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Supplementary Materials - Simulation studies 

 

The main simulation study reported in the paper evaluated the biases of three competing 

estimators of mediation effects under six pertinent data generating models assuming effect 

homogeneity. Further simulations were carried out to evaluate the statistical properties (bias 

and standard error) of the best performing mediation approach (C) while allowing for effect 

heterogeneity. This supplementary section describes our overall simulation study design and 

summarizes the additional findings from the simulations under effect heterogeneity.   

 

Data generating model 

We simulated data from a trial of size n=500 with 1:1 randomisation ratio using the data 

generating model described in Figure 1: 

 

Baseline variables 

Past predictors of baseline values 𝑉𝑖 are assumed to arise from a standard normal distribution. 

Baseline values are generated from  

𝑀𝑖,0 ∶= 𝑙1𝑉𝑖 + 𝑖
(1)

   and  

𝑌𝑖,0 ∶= 𝑙2𝑉𝑖 + 𝑖
(2)

 . 

standardised to have unit variance; i.e. var(𝑀𝑖,0) = 1 and var(𝑌𝑖,0) = 1. This implies that  

var(𝑖
(1)

) = 1 − 𝑙1
2  with  |𝑙1| < 1  and  var(𝑖

(2)
) = 1 − 𝑙2

2  with  |𝑙2| < 1 . Error terms 𝑖
(1)

 

and 𝑖
(2)

 are independently normally distributed with zero means. Parameters 𝑙1 and 𝑙2 are 

correlation coefficients. 
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Time 1 potential outcomes 

We generate potential outcomes whose variances under the control condition increase by 

20% over time; i.e. we ensure that  var[𝑀𝑖,1(𝑅 = 0)] = 1.2 var(𝑀𝑖,0) and  var[𝑌𝑖,2(𝑅 =

0)] = 1.2 var(𝑌𝑖,0) .  Applying path tracing rules to Figure 1 this implies that  var[𝑀𝑖,1(0) −

𝑀𝑖,0] = 0.2 − 2(𝑐1 + 𝑙1𝑙2𝑑2)  with 𝑐1 + 𝑙1𝑙2𝑑2 < 0.1  and that  var[𝑌𝑖,2(0) − 𝑌𝑖,0] = 0.2 −

2[𝑑1 + 𝑐2𝑙1𝑙2 + 𝑙1𝑙2 + 𝛽(𝑑2 + 𝑐1𝑙1𝑙2)] with  𝑑1 + 𝑐2𝑙1𝑙2 + 𝑙1𝑙2 + 𝛽(𝑑2 + 𝑐1𝑙1𝑙2) < 0.1 .  

We define two potential mediator outcomes for 𝑟 = 0,1 by the linear structural model: 

[𝑀𝑖,1 − 𝑀𝑖,0](𝑟) ∶= 𝛼𝑟 + 𝑐1𝑀𝑖,0 + 𝑑2𝑌𝑖,0 + 𝑖
(3)(𝑟)   and 

𝑀𝑖,1(𝑟) ∶= [𝑀𝑖,1 − 𝑀𝑖,0](𝑟) + 𝑀𝑖,0 

This implies that   var[𝑖
(3)(0)] = 0.2 − 2(𝑐1 + 𝑙1𝑙2𝑑2) − 𝑐1

2 − 𝑑2
2 − 2𝑐1𝑑2𝑙1𝑙2  with 0.2 −

2(𝑐1 + 𝑙1𝑙2𝑑2) > 𝑐1
2 + 𝑑2

2 + 𝑐1𝑑2𝑙1𝑙2 . To accommodate this we generate  

𝑖
(3)(𝑟) ∶= var[𝑖

(3)(0)]
0.5

[(1 − 𝑓2)0.5𝑀𝑖 + 𝑓(2𝑟 − 1)𝑀𝑖]  with 𝑀𝑖 and 𝑀𝑖 independently 

standard normally distributed. Here 𝑓 [0,1] is a variance component reflecting the 

contribution of (random) heterogeneity across individuals in the effect of r to the error 

variance.  Furthermore, parameter 𝛼 is the target effect and 𝛼/√1.2 can be interpreted as a 

standardised difference (Cohen’s d). Parameters 𝑐1 < 0  and 𝑑2 determine the effect of the 

baseline measures on the mediator change scores. 

