[0,0.2], 13), 

 

where c is determined by: 

 

c=-0.375(PDL3)(Race)-0.400((VSS)2-6)(CDL3)(1+PDL1+PDL2)(1-5(Race)/6) 

 

and now PDL3=1 if pulsed-dye laser is assigned in treatment block 3, 0 otherwise, 

and CDL3=1 if CO2 laser is assigned in treatment block 3, 0 otherwise. 

 

 

We repeatedly model the scar score trajectories of 168 patients under such rules, 

then apply Q-learning to predict an optimal dynamic treatment regime. We use a very 



simple model for the Q-functions, that is we approximate them through linear 

regressions (which then necessarily must be misspecified). More precisely, we 

choose the outcome for the Q-function at each stage to be (VSS)3-(VSS)0, model each 

Q-function as a normal variable of unspecified variance, and model population means 

as follows: 

 

E[Qj]=(aj+bj(Race)+cj(VSS)j-1)+(dj+ej(Race)+fj(VSS)j-1)(PDL(j)) 

 + (gj+hj(Race)+ij(VSS)j-1)(CDL(j)) 

 

for each j=1,2,3. PDL(j) is 1 if the jth treatment is pulsed-dye laser, 0 

otherwise, and CDL(j) is 1 if the jth treatment is CO2 laser, 0 otherwise. 

 

 

The Q-functions are hence seen to be very misspecified, for example due to modeling 

(VSS)3-(VSS)0 using a normal distribution instead of log((VSS)3/(VSS)0), due to not 

allowing for a truncation effect, and due to not explicitly allowing for 

interactive treatment effects. Nevertheless we solve the corresponding regressions 

using the data from our 168 patients (assuming that of the original 180 patients 

10% dropout), and theoretically reassigning patients to their most beneficial 

treatment at each stage, then estimate the dynamic treatment regime generated by 

these Q-functions. 

 

 

Next we then model the results of applying this dynamic treatment regime to 1680 

new patients. Figure 4 shows a plot of simulated final scar score against initial 

scar score for one simulation run of trial patients, and then new patients 

following the estimated dynamic treatment regime. It is observable that the dynamic 

treatment regime appears to weed out less effective or detrimental treatments, and 

favors better personalized treatments. 

 



 

Over 100 simulations the average decrease in scar score for the trial patients is 

5.6 units, but for the new patients is 7.4 units, roughly a 40% improvement. This, 

and other simulations, both for the LIBERTI study, and results exploring Q-learning 

in general, suggest the Q-learning framework may be most beneficial. 

 

 

We note that the not insignificant performance in these simulations was obtained 

using even a very crude form of Q-learning, (modeling the Q-functions through 

linear regressions, with misspecified models for the Q-functions). 

 

 

We finally also remark how our regression model for examining the long-term null 

hypotheses would have performed in this second simulation. A laser effect and then 

subsequently a difference in effect between lasers would be detected, that is both 

Long-Term Null Hypothesis 1 and Long-Term Null Hypothesis 2 would be rejected in 

over 80% of these simulations. 

 

 

 

Patient Variables/Evaluation 

 

 

From each patient, data will be gathered in several broad areas including: 

Demographic Data, Injury Factors, Treatment Factors, and Study Assessment Factors. 

 

 

Demographic Data will include routine information such as: 

Age, Gender, Ethnicity, Fitzpatrick Type (a measure of skin pigmentation and 

response to ultra-violet light),88 Height, Weight, Body Mass Index (BMI), Medical 



Comorbidities, Participant Zip Code, and Alcohol, Tobacco, and/or Recreational Drug 

Use. 

 

 

Injury and Treatment Factors related to burn injury will include: 

Mechanism of Injury, Total Burn Surface Area (TBSA),89 Utilization of Medications 

Prescribed for Burn Scars (including narcotics, narcotic analogs, non-steroidal 

anti-inflammatory drugs (NSAIDs), antihistamines, GABA analogs, antidepressants), 

Time From Injury to Presentation, and Length of Hospital Stay.   

