
S1 Text. All appendixes (A–J)

Appendix A: The Role of s and r in Prior Models of Adaptive KF/PPF

Here we clarify why s in the covariance matrix S = sIn in (2) for the adaptive KF and r in
the covariance matrix Q = rIn in (14) for the adaptive PPF specify the learning rates. For the
KF, the covariance matrix S = sIn in (2) models our uncertainty about the unknown underlying
parameters ψ. This indeed implies that s also has a critical role for parameter estimation: it
balances the relative weight of the previous parameter estimate ψt−1|t−1 and the latest observation
yt in obtaining the new parameter estimate ψt|t in the KF. By doing so, s controls how fast
parameters are learned. This is the reason that we call s the learning rate. Similarly, r plays the
same role for the PPF.

To see the above more explicitly, we can combine equations (3) and (6) for the adaptive KF.
This gives the following update equation for the KF:

ψt|t = ψt−1|t−1 + St|tṽtZ
−1(yt − ṽ′tψt−1|t−1). (A1)

Similarly, by combining equations (15) and (18) for the adaptive PPF, we get the following update
equation

φt|t = φt−1|t−1 + Qt|tṽt[Nt − λ(t|φt−1|t−1)∆]. (A2)

The relative weight of the neural observation yt and the previous estimated parameters ψt−1|t−1

in the KF is governed by St|tṽtZ
−1 in (A1). The only element of the relative weight in (A1) that is

in our control is St|t. From equation (A21) in Appendix D, the eigenvalues {κm} of the steady-state

average of St|t, which is denoted by S̃+, can be written as

κm =

√
h2
ms

2 + 4hms− hms
2hm

=
2√

h2
m + 4hm/s+ hm

. (A3)

These eigenvalues are thus a monotonically increasing function of s (note that hm is a constant).
So as s increases, the eigenvalues of St|t increase and thus the parameters are learned faster but at
the price of a higher steady-state variation and error (theorem 1), and vice versa. That is why we
refer to s as the learning rate because it controls the rate of parameter update as in equation (A1).

Similarly, in the PPF, the relative weight of the neural observationNt and the previous estimated
parameters φt−1|t−1 is governed by Qt|tṽt in (A2). The only factor that is in our control in the
relative weight in equation (A2) is Qt|t, which is in turn purely controlled by the design parameter
r. Again, from Appendix H, the eigenvalues {bm} of the steady-state average of Qt|t, which is

denoted by Q̃+, can be written as

bm =

√
a2
mr

2 + 4amr − amr
2am

=
2√

a2
m + 4am/r + am

. (A4)

These eigenvalues are thus a monotonically increasing function of r (note that am is a constant).
So as r increases, parameters are learned faster, which is why we refer to r as the learning rate for
the PPF.

1



Appendix B: KF and PPF for Kinematic Decoding in Closed-loop BMIs

Here we present the kinematic decoders, which use the learned encoding models. We use a KF
for continuous signals and a PPF for discrete spikes. In both decoders, the prior model on the
kinematic state xt = [d′t,v

′
t]
′ is given as [1–6]

xt+1 = Axt + wt, (A5)

where wt is a white Gaussian noise with covariance matrix W and

A =


1 0 ∆ 0
0 1 0 ∆
0 0 α 0
0 0 0 α

 (A6)

with α enforcing correlation between consecutive velocities and thus continuity in the evolution of
kinematics. For observations, we assume that there are C channels.

For continuous neural signals, the observation model is given by combining all channels described
in (1) into a single vector equation as follows

yt = ξ + Hxt + zt (A7)

where yt = [y1
t , ..., y

C
t ]′, ξ = [ξ1, ..., ξC ]′ is the baseline activity, zt = [z1

t , ..., z
C
t ]′ is the zero-mean

white Gaussian noise, and the c-th row of H is [0, 0, ηcx, η
c
y] = [0′,ηc′]. Equations (A5) and (A7)

form a linear state-space model. Denoting the posterior and prediction means by xt|t and xt|t−1,
and their covariances by Ut|t and Ut|t−1, respectively, the kinematic state, xt, can be decoded by
KF as follows [7]

xt|t−1 = Axt−1|t−1 (A8)

Ut|t−1 = AUt−1|t−1A
′ + W (A9)

U−1
t|t = U−1

t|t−1 + H′Z−1H (A10)

xt|t = xt|t−1 + Ut|tH
′Z−1

[
yt − ξ −Hxt|t−1

]
(A11)

For discrete observations (i.e., spikes), the prior kinematic model for xt is the same as (A5).
We denote N1:C

t = [N1
t , ..., N

C
t ]′. Given the assumption that neurons are conditionally independent

conditioned on xt as before, the observation model can be written down using (12) as

p(N1:C
t |xt) =

C∏
c=1

p(N c
t |xt)

=

C∏
c=1

(λc(xt)∆)N
c
t e−λ

c(xt)∆ (A12)

Here λc(xt) = λc(vt) = exp(βc + (αc)′vt). This is well-defined because xt = [d′t,v
′
t]
′. From (A5)

and (A12), the kinematic state xt can be decoded by PPF as follows

xt|t−1 = Axt−1|t−1 (A13)