 

Time 2 potential outcomes  

We define four (counterfactual) clinical outcomes for 𝑟1 = 0,1 ;  𝑟2 = 0,1 by the linear 

structural model: 

[𝑌𝑖,2 − 𝑌𝑖,0][𝑟1, 𝑀𝑖,1(𝑟2)] ∶= 𝛾𝑟1 + 𝛽𝑀𝑖,1(𝑟2) + 𝑑1𝑌𝑖,0 + 𝑐2𝑀𝑖,0 + 𝑖
(4)

[𝑟1, 𝑀𝑖,1(𝑟2)]   and 

𝑌𝑖,2[𝑟1, 𝑀𝑖,1(𝑟2)] ∶= [𝑌𝑖,2 − 𝑌𝑖,0][𝑟1, 𝑀𝑖,1(𝑟2)] + 𝑌𝑖,0 
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This then implies that   var{𝜀𝑖
(4)

[0, 𝑀𝑖,1(0)]} = 0.2 − 2[𝑑1 + 𝑐2𝑙1𝑙2 + 𝑙1𝑙2 + 𝛽(𝑑2 +

𝑐1𝑙1𝑙2)] − 𝑑1
2 − 𝑐2

2 − 2𝑐2𝑑1𝑙1𝑙2 − 2 − 𝑐2𝑑1𝑙1𝑙2 − 2𝑑1(𝑑2 + 𝑐1𝑙1𝑙2 + 𝑙1𝑙2) − 2𝑐2(1 + 𝑐1)  

with 0.2 − 2[𝑑1 + 𝑐2𝑙1𝑙2 + 𝑙1𝑙2 + 𝛽(𝑑2 + 𝑐1𝑙1𝑙2)] > 𝑑1
2 + 𝑐2

2 + 2𝑐2𝑑1𝑙1𝑙2 + 2 +

𝑐2𝑑1𝑙1𝑙2 + 2𝑑1(𝑑2 + 𝑐1𝑙1𝑙2 + 𝑙1𝑙2) + 2𝑐2(1 + 𝑐1) .  And we generate  

𝜀𝑖
(4)

[𝑟1, 𝑀𝑖,1(𝑟2)] ∶= var{𝜀𝑖
(4)

[0, 𝑀𝑖,1(0)]}
0.5

[(1 − 𝑧2 − 𝑔2)0.5𝑌𝑖 + 𝑧𝑀𝑖,1(𝑟2)
𝑌𝑖

+

𝑔(2𝑟1 − 1)𝑌𝑖]  with (1 − 𝑧2 − 𝑔2) ≥ 0 and  𝑌𝑖 , 
𝑌𝑖

 and 𝑌𝑖 independently standard 

normally distributed. Here 𝑧, 𝑔 [0,1] are variance components reflecting the contribution of 

(random) heterogeneity in the effect of 𝑀𝑖,1(𝑟2)  or of  𝑟1 respectively to the error variance. 

Furthermore, parameter 𝛾 is the natural direct effect with 𝛾/√1.2 representing a standardised 

difference. Parameter 𝛽 is the causal effect of the mediator on the clinical outcome expressed 

as a standardised regression coefficient.  Parameters 𝑑1 with  𝑑1 + 𝑑2𝛽 < 0  and 𝑐2 

determine the effect of the baseline measures on the clinical change scores. 

  

Observed variables 

We then map the potential outcomes onto observable variables by calculating 

𝑀𝑖,1 = (1 − 𝑅𝑖)𝑀𝑖,1(0) + 𝑅𝑖𝑀𝑖,1(1) 

and 𝑌𝑖,2 = (1 − 𝑅𝑖)𝑌𝑖,2[0, 𝑀𝑖,1(0)] + 𝑅𝑖𝑌𝑖,2[1, 𝑀𝑖,1(1)] 

We note that, strictly speaking, we needed only to generate two potential outcomes, namely   

𝑌𝑖,2[0, 𝑀𝑖,1(0)]  and   𝑌𝑖,2[1, 𝑀𝑖,1(1)]. However, we generate all four potential outcomes to 

enable us to validate our simulations by confirming values for the intention-to-treat effect and 

and the causal mediation effects. 

