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Abstract

The aim of this supplementary material is to provide readers with sensitivity analyses on the
model of cause-of-death decomposition of the young adult mortality hump. We first explore the
consequences of choosing alternative sets of causes that contribute to the hump. We then test the
ability of induction via principal components analysis to identify the best typology. We finally
show the impact of choosing alternative age intervals for the inductive methods.
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Introduction

When presented with a dataset of age- and cause-specific death rates, it may be difficult to intuitively
identify which causes of death likely contribute to the hump. In the paper we suggest an inductive
approach to select these causes in order to adapt to each context and avoid excluding causes that
should have been included. The motivation for reducing the cause of death list to a minimal set that
contributes to the hump is primarily one of computational parsimony. In our case we started with 92
causes and ended up with a set of seven. There are

(
92
8

)
= 8+ billion ways that seven causes could

have been selected from this initial set, and very many more given that the number seven is itself a
flexible set size. This means that there are many ways in which the selection of hump-contributing
causes might go awry. For example, a hump contributing cause may erroneously be left out, or non-
contributing causes may be uselessly included in the decomposed set. In this supplementary material
we design a simulation example in order to (1) confirm the ability of the proposed PCA to identify a
good cause set, (2) investigate the potential biases that could be introduced by making a poor choice
of causes of death, and (3) explore the effect of choosing alternative age ranges in the PCA.

1 Generating simulated forces of mortality

We start by generating eight cause-specific forces of mortality, using a parametric model inspired by
Kostaki (1992), but without an ontogenescence component and with a stronger leveling off at older
ages. This is to show how the flexibility of the non-parametrical approach can fit even shapes that
do not strictly follow a Gompertz trend. The force of mortality µ(x) is described by the following
formula,

µ(x) =


d · exp(−e · (log(x)− log(f))2) + g·hx

1+4g·hx ∀x ≤ f

d · exp(−e/k · (log(x)− log(f))2) + g·hx

1+4g·hx ∀x > f

(1)

The first term captures the young adult mortality hump and is defined by parameters d (height), e 
(spread), f (location) and k (asymmetry). The second term captures the exponential increase of the 
risk of death associated with senescence, including a leveling off at very old ages, and is defined by 
parameters g (level) and h (slope). For our simulation exercise, we define eight causes of death (A to 
H), with different parameters (d to h). The parameters used for the simulation are presented in Table S1.

P
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r

Cause (κ)
A B C D E F G H

d 1.5e-03 0.00135 0.00105 0 0 0 0 0
e 8 8 8 8 8 8 8 8
f 18 24 20 20 20 20 20 20
k 0.7 0.5 1 1 1 1 1 1
g 5.0e-06 2e-40 1e-5 3.750e-06 1.875e-06 1.875e-06 1.875e-06 3.75e-07
h 9.8e-01 1.01 1.105 1.105 1.12 1.05 1.15 1.17

Table S1: Parameters used for the simulated cause-specific forces of mortality

Figure S1 displays the simulated forces of mortality computed from these parameters, from 8 to 90 
years of age. Causes A, B and C include a hump component, while causes D through H don’t. Cause 
A almost only consists of a hump, with very low levels of senescence, and resembles what is often 
observed for homicides or traffic accidents. Cause B displays a sharp increase in the late teens but 
levels off thereafter, as is often observed with suicides. Cause C combines a hump and a senescence 
component, resembling what is often observed with falls or non-traffic accidents. The other causes 
display no hump but have varying initial levels (g) and rates of ageing (h), including also a progressive 
leveling off in old age.
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enThe dashed black line in Figure S1 repres ts the true all-cause hump, which is the sum of all
cause-specific (κ ∈ A...H) hump terms: γH =

∑
κ γ

κ
H , where

γκH(x) =

 dκ · exp(−eκ · (log(x)− log(fκ))2) ∀x ≤ fκ

dκ · exp(−eκ/kκ · (log(x)− log(fκ))2) ∀x > fκ
(2)

.
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Figure S1: Simulated cause-specific forces of mortality (true values)

2 Introducing stochasticity
We introduce artificial stochasticity in the simulated forces of mortality by generating random deviates 
from a Poisson distribution. To that aim, we take the average exposure for the US males between 1959 
and 2010 from the same dataset that was used in the paper (Figure S2).
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Figure S2: Population structure used as exposures to generate the stochastic noise