 

 

Study Assessment Factors will include: Skin Measurements, Validated Scar Assessment 

Scales, Quality of Life Metrics, and Photography/Videography Records.   

 

 

The study assessment factor category denotes the variables that may be used to 

determine impact of lasers on hypertrophic burn scars. These variables, measured at 

baseline and each treatment, may also be important tailoring variables. It is 

therefore most important that these variables are precisely quantified and 

measured. 

 

 

For skin measurements, a representative 1cm2 area that best reflects the overall 

scar pattern will be chosen by the investigator and participant for skin 

measurement at the participant's first treatment visit. This anchor spot will be 

photographed and identified on a representative diagram with appropriate 

measurements to allow for continued tracking throughout the study. A similar area 

of healthy skin will also be identified at the participant's first treatment visit 

and measured for purposes of color and elasticity comparison. Two nearby spots that 

are also representative of the overall scar pattern will also be selected. These 



will be 1cm2 areas within 5cm of the anchor spot and at least 1cm apart from each 

other. At each visit a series of measurements will be recorded for the anchor spot 

and the two nearby spots. Skin measurements will consist of the following: 

 

Elasticity (assessed using a Cutometer® dual MPA 580 (CK Electronics, Cologne, 

Germany) with an 8 mm spot size), 

  

Color/Hyperemia (assessed using a CR-400 Chromo Meter (Konica Minolta Sensing 

Americas, Ramsey, NJ) with an 8 mm spot size), 

 

Scar Density/Thickness: (assessed utilizing 2D imaging with a Sonosite M-Turbo 

(FUJIFILM Sonosite, Inc., Bothell, WA)).   

 

 

We will use two validated scar scoring systems to assess the scar, the Vancouver 

Scar Scale and the Patient and Observer Scar Assessment Scale.90,42 We will also 

record the UNC 5p Scar Scale.3 The VSS is a 14-point scale based on standardized 

descriptions of pigmentation (0-3), vascularity (0-3), pliability (0-5), and height 

(0-3). The POSAS is a combined patient and observer scoring system with each part 

containing six items scored on 10-point scales with standardized descriptions. The 

clinical observer rates the scar on its vascularity, pigmentation, thickness, 

relief, and pliability. The patient rates the pain, itching, color, stiffness, 

thickness, and irregularity of the scar. The UNC 5p consists of a 15-point scale 

for pruritus (0-3), pain (0-3), paresthesia (0-3), pliability (0-3), and perception 

(0-3). 

 

 

To assess overall quality of life, a validated, standardized questionnaire will be 

used. For adults, this will be the SF-12 Health Survey, which is a modified version 

of the original SF-36.91 For children under the age of 18, this will be the 



Pediatric Quality of Life Inventory.92 

 

 

Standardized digital photography will be performed to document the locations of the 

selected study area and anchor spot. Changes to scar appearance over time will also 

be documented with photographs. Video will be obtained to document changes in scar 

characteristics with mobility that cannot be captured with still photography. Photo 

and video images are for documentation purposes, and for controlling the quality of 

measurements. They will not be used in the scar assessment scales. 
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Figure 2: Power curves showing, in black, percentage of times H01 was rejected in 

simulations, and, in blue, percentage of times both firstly H01 and then H02 was 

rejected in simulations, as functions of σµ/σ. 

 



 

Figure 3: Simulated change of patient scar scores for patients in trial, shown as 

black ‘+’, and for patients subsequently following the discovered DTR, shown as 

blue ‘x’, plotted against σµ/σ. 

 



 

Figure 4: Plot of simulated patient final scar scores against corresponding initial 

scar scores, for patients in trial, shown as black ‘+’, and for patients 

subsequently following the discovered DTR, shown as blue ‘x’. 


