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Figure S1. Distributions of the distances between splicing mutations to their nearest exon/intron junctions.
 (A), (B), (C), and (D) represent mutations with mutant allele as “A”, “T”, “C”, and “G”, respectively. 
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Using Princeton ASD gene priors to estimate RR
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Figure S2. Relative risk estimates of annotations using different priors for ASD data.
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Figure S3. TADs enriched for regulatory SNVs. The heatmaps represent the interaction  strength 
between two genomic loci measured from Hi-C experiments. 
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Figure S4. Relative risk estimates of annotations for ASD data after filtering out mutations with 
allele frequency greater than 0.01 in GnomAD or BRAVO.
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1 TADA-A: computational speedup for parameter estimation

Fitting the TADA-A model at the base level can be very computationally expensive: even if we
apply our model only to 10kb regions near TSS, we have about 200M positions. We describe our
computational strategy to speed up the algorithm. We note that the idea can be applied to both
the mutation and functional model of TADA-A because of similar mathematical structure. For
now, we consider our model of mutation counts of a gene assuming it is a risk gene. Let yit, µit
be the mutation count and calibrated mutation rate of position i mutating to allele t, respectively.
Suppose there are K annotations, and define xit as the vector of annotations of it, the mutant allele
t at position i (K-dimension). Our model is:

yit ∼ Poisson(µite
xitβ), (1)

where β is the effect of annotations (K-dimension vector). Note that in this equation, we drop the
constant 2N in mutation rates for simplicity. So µit should be interpreted as the expected number
of mutations of allele t in position i (rather than rate per chromosome). For simplicity, we assume
the k-th annotation of it, xitk, is binary. Our goal is to quickly evaluate the likelihood of all bases
in a gene. It is easy to show that the log-likelihood as:

logP (y|β) =
∑
t

(
∑
i

yit logµit +
∑
i

yit(xitβ)−
∑
i

µite
xitβ −

∑
i

log yit! ). (2)

The terms
∑

i yit logµit,
∑

i log yit! do not depend on annotations and can be easy to deal with
(we will show below that these constant terms cancel out in the final likelihood). For the other
two terms, we take advantage of this simple fact: all position/mutant-allele pairs with identical
annotations would have the same value of xitβ and exitβ. This greatly simplifies the log-likelihood.
We consider all possible combinations of annotations, and let c be a category representing one com-
bination (2K possible categories in theory). Ex. a category might be: conserved, open chromatin
in brain, but not motif, represented as (1,1,0) for the three annotations: conservation, chromatin
accessibility and motif. We define Vck be an indicator variable of whether the k-annotation is 1
under the category c. We define the variable γc:

γc(β) = exp

(∑
k

βkVck

)
. (3)

This can be interpreted as the relative risk of mutations belonging to the category c. Now for a
mutant of allele t at position i belonging to category c, the terms xitβ and exitβ become log(γc)
and γc, respectively. The log-likelihood of a gene is now written as:

logP (y|β) =
∑
c

yc log(γc)−
∑
c

µcγc +
∑
t

(
∑
i

yit logµit −
∑
i

log yit! ). (4)

where yc and µc are the total DNM count and total mutation rates of category c respectively.
Computation of this function is many times faster than the naive implementation because we do
not have to compute xitβ and exitβ for all positions.

If a gene is a non-risk gene, its likelihood is easy to evaluate. For each base i mutating to allele
t, we have yit ∼ Poisson(µit). This leads to:

logP (y|β) =
∑
t

(
∑
i

yit logµit −
∑
i

log yit! )− µ, (5)



where µ is the total mutation rate of the gene, summing over all the positions and all possible
mutant alleles.

Now we consider the total likelihood over all genes, defined in the main text as:

P (Y |β, π) =
∏
g

[πgP (Yg|Zg = 1, β) + (1− πg)P (Yg|Zg = 0)] (6)

We can factorize the term P (Yg|Zg = 0), which does not depend on the parameters. Let Bg be the
Bayes factor of gene g, Bg = P (Yg|Zg = 1, β)/P (Yg|Zg = 0), the likelihood can be written as:

P (Y |β, π) ∝
∏
g

[πgBg(β) + (1− πg)] (7)

Using Equations 4 and 5, we obtain the log BF of a gene as:

logBg(β) =
∑
c

yc log(γc(β))−
∑
c

µcγc(β) + µ. (8)

We note that the idea of categorization is not new: it underlies the original TADA model. The
difference here is that: we use categorization only for computational purpose, and our statistical
model does not make this assumption. Had we applied the original TADA directly here, we will
have 2K parameters (relative risk for each category), while we only have K parameters under
TADA-A. When the annotations are continuous, we could do more refined discretization, but the
number of parameters would be even higher under the original TADA, but does not change under
TADA-A.

2 TADA-A: additional details

The BF of a gene has a simple interpretation. We subtract Equations 5 from 2, and obtain the
log-BF of a gene as:

logB =
∑
t

(
∑
i

yit log(γit))−
∑
t

(
∑
i

µit(γit − 1)), (9)

where γit is the relative risk of mutation of allele t at position i. We assume there are no protective
mutations, i.e. γit ≥ 1. The first term is the weighted mutation count of the gene, where weight
is given by log γit (non-negative). More damaging mutations would thus contribute more to the
positive score than less damaging ones. The second, negative term represents the penalty given to
the gene. The penalty is larger for larger genes, genes with high mutation rates, and with more
positions predicted to be damaging (large γit means we expect more DNMs under the risk gene
model, so if we do not observe DNM of allele t at i, we have more penalty).

