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Supplemental methods 

 

Numerical probabilistic model 

The heuristic proceeds as follows: Initially, a low (not deep) cutting depth is set, namely 

cut_level=0.5 (50% of total tree height). Next, the heuristic tries to reduce the cutting depth 

(cut_level) as much as possible by checking two conditions at every iteration of the inner loop 

(repeat_B): condition1 requires the total number of clusters to be lower than 25% of the total cells. 

This condition avoids over-clustering and excessive fragmenting.  On the other hand, condition2 

depends on a variable that is increased after every failed attempt in the inner loop (repeat_B). 

Specifically, condition2 requires the largest cluster to be smaller than 

max_cluster_size*cell_number, where cell_number is the total number of cells and 

max_cluster_size is a variable whose initial value is set inversely proportional to the amount of 

cells (for instance max_cluster_size=0.2 when cell_number<1250 or max_cluster_size=0.09 

when cell_number>5000). The initial value of max_cluster_size is inversely proportional to the 

total cell number because higher cell numbers allow more fragmented clustering whilst preserving 

cell numbers in the clusters which are high enough to compute a smooth numerical model. 

Essentially, the two conditions work in synergy to avoid over-clustering (condition1) and under-

clustering (condition2). 

In a typical dataset, at the first attempt (with cut_level=0.5), condition1 will be certainly satisfied 

(cut of low depth will yield few clusters) whereas condition2 will be unsatisfied, which leads to 

an increase of the cutting depth. If the whole inner loop is completed without satisfying both 

conditions, max_cluster_size is increased, to relax the threshold guarding the under-clustering and 

facilitate the satisfiability of condition2. 
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TREE CUT PSEUDOCODE 

repeat_A 

     repeat_B 

           perform tree cutting at depth = cut_level (%)  

   if condition1 and condition2 are satisfied stop 

          else 

reduce cut_level (for instance cut_level=cut_level+0.01) and stop if cut_level>1 

  if exited from previous cycle and cut_level>0 then done!  

else we have failed, max_group_size is increased, cut_level restored to 0.5 and start     

again from the main cycle. 

 

Markers of CR cells 

To calculate new markers for CR cells we selected genes that were i) markers for CR cells, using 

the 1.3M convoluted dataset (1,291 genes with Z-score>6, Supplemental Table S2) and ii) 

uniformly expressed within subtypes of CR cells, using the deconvoluted CR dataset. Genes 

without significant changes of expression (max fold change <1.5) between subtypes (CR1-CR8) 

of CR cells were labeled as uniformly expressed in CR cells. A total of 501 genes including Reln 

satisfied both requirements. However, restricting the intersection to strong CR makers showing 

at least 8-fold increased expression in CR cells and Z-score>15 resulted in six high confidence 

makers: Reln (Z-score=35), Cacna2d2 (Z-score=30), Eya2 (Z-score=21), Tex15 (Z-score=19), 

Cpeb1 (Z-score=17), Vmn2r1 (Z-score=15). 

 

Patient derived neural progenitor cells 

Skin fibroblasts from two patients with Williams-Beuren (WB) and two with 7q11.23 

microduplication (Dup7) syndrome were reprogrammed to induced pluripotent stem (iPS) cells 

by retroviral delivery of the pluripotency factors POU5F1, SOX2, KLF4 and MYC, at the Centre 

of Regenerative Medicine in Barcelona (CMR[B]). Individual iPS cells were picked to generate 

single clone colonies that were expanded and fully characterized (Martí et al. 2013). Briefly, 
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genomic stability was confirmed by karyotype; integration and silencing were verified by PCR 

and quantitative RT-PCR; pluripotency was demonstrated by Alkaline Phosphatase staining and 

expression of pluripotency markers by immunocytochemistry. Finally, the capacity to 

differentiate to mesoderm, ectoderm and endoderm germ layers both in vitro and in vivo was 

verified by embryoid bodies and teratoma formation followed by immunostaining. All iPS cells 

were deposited in the Stem Cell Bank repository of the Instituto de Salud Carlos III ([SWB]FiPS1-

R4F-5, [SWB]FiPS-4F-5-6, [DUP7]FiPS-4F-3-1, [DUP7]FiPS4-R4F-2). 

We generated neural progenitor cells from iPS cells following the Gibco protocol based on PSC 

Neural Induction Medium (NIM). Briefly, differentiation of iPS cell colonies was performed by 

seven days culture in NIM, followed by several passages of maturation in Complete Neural 

Expansion Medium (Neurobasal Medium, Advanced DMEM⁄F-12, and Neural Induction 

Supplement). Confirmation of expression of NPC markers was done by immunocytochemistry 

(Human Neural Stem Cell Immunocytochemistry Kit, Gibco). After 4-7 passages, NPC were 

detached with Accutase (Gibco) and resuspended. Single-cells were sorted in a BD Influx cell 

sorter to MARS-Seq plates (see below) for single-cell RNA sequencing (Flow Cytometry Core 

Facility, Univeritat Pompeu Fabra). 

