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Figure S1. The MGP secretion levels of MSCs were detected by ELISA. (a) The
dynamic changes of MSC-secreted MGP among five days. (b) The comparison of MGP
secretion between MSC®" and MSCS"MCP after 72 hours’ culture. Data are shown as

mean £ SEM (n = 3). **P < 0.01.
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Figure S2. The viability of MSCs was not obviously influenced by the down-
regulation of MGP. The proliferation of MSCs was evaluated using the CCK-8 kit (a).
The apoptosis of MSCs was evaluated by measuring Annexin V and PI levels (b) and
trypan blue staining (c). Cell viability of MSCs were compared using serum-starvation
assay by culturing cells without serum for 48h. Data are shown as mean + SEM (n = 3).

Scale bar = 50 um, and n.s. means no significant.
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Figure S3. Generation of MGP knockout MSCs. (a) sgRNA/Cas9 was used for long-
term MGP knockout in mouse MSCs. (b) The efficiency of sgRNA-mediated down-

regulation of MGP was assessed at the protein level. The expression of GAPDH was

used as a control.
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Figure S4. Mouse MSCs-derived MGP inhibits the proliferation of activated T-
cells in vitro (verified by CRISPR interference). The proliferation levels of mouse
CD3" T-cells (a), CD4" T-cells (b) and CD8" T-cells (c) were analyzed by flow
cytometry; the change of CFSE fluorescence intensity indicates the growth ratio. Data

are shown as mean + SEM (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, and n.s. means

no significant.
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Figure S5. MGP contributes to T-cells immunoregulation of MSCs through a



paracrine manner. The proliferation levels of mouse CD3" T-cells (a), CD4" T-cells
(b) and CD8" T-cells (c) were analyzed by flow cytometry; the change of CFSE
fluorescence intensity indicates the growth ratio. Flow cytometry was used to analyze
the expression levels of TNF-a and IFN-y in CD4" T-cells (d and f, respectively) and
CD8" T-cells (e and g, respectively) after 3 days of co-culture with MSCs or MSCs-
CM only. Data are shown as mean + SEM (n =5). *P < 0.05, **P < 0.01, and n.s. means

no significant.
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Figure S6. Mouse MSCs-derived MGP down-regulates the cytokine production of
activated T-cells (verified by CRISPR interference). Flow cytometry was applied to
analyze the expression levels of TNF-o and IFN-y in CD4" T-cells (a and c, respectively)
and CD8" T-cells (b and d, respectively) after 3 days of co-culture with MSCs. Data are

shown as mean £ SEM (n = 3). *P < 0.05, and n.s. means no significant.
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Figure S7. MSCs (MSC®" and MSCSMCP) suppress the cytokine expression and
secretion via MGP. (a) The expression levels of pro-inflammation cytokines (TNF-a,
IFN-y and IL-1B) were analyzed at the mRNA level. (b) The secretion levels of pro-
inflammation cytokines (TNF-a and IFN-y) were analyzed by ELISA. Data are shown
as mean = SEM (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, and n.s. means no

significant.
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Figure S8. MSCs do not influence the apoptosis of activated T-cells and the
differentiation of CD4*CD25*FoxP3*Tregs through MGP. (a) After 3 days of co-
culture with or without MSCs, CD3" T-cells were analyzed for apoptosis using flow
cytometry. (b)The proportion of the Treg was analysed by flow cytometry 2 days after
T-cells co-culture with MSCs. Data are shown as mean + SEM (n = 3). **P < 0.01, and

n.s. means no significant.



Table S1. Primers used for the amplification of mouse transcripts by gPCR

Genes Forward sequence Reverse sequence
GAPDH 5’-ACCACAGTCCATGCCATCAC-3’ 5-TCCACCACCCTGTTGCTGTA-3’
MGP 5’-AGGAACGCAACAAGCCTGC 5’-CTGCCTGAAGTAGCGGTTG
CTA-3 TAG-3’
TNF-a 5-GGTGCCTATGTCTCAGCCT 5’-GCCATAGAACTGATGAGAGG
CTT-3’ GAG-3’
IL-6 5’-TACCACTTCACAAGTCGGA 5-CTGCAAGTGCATCATCGTTG
GGC-3 TTC-3
IL-1B 5’-TGGACCTTCCAGGATGAGG 5’-GTTCATCTCGGAGCCTGTA
ACA-3’ GTG-3°
IL-10 5’-CGGGAAGACAATAACTGCA 5-CGGTTAGCAGTATGTTGTCC
Ccc-3 AGC-3’
IL-17 5’-CAGACTACCTCAACCGTTC 5’-TCCAGCTTTCCCTCCGCAT
CAC-3’ TGA-3’

Table S2. MGP shRNA sequence used to generate lentivirus plasmids for RNA

silencing

Oligonucleotide (5't03")

Forwar

TGGAGAAATGCCAACACCTTCTTCCTGTCAAAGGTGTTGGCATTTCTCCTTTTTTC

Reverse

TCGAGAAAAAAGGAGAAATGCCAACACCTTTGACAGGAAGAAGGTGTTGGCATTTCTC




CA

Table S3. MGP sgRNA sequence used to generate lentivirus plasmids for gene

silencing
Oligonucleotide (5't03')

Forward CACCGTTCGTGAGATTCGTAGCACA
sgl

Reverse AAACTGTGCTACGAATCTCACGAAC

Forward CACCGTCTCTGTTGATCTCGTAGGC
sg2

Reverse AAACGCCTACGAGATCAACAGAGAC