 

Please note the following points regarding our simulation models: (i) We chose to set all 

intercepts to zero for simplicity. (ii) We inflated the variance of outcomes under the control 
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condition by 20% over time. A change score model that holds the variance constant implies 

that baseline measures and change scores of a variable are negatively correlated. Some 

variance inflation needed to be allowed to ensure that individual outcome values can vary 

over time even if 𝑐1 = 0  or 𝑑1 + 𝑑2𝛽 = 0.  (iii) We used a random coefficient model to 

simulate effect heterogeneity.  

 

Main simulation study 

The main simulation study evaluated the statistical properties of the competing estimators 

assuming effect homogeneity; i.e. we set  𝑓 = 𝑔 = 𝑧.  We simulated from the six different 

data generating models listed in Table 1. This was achieved by following our general data 

generating model but imposing parameter restrictions as shown in Table 1 to reflect the 

specific confounding process.  The remaining simulation parameters were set to typical 

values in mental health trials. These value choices and their rationales are summarized in 

Table S1.  

 

 

Table S1 Parameter value choices and their rationales. 

  

Parameter Interpretation Value(s) Rationale 

𝑙1 Correlation between latent 

common cause and baseline 

measure of putative mediator. 

0.5 “Moderate size” correlation 

between baseline measures 

of mediator and clinical 

outcome 

𝑙2 Correlation between latent 

common cause and baseline 

measure of clinical outcome. 

0.5 As above. 

f Square is error variance component 

reflecting treatment offer effect 

heterogeneity. 

0, √1/6, 

√1/3 

 

Values chosen to reflect 

treatment effect 

heterogeneity contributing 

up to a third of error 

variance. 

 Target effect  0.5 “Moderate size” Cohen’s d. 
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𝑐1 Effect of baseline measure of 

mediator on change in mediator. 

-0.5 

 

Chosen to provide approx. 

0.5 correlation between 

baseline and time 1 

measures in the control 

group (typical for mental 

health trials). 

𝑑2 Effect of baseline measure of 

clinical outcome on change in 

mediator. 

0.15 Chosen to be of smaller 

absolute size than the effect 

of the baseline measure of 

the mediator itself. 

g Square is error variance component 

reflecting direct treatment offer 

effect heterogeneity. 

0, √1/6, 

√1/3 

Values chosen to reflect 

treatment effect 

homogeneity up to “strong” 

effect heterogeneity. 

z Square is error variance component 

reflecting mediator effect 

heterogeneity. 

0, √1/6, 

√1/3 

Values chosen to reflect 

mediator effect 

homogeneity up to “strong” 

effect heterogeneity. 

 Direct effect of treatment offer on 

clinical outcome 

0.375 “Small/moderate size” 

Cohen’s d. 

 Causal effect of mediator on 

clinical outcome (implies 

NIE=0.125, ATE𝑌 = 0.5) . 

0.25 “Moderate size” 

standardised regression 

coefficient. 

𝑑1 (Direct) effect of baseline measure 

of clinical outcome on change in 

this outcome. 

-0.5 Chosen as providing 

approx. 0.5 correlation 

between baseline and time 

2 measures in the control 

group (typical for mental 

health trials). 

𝑐2 (Direct) effect of baseline measure 

of mediator on clinical outcome 

not operating via changing the 

mediator at time 1 

-0.10 Chosen so that the total 

effect size for the path 

𝑀0 → 𝑌2 is the same as that 

for the path 𝑌0 → 𝑀1 (cf 

Figure 1). 

 

 

We repeatedly sampled from these models to generate mediator and clinical outcome 

variables; construct respective estimators and mimic sampling distributions. The bias findings 

of the main simulation study have been summarized in our paper.  
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Additional simulation study 

We carried out further simulations to study the impact of random effect heterogeneity. Only 

approach (C) was able to provide unbiased estimates under all models considered assuming 

effect homogeneity (cf Table 2). Thus only the statistical properties of this approach were 

evaluated further. For this assessment we simulated from the general data generating model 

without imposing further parameter restrictions – thus effectively allowing for all 

confounding processes involving baseline measures to operate. Importantly, we now varied 

the parameters that determined the effect variability across individuals. The variabilities of 

individual treatment effects are determined by the parameters 𝑓 (inter-individual differences 

in the treatment effect on the mediator variable) and 𝑔 (inter-individual differences in the 

direct treatment effect on the clinical outcome). The variability of individual mediator effects 

is determined by parameter 𝑧 (inter-individual differences in the effect of the mediator 

variable on the clinical outcome). We considered 9 models reflecting combinations of three 

levels of treatment effect heterogeneity (“effect homogeneity”, “mild effect heterogeneity” 

and “strong effect heterogeneity”) and mediator effect heterogeneity (also “homogeneity”, 