 

Library preparation and sequencing 

To construct single-cell libraries from poly(A)-tailed RNA, we applied massively parallel single-

cell RNA sequencing (MARS-Seq) (Jaitin et al. 2014; Paul et al. 2015). Briefly, single cells were 

FACS isolated into 384-well plates, containing lysis buffer (0.2% Triton X-100 (Sigma-Aldrich); 

RNase inhibitor (Invitrogen)) and reverse-transcription (RT) primers. The RT primers contained 

the single-cell barcodes and unique molecular identifiers (UMIs) for subsequent de-multiplexing 

and correction for amplification biases, respectively. Single-cell lysates were denatured and 

immediately placed on ice. The RT reaction mix, containing SuperScript III reverse transcriptase 

(Invitrogen) was added to each sample. In the RT reaction, spike-in artificial transcripts (ERCC, 

Ambion) were included at a dilution of 1:16x106 per cell. After RT, the cDNA was pooled using 

an automated pipeline (epMotion, Eppendorf). Unbound primers were eliminated by incubating 
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the cDNA with exonuclease I (NEB). A second pooling was performed through cleanup with SPRI 

magnetic beads (Beckman Coulter). Subsequently, pooled cDNAs were converted into double-

stranded DNA with the Second Strand Synthesis enzyme (NEB), followed by clean-up and linear 

amplification by T7 in vitro transcription overnight. Afterwards, the DNA template was removed 

by Turbo DNase I (Ambion) and the RNA was purified with SPRI beads. Amplified RNA was 

chemically fragmented with Zn2+ (Ambion), then purified with SPRI beads. The fragmented 

RNA was ligated with ligation primers containing a pool barcode and partial Illumina Read1 

sequencing adapter using T4 RNA ligase I (NEB). Ligated products were reverse-transcribed 

using the Affinity Script RT enzyme (Agilent Technologies) and a primer complementary to the 

ligated adapter, partial Read1. The cDNA was purified with SPRI beads. Libraries were completed 

through a PCR step using the KAPA Hifi Hotstart ReadyMix (Kapa Biosystems) and a forward 

primer that contains Illumina P5-Read1 sequence and the reverse primer containing the P7-Read2 

sequence. The final library was purified with SPRI beads to remove excess primers. Library 

concentration and molecular size were determined with High Sensitivity DNA Chip (Agilent 

Technologies). The libraries consisted of 192 single-cell pools. Multiplexed pools (2) were run in 

one Illumina HiSeq 2500 Rapid two lane flow cell following the manufacturer’s protocol. Primary 

data analysis was carried out with the standard Illumina pipeline. We produced 52 nt of transcript 

sequence reads. 

 

Data processing 

The MARS-Seq technique takes advantage of two-level indexing that allows the multiplexed 

sequencing of 192 cells per pool and multiple pools per sequencing lane. Sequencing was carried 

out as paired-end reads; wherein the first read contains the transcript sequence and the second 

read the cell barcode and UMI. Quality check of the generated reads was performed with the 

FastQC quality control suite. Samples that reached the quality standards were then processed to 

deconvolute the reads to single-cell level by de-multiplexing according to the cell and pool 

barcodes. Reads were filtered to remove poly(T) sequences. Reads were mapped with the RNA 

pipeline of the GEMTools 1.7.0 suite (Marco-Sola et al. 2012) using default parameters (6% of 
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mismatches, minimum of 80% matched bases, and minimum quality threshold of 26) and the 

genome references for human (GENCODE release 25, assembly GRCh38). Gene quantification 

was performed using UMI corrected transcript information to correct for amplification biases, 

collapsing read counts for reads mapping on a gene with the same UMI (allowing an edit distance 

up to 2 nt in UMI comparisons). Only unambiguously mapped reads were considered.  

 

Data filtering 

The analysis of spike-in control RNA content allowed us to identify empty wells and barcodes 

with more than 15% of reads mapping to spike-in artificial transcripts were discarded. In addition, 

cells with less than 60% of reads mapping on the reference genome or more than 2x106 total reads 

were discarded (potential aggregates). Additionally, we also discarded cells presenting 1) low 

library complexity (<1,000 detected genes) 2) excessive library complexity (>10,000 genes 

detected) 3) excessive mitochondrial content (>20% of mitochondrial reads) 4) excessive 

ribosomal content (>10% of ribosomal reads) 5) excessive content of intronic reads (>20% of 

mapped reads). Overall, 73 cells did not satisfy these quality requirements and were discarded.  

 

Simulated datasets 

For data simulation we applied Splatter (Zappia et al. 2017) estimating parameters from NPC 

(sim_NPC) and a droplet-based experiment (2,520 random cells from: 1.3 Million Brain Cells 

from E18 Mice, 10x Genomics; sim_10xG). The datasets differed in the number of detected genes 

per cell, sparsity and heterogeneity. We recreated highly similar distributions of gene expression 

means and variances, cell library sizes and zeros counts as well as relationships of mean-variance 

and mean-zeros (Fig. 2D and Fig. S4A). We preserved the number of cells and genes as in the 

original dataset and defined groups of different proportions across multiple sequencing pools. The 

dimensions of the gene x cell matrices were 41,020 x 1,847 and 27,998 x 2,520 in sim_NPC and 

sim_10xG, respectively. Each tool has been applied on the complete dataset at the model-building 

step, before defining groups of proportions 1:1 (1x), 1:2 (2x) and 1:10 (10x). The number of DE 

genes between groups ranged from 18% to 30% of the total number of DE genes (around 47% of 
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total genes), being lowest at 10x and highest at 2x cases. While the composition of DE genes was 

similar in up-regulated and down-regulated genes, ratios of gene average means between groups 

could reach levels of expression magnitude up to twice as much as in sim_NPC. The datasets 

further differed in the proportion of outlier genes, which was around 1% in sim_10xG and ~2.5% 

in the sim_NPC.  

ROC curves and pAUCs have been performed using the R package pROC (Robin et al. 2011). In 

all comparisons, only genes tested by all methods were considered. Genes were ranked by 

nominal p-values, which we used to define a score as 1-p, indicating the outcome of the prediction 

(DE or non-DE) for each tool. Predictions and true gene labels were assessed at different 

thresholds of these scores to compute relative specificity and sensitivity coordinates for ROC 

curves.   
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