Automated 3D segmentation of methyl isocyanate-exposed rat trachea using an ultra-thin, fully fiber optic optical coherence endoscopic probe

Yusi Miao^{1,2}, Joseph C. Jing^{1,2}, Vineet Desai¹, Sari B. Mahon¹, Matthew Brenner¹, Livia A. Veress³, Carl W. White³ & Zhongping Chen^{1,2*}

1 Beckman Laser Institute, University of California, Irvine, Irvine, California 92612

- 2 Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697
- 3 Department of Pediatrics, University of Colorado Denver, Denver, Colorado 80204

*Corresponding author:

Zhongping Chen, PhD Professor Dept. of Biomedical Engineering University of California, Irvine Irvine, CA 92617 e-mail: z2chen@uci.edu

Supplementary Figures

Supplementary Figure S1. Histological sectioning of rat trachea exposed to MIC gas shows the detachment of lumen from cartilage (**A**) and erosion of cartilage and stenosis (**B**).

Supplementary Figure S2. The plot of cross-section area from carina (slice 0) to epiglottis opening (slice 130). While the control shows consistent cross-section area, the MIC-exposed trachea shows significant narrowing near epiglottis. The OCT slices are 0.2 mm apart.

Supplementary Video Legend

Supplementary video: 3D surface models of rat trachea obtained from automated segmentation of OCT images.

Comparison of Areas in Control/MIC Airways