“mild heterogeneity” and “strong heterogeneity”).  
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Table S2: Simulation results for approach (C) under effect heterogeneity: Expected values of 

estimators based on s=10000 simulations. (Where available, estimator SEs and closed-form 

estimated values are shown in square and curly brackets respectively. Biases are indicated in 

italics.) 

 

Effect 

heterogeneity 

True estimand value 

f g z =0.5 =0.25 NIE=0.125 NDE=0.375 ATE𝑌 = 0.5 

0  

 

0 0  0.500 

[0.085] 

{0.085} 

0.250 

[0.045] 

{0.044} 

0.125 

 

0.376 

[0.088] 

{0.087} 

0.501 

√1/6 √1/6 0 0.500 

[0.084] 

{0.084} 

0.250 

[0.044] 

{0.044} 

0.125 0.375 

[0.087] 

{0.087} 

0.500 

√1/3 √1/3 0 0.500 

[0.084] 

{0.084} 

0.250 

[0.044] 

{0.044} 

0.125 0.375 

[0.087] 

{0.087} 

0.500 

0 0 √1/6 0.500 

[0.084] 

{0.084} 

0.250 

[0.051] 

{0.045} 

0.125 0.376 

[0.088] 

{0.088} 

0.501 

√1/6 √1/6 √1/6 0.500 

[0.084] 

{0.084} 

0.251 

[0.050] 

{0.045} 

0.126 0.375 

[0.088] 

{0.088} 

0.501 

√1/3 √1/3 √1/6 0.500 

[0.084] 

{0.084} 

0.251 

[0.050] 

{0.045} 

0.126 0.375 

[0.088] 

{0.088} 

0.501 

0 0 √1/3 0.500 

[0.084] 

{0.084} 

0.251 

[0.056] 

{0.046} 

0.126 0.376 

[0.089] 

{0.089} 

0.501 

√1/6 √1/6 √1/3 0.500 

[0.084] 

{0.084} 

0.251 

[0.056] 

{0.046} 

0.126 0.375 

[0.088] 

{0.089} 

0.501 

√1/3 √1/3 √1/3 0.500 

[0.084] 

{0.084} 

0.251 

[0.056] 

{0.046} 

0.126 0.375 

[0.088] 

{0.089} 

0.501 
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Table S2 shows the findings from the additional set of simulations. The expected values of 

the model-based SE estimators (shown in curly brackets) can be contrasted with the true 

estimator SEs (shown in square brackets) to assess bias in variance estimators. We observed 

the following: 

 Approach (C) continued to provide unbiased estimators of all mediation parameters 

under effect heterogeneity. 

 The (true) variance of the target effect estimator was not affected by the level of 

treatment effect heterogeneity (𝑓). (It cannot be affected by choices for 𝑔 or 𝑧.) This 

variance value was estimated without bias under all scenarios considered here. 

 The variance of the natural direct effect estimator remained constant across different 

levels of direct treatment effect heterogeneity (𝑔), mediator effect heterogeneity (𝑧) as 

well as of 𝑓. This variance value was estimated without bias under all scenarios 

considered here. 

 The variance of the  estimator increased with increasing heterogeneity of the 

mediator effect (𝑧). When such effect heterogeneity was present (𝑧 ≠ 0) this extra 

variance was not captured and the variance estimator provided by Approach (C) was 

downwardly biased. 

 

We suggest that the reason for the unaccounted variance inflation in the ANCOVA estimator 

of    is that the sample distribution of the mediator variable varies across repeated samples 

while that of the randomisation variable is held constant by our trial design. This extra 

variability is not captured by an estimator based on the conditional distribution of the clinical 

outcome given the mediator. However, we would expect a variance estimator constructed by 
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nonparametric bootstrapping to capture this extra variability since bootstrapping is trying to 

mimic the full data generating process.  