We simulate age- and cause-specific death counts (dxκ) from a Poisson distribution,

dx
κ ∼ P(λ = nx µx

κ) ,

which are then converted to age-specific rates (mx
κ),

mκ
x =

dκx
nx

, (4)

where dxκ are the simulated death counts at age x from cause κ, nx are the age-specific exposures,
and µxκ are the cause-specific forces of mortality. Figure S2 displays the simulated cause- and age-specific 
death rates.
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Figure S3: Simulated age- and cause-specific death rates

3 Brute force approach
The resulting age-specific death rates (mx

κ) mimic real age- and cause-specific data gathered for a given 
population. It would be näıve to try to select the best candidate set based on all possible combinations 
of causes of death. In practice, this is often impossible since the number of combinations increases 
extremely fast with the number of causes in the dataset. For instance, working on the 92 causes 
included in the US data that are used in the paper, there would be 4.95 · 1027 possible typologies, 
which correspond to all possible combinations of size 1 to 92. In this simulation with only 8 causes of 
death, there are only 255 such combinations, making a brute force approach feasible.

We thus run an unconstrained version of our model on all 255 possible sets of causes of size 1 to 8. 
Not constraining is essential at this stage because constraints could make even a poor choice of causes 
yield a reasonably good hump at the expense of the cause-specific fits1. We then compare the goodness-
of-fit of each combination. We measure this fit by computing the residual sum of squares between the

1For instance, in the absence of true hump-contributing causes, other causes would be artificially attributed a con-
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estimated age- and cause-specific contributions to the hump, and the true hump components of each
cause. Algebraically, the residual sum of square (rss) is defined as

rss =
∑
κ

∑
x

(γ̂κH,x − γκH,x)2 , (5)

where γ̂κH,x are the age- and cause-specific estimated contributions to the hump measured on the
rate scale (i.e. not translated in units of life expectancy lost to the hump), and γκH,x are the true
cause-specific humps as defined in (2).
Figure S4 illustrates the fitted (γ̂κH,x) and true (γκH,x) contributions to the hump by cause of death for a 
selection of the 255 possible combinations. The top-left panel, ABC, corresponds to the best
possible set, consisting in only causes that indeed have a hump component. This set shows very close
correspondence between true and estimated contributions to the hump. This is the case even without
constraining the sum of all cause-specific contributions to be equal to the all-cause hump, although
there are some small residual negative contributions that would disappear with a constrained model2.

tribution to the hump in order to make up for the overall hump. In the absence of empirical evidence for such a hump, 
this would make the identification of each component totally arbitrary and unstable. In practice, on this simulated data, 
our constrained model often does not converge when the choice of hump-related causes is too far from the true one. For 
this reason we cannot present a comparison of constrained and unconstrained results.

2Note that cause B is the one that displays the largest discrepancy between the true and the fitted contribution to 
the hump. This is due to the fact that of the three hump-contributing causes, this is the one for which the two mortality 
components (hump and senescence) are the furthest from their ideal-type (i.e. the hump is wide and the senescence 
component is almost flat, see Figure S1). This tends to make these components less identifiable and thus more difficult to 
split.
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Figure S4: Fitted and true contributions to the hump for a selection of all 255 combinations

Table S2 shows that, out of the 255 possible sets of hump-contributing causes, the one that yields the 
best goodness-of-fit is the true case (i.e. that includes causes A, B and C only). The runner-ups are all 
based on augmentations of this set, with one or two additional causes. These “false positives”, i.e. causes 
that were unnecessarily included in the list of contributors to the hump, do not imply much penalty on 
the quality of the fit. For example, the residual sum of squares of the 10th best combination (last one of 
Table S2) is only 6% higher than the first one.
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A B C D E F G H RSS
1 1 1 1 2.713E-06
2 1 1 1 1 2.714E-06
3 1 1 1 1 2.724E-06
4 1 1 1 1 1 2.726E-06
5 1 1 1 1 2.815E-06
6 1 1 1 1 1 2.816E-06
7 1 1 1 1 1 2.826E-06
8 1 1 1 1 1 1 2.828E-06
9 1 1 1 1 2.875E-06

10 1 1 1 1 1 2.876E-06

Table S2: Best combinations of causes in terms of goodness-of-fit. The causes that are included in the 
model are flagged with a “1” for each combination.