3 Calling de novo SNVs from 32 new ASD trios

32 unrelated ASD patients of Han Chinese ancestry (30 males and 2 females) and their unaffected
parents were recruited for this study. Diagnostic and Statistical Manual of Mental Disorders-
4th edition (DSM-IV-TR) and Autism Diagnostic Observation Schedule (ADOS) were employed
by autism specialists for diagnosis. Genomic DNAs from 96 individuals were used to construct
genomic DNA libraries (500-bp), followed by Illumina paired-end sequencing (90-bp).

Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and
Cutadapt [1] were used to remove 3′/5′ adapters and low quality reads from raw data. The pre-
processed reads were aligned to the human reference genome (hg19, GRCh37) by Burrows-Wheeler



Aligner (BWA) [2] allowing at most four mismatches. An average of 108 Gb of reads per individual
were generated with 36-fold coverage. Then, Sequence Alignment/Map tools (SAMtools) [3] was
used to mark and remove duplicate reads. More than 99% and 98% of the human genome is covered
by at least one and at least 10 reads, respectively. We applied the Genome Analysis Toolkit (GATK)
[4] on uniquely mapped reads to detect single nucleotide variants (SNVs). Variants were detected
on all three individuals in each trio simultaneously.

We used ForestDNM to call de novo SNVs as described previously in [5][6]. The method used in
Jiang et al. (2013) was employed to call de novo indels. Since DNMs are very rare, we removed any
variants with a minor allele frequency (MAF ) > 0.1% based on allele frequency from dbSNP138
and 1000 Genomes to improve the accuracy of DNM calling. The total number of DNMs we called
were similar to previous reports using the same methods [5][6].

4 Contributions of various mutational categories to autism risk

We consider multiple types of coding and noncoding de novo mutations, and estimate how much
they contribute to the risk of autism, based on a liability model. Without loss of generality, we
assumed ASD liability in the general population follows a standard normal distribution Y ∼ N(0, 1).
Individuals carrying mutations have a shifted liability distribution

Y ∼ N

∑
j

βjXj , 1

 (10)

where βj is the effect size of the j-th mutation type at the liability scale, Xj is an indicator variable
representing if an individual has the j-th mutation type or not. Let pj be the probability of having
one j-th type mutation in any ASD risk gene, and π be the proportion of ASD risk genes. Given
that mutation occurs independently, the variance of liabaility due to all mutations is:

V =
∑
j

β2jVar (Xj) =
∑
j

β2j pj(1− pj) (11)

with the variance explained by type j mutation:

Vj = β2j pj(1− pj) (12)

The mutation rate for a type j above can be simply obtained by multiplying the total mutation
rate of type j and π. We chose π = 0.06 in this study, based on several independent studies [7][8].

The relative risks of coding LoF mutations and Mis3 mutations are derived from a previous
ASD WES study, as 20 and 4.7, respectively. We used WGS data to derive the relative risks of
non-coding mutations (Table 1). The relative risks of less conserved regulatory SNVs, conserved
regulatory SNVs and splicing SNVs are 1.55, 3.46 and 3.27, respectively.

We assume each affected individual only has one type of mutation from risk genes, which is a
reasonable assumption given the DNM rate is low. Let s0 be the prevalence of ASD in the general
population (use 1/68 = 0.0147), and sj be the proportion of ASD patients among all with j−th

type mutation. By definition of relative risk, ¯γ(j) = sj/s0. It is straight forward to relate effect size
at liability scale and relative risk:

βj = φ−1(1− s0)− φ(−1)(1− sj) = φ−1(1− s0)− φ(−1)(1− s0γ̄(j)) (13)



where φ−1is the inverse cumulative distribution function of a standard normal distribution. Plug
in pj and βj to Equation 12, we can obtain the variance of risk explaiend by each type of mutation.
In the paper, we also report the relative proportion of de novo ASD risk explained by any type of
mutation, Vj/V .

5 Simulation studies to compare the power of WES and WGS

We used simulations to generate coding and non-coding DNMs from ASD risk genes and non-
risk genes and then used TADA-A to call ASD risk genes, either by using only coding mutations
(WES approach)or using both coding and non-coding mutations (WGS approach). We performed
5 simulations at each different number of N trios. For each iteration at each value of N , we run
the following steps:

1. We randomly chose ASD risk genes from 18700 genes based on a binomial distribution with
success probability of 0.06, and the rest of genes are ASD non-risk genes.

2. For each gene, we generated mutations of each possible allele t at each position i based on
on Poisson distribution (Equation 1). For risk genes, the estimates of exp(β) is in Table 1
in the main text. For non-risk genes, β is set to be 0.

3. We used TADA-A to identify ASD risk genes at q < 0.1, by using both coding mutations
(WES approach) or by using both coding and non-coding mutations (WGS approach).

4. We identified the number of true ASD risk genes (defined in Step 1) that have been identified
in the last step by WES and WGS approaches, respectively.
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