Ut|t−1 = AUt−1|t−1A
′ + W (A14)

U−1
t|t = U−1

t|t−1 +

C∑
c=1

α̃c(α̃c)′λc(xt|t−1)∆ (A15)

xt|t = xt|t−1 + Ut|t ×
C∑
c=1

α̃c
[
N c
t − λc(xt|t−1)∆] (A16)

where α̃c = [0′, (αc)′]′. The derivation details can be found in [4, 6].
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Appendix C: Unbiased Estimation and Convergence of the Error Covari-
ance Matrix

Here we show that the estimated parameters {ψt|t} in KF are asymptotically unbiased. We also
show the condition for the covariance matrices St|t−1 and St|t to converge to symmetric, periodic
and positive definite (SPPD) solutions. We know from (4) and (5) that St|t−1 and St|t satisfy the
following jointly recursive functions

St|t−1 = St−1|t−1 + S

S−1
t|t = S−1

t|t−1 + ṽtṽ
′
tZ
−1

where S = sIn. From these two equations, it’s well known that St|t−1 can be calculated by the
discrete Riccati equation (DRE) recursively [8]. This equation is given by

St+1|t = St|t−1 + S−
St|t−1ṽtṽ

′
tSt|t−1

kt
, (A17)

where kt = Z + ṽ′tSt|t−1ṽt is a time-dependent scalar. Generally, {ṽt} can be any arbitrary time-
varying state. If {ṽt} is periodic, then (A17) becomes a discrete periodic Riccati equation (DPRE).
Now from Theorem 6.12 in [9], we conclude that {St|t−1} converges toward a SPPD solution, which
is the unique stabilizing solution of the DPRE and is independent from the initial condition S1|0.
This is because the two conditions required in this theorem are met in our case (the pair (In,

√
s In)

is observable since s > 0 and the pair (In, {ṽt}) is stabilizable since the behavioral state {ṽt} in a
well-designed training set explores the dynamic range of possible values.)

Also, from theorem 6.11 in [9], the gain matrix of ψ∗−ψt|t is stable so {ψt|t} is asymptotically
unbiased.
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Appendix D: The Derivation of the Steady-State Error Covariance and
the Convergence Time as Functions of the Learning Rate s in KF

Here we derive the analytic functions of the steady-state error covariance S∗+ and the convergence
rate of E[gt] in (7) and (8), respectively. We derive S∗+ first. In the regular KF and when the
parameters truly follow random-walk dynamics as given in (2), then for the parameter error covari-
ance at time t, S∗t|t, we have limt→∞ ‖S∗t|t − St|t‖ = 0. However, here the true parameter ψ∗ is an
unknown constant vector, which does not obey the random-walk model; indeed the random-walk
model is simply used to approximate our uncertainty about the parameters. Due to this modeling
mismatch, S∗t|t < St|t and limt→∞ ‖S∗t|t − St|t‖ 6= 0. In other words, the KF is overestimating the
error covariance because of model mismatch. Hence we need to estimate the difference.

We can derive the error dynamics, i.e., the dynamics of gt, from (6) as

gt = ψ∗ −ψt|t
= ψ∗ −ψt|t−1 − St|tṽtZ

−1(yt − ṽ′tψt|t−1)

= ψ∗ −ψt−1|t−1 − St|tṽtZ
−1(yt − ṽ′tψt−1|t−1)

= gt−1 − St|tṽtZ
−1(ṽ′tψ

∗ + zt − ṽ′tψt−1|t−1)

= gt−1 − St|tṽtZ
−1(ṽ′tgt−1 + zt)

= (I−Ktṽ
′
t)gt−1 −Ktzt, (A18)

where Kt = St|tṽtZ
−1 and I −Ktṽ

′
t = I − St|tṽtZ

−1ṽ′t = I − St|tṽtṽ
′
tZ
−1 = St|tS

−1
t|t−1 from (5).

The first line gives the second line by using (6), the second line gives the third line by using (3),
and the third line gives the fourth line by using (1).

As we will see, the average value of the KF posterior covariance St|t and prediction covariance
St|t−1—which converge to symmetric, periodic, and positive definite (SPPD) solutions under mild
conditions provided in Appendix C—are critical in deriving the steady-state error covariance S∗+
and the convergence time of E[gt]. Hence (A18) will be used in the derivation of the calibration
algorithm under both objectives in the subsequent sections.

Analytical Function for the Steady-State Error Covariance

Here we focus on the first objective for the calibration algorithm—keeping the steady-state error
covariance under an upper-bound while minimizing the convergence time. The strategy for solving
the steady-state error covariance S∗+ is to calculate the average of the posterior covariance St|t at

steady state, denoted by S̃+, and find the difference (S̃+−S∗+). Since St|t and St|t−1 would converge
to a periodic solution from Appendix C, we can take their average. We first find the average values
of St|t and St|t−1, which are denoted by S̃+ and S̃−, at steady state respectively.