On the contrary, “false negatives”, i.e. causes that are true hump contributors but were omitted from 
the decomposed set, have a much higher cost on the goodness-of-fit. Figure S5 indicates how the 
composition of the set of contributing causes changes from the best (left) to the worst-fitting (right) 
cases. The strong steps in this graph indicate that most of the quality of fit comes from the presence 
or absence of the causes that truly contribute to the hump (A, B and C). All 32 best solutions include 
causes A, B, and C. The next three steps are all of the sets that omit one of the three true contributors 
to the hump, first B omitted, then A, then C. The next three steps include all sets of causes that 
only include one of the true contributors (B, A, then C). Finally, the 31 worst solutions each omit all 
three true contributors. Within each of these steps, the cost of including a cause that in fact does not 
contribute to the hump is negligible. We conclude that it is preferable to include too many causes in 
the list of causes that might contribute to the hump than to inadvertently omit one. From the false 
positive heuristic, we conclude that our choice to use the same typology for both sexes in our analysis 
likely did not impose too heavy a penalty, despite the fact that women tend to count fewer causes that 
display a potential contribution to the hump.
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Figure S5: Ranking of all 255 sets of causes by their residual sum of squares. The presence or 
absence of a given cause A, B and C is indicated above each cluster of solution. Grey means a cause is 
absent, while black means it is present.

4 Inductive approach
Since in practice this exhaustive exercise is unfeasible, one needs an alternative procedure to identify 
the best set of candidate causes that contribute to the hump. We argue in the manuscript that inductive 
approaches, like Principal Component Analysis (PCA) or Cluster Analysis (CA), are efficient ways to 
achieve this task. In order to do that, we characterize each cause by its shape during the years that 
are mostly affected by the young adult mortality hump. A simple measure of this shape is the first 
difference of the observed death rates mx

κ (which in our case are simulated):

ρκx+0.5 = mκ
x+1 −mκ

x . (6)

The choice of the age range on which to apply this measure is arbitrary but should include the
ages most affected by the hump. We will show however in the next section that this choice does not
influence much the results. We first start here with the observations for ages below 40 years.
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First we run a hierarchical clustering analysis on the euclidean distances between each ρxκ in order to 
identify clusters of causes of death. Figure S6 shows that causes A, B and C clearly stand apart from the 
rest. Using the Average Silhouette Width (ASW) criterion (Kaufman & Rousseeuw, 1990), we 
determine that the ideal number of clusters is 4, with causes A, B and C constituting single-cause 
clusters, and a fourth composed of all other causes that do not contribute to the hump.
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Figure S6: Results of Cluster analysis on the rate of ageing ρκ identify four clusters of causes of death 
that display distinctive shapes during early adulthood

We then run a PCA in order to decrease the dimensionality of the distance between each cause from 
32 ages (8 to 39) to only two main dimensions. Figure S7 shows that these first two dimensions together 
explain 90% of the information. Once again, causes A, B and C visually stand apart. Black circles are 
drawn around each of the four identified clusters.
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Figure S7: Results of Principal Component Analysis (right) shows that the four clusters clearly 
stand apart when reduced to their two principal dimensions

Together, these inductive analyses indicate that causes A, B and C are natural candidates for the 
cause-of-death decomposition of the young adult mortality hump. Since this set of causes corresponds 
to the true solution, this suggests that inductive approaches are a good shortcut to avoid the likely 
unfeasible task of testing all possible sets of contributing causes to the hump.

5 Choice of age boundaries
As stated previously, the choice of age bounds used for computing euclidean distances is partly arbi-
trary. The selection of causes by inductive approaches is however weakly affected by this choice. We 
demonstrate this by changing the age range on which we compute the first difference of the death 
rates, dropping progressively the top bound from age 39 to age 19. We then project these points on the 
original PCA. Figure S8 indicates that the relative position of each cause does not vary much with the 
choice of age range and that the resulting selection of causes that contribute to the hump would likely 
not be affected even if only ages 8 to 19 were included in the PCA
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Figure S8: Influence of the choice of age range on the differences in shape of causes of death, as measured 
by the two first dimensions of a PCA run on the first difference in their age-specific death rates.

Conclusion

These sensitivity analyses support the robustness of our model to the choice of causes of death that 
contribute to the hump. First, we show that it is only weakly sensitive to false positives, i.e. the 
undue inclusion of causes that actually do no contribute to the hump. It is however more sensitive to 
false negatives, i.e. the omission of causes that actually do contribute to the hump. Cause-selection 
should therefore err towards overinclusion of causes. Second, we show that inductive approaches are 
an efficient way to identify the causes that contribute to the hump in the very common case where it 
is impossible to test all possible sets of causes. Third, we show that the choice of ages on which to 
apply these inductive approaches does not dramatically affect the choice of which causes to include in 
the decomposition.
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