Here to make the derivation rigorous, we assume that the encoded state vt is periodic with period
T , as in theorem 1—as mentioned above, this requirement on vt guarantees that the average steady-
state values of the covariance matrices St|t and St|t−1 exist because in this case these matrices will
converge to a periodic solution and will be bounded (Appendix C). Let’s denote by t∗ the time after
which St|t and St|t−1 converge. We can compute the average steady-state posterior and prediction

covariances S̃+ and S̃− as

S̃+ =
1

T

t∗+T∑
t=t∗+1

St|t

S̃− =
1

T

t∗+T∑
t=t∗+1

St|t−1.
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We take an average over both sides of (4) and (5). Doing so we have

S̃− = S̃+ + S (A19)

S̃−1
+ = S̃−1

− + Have (A20)

where S = sI and Have = 1
T

∑t∗+T
t=t∗+1 ṽtṽ

′
tZ
−1 = 1

T

∑T
t=1 ṽtṽ

′
tZ
−1. We get the last equality because

vt is periodic with period T , so we can shift the index in the summation. Note that in taking the
average on (5), we make an approximation by interchanging the order of matrix inversion and the
average operator to get (A20). As we prove in Appendix I, this interchange is reasonable for a small
learning rate s since in this case

(
1

T

t∗+T∑
t=t∗+1

St|t)
−1 − 1

T

t∗+T∑
t=t∗+1

S−1
t|t ≈ (

1

T

t∗+T∑
t=t∗+1

St|t−1)−1 − 1

T

t∗+T∑
t=t∗+1

S−1
t|t−1.

We now apply the lemma in Appendix J to calculate S̃+ as an explicit function of the learning
rate s. Using the Eigenvalue decomposition, we write Have = U diag(h1, ..., hn) U′ (0 < hi ≤ hi+1)

where U is a unitary matrix. Then S̃+ = U diag(κ1, ..., κn) U′ and (m = 1, ..., n)

κm =

√
h2
ms

2 + 4hms− hms
2hm

(A21)

hm =
1

κm
− 1

κm + s
. (A22)

Since S̃+ can be expressed as a function of the learning rate s and Have, we only need S̃+ − S∗+ to
find the steady-state error covariance S∗+.

We can now solve for the steady-state error covariance S∗+ from (A18). The estimation error
covariance S∗t|t can be calculated recursively by taking the variance of both sides of (A18). This

recursive equation is given in (A23). For calculating the difference between S̃+ and S∗+, which are
the values of St|t and S∗t|t at steady state, we also write the recursive equation for St|t below, which

is in the Joseph form [10]. This recursion is given in (A24).

S∗t|t = (I−Ktṽ
′
t)S
∗
t−1|t−1(I−Ktṽ

′
t)
′ + KtZK′t (A23)

St|t = (I−Ktṽ
′
t)St−1|t−1(I−Ktṽ

′
t)
′ + KtZK′t + (I−Ktṽ

′
t)S(I−Ktṽ

′
t)
′ (A24)

Subtracting (A23) from (A24), we get

St|t − S∗t|t = (I−Ktṽ
′
t)(St−1|t−1 − S∗t−1|t−1)(I−Ktṽ

′
t)
′ + (I−Ktṽ

′
t)S(I−Ktṽ

′
t)
′

= At(St−1|t−1 − S∗t−1|t−1)A′t + AtSA′t, (A25)

where At = I−Ktṽ
′
t = St|tS

−1
t|t−1. Equation (A25) is similar to the discrete Lyapunov equation [11].

Since At is stable, which is proved in [9], the limit of St|t − S∗t|t can be written as

lim
t→∞

St|t − S∗t|t =

∞∑
t=1

(At × · · · ×A1)S(A′1 × · · · ×A′t). (A26)

(A26) is hard to compute since At = St|tS
−1
t|t−1 is periodic at steady state because St|t and St|t−1

converge to periodic solutions, respectively. Here we do another approximation—replacing St|t

and St|t−1 with their average values at steady state S̃+ and S̃− = S̃+ + S, respectively. So

At ≈ S̃+(S̃+ + S)−1 and substituting this into (A26), we have

S̃+ − S∗+ =

∞∑
m=1

[S̃+(S̃+ + S)−1]mS[(S̃+ + S)−1′S̃′+]m

= s

∞∑
m=1

[S̃+(S̃+ + S)−1]m[(S̃+ + S)−1S̃+]m. (A27)
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Considering that S̃+ is an analytic function of the learning rate s in (A21) and S = sI, (A27)
shows that S∗+ can be expressed as an analytic function of s. To write this explicitly, we use the

Eigenvalue decomposition of S̃+. Remember that S̃+ = U diag(κ1, ..., κn) U′, where U is a unitary
matrix. Since S is diagonal, we have that

S̃+(S̃+ + S)−1 = U diag(
κ1

κ1 + s
, ...,

κn
κn + s

) U′. (A28)

Since the above matrix is symmetric, we also have that [S̃+(S̃+ + S)−1] = [S̃+(S̃+ + S)−1]′ =

[(S̃+ + S)−1S̃+]. Taken together equation (A27) can be written as

S̃+ − S∗+ = s

∞∑
m=1

[U diag(
κ1

κ1 + s
, ...,

κn
κn + s

) U′]2m

= U (s

∞∑
m=1

( κ1

κ1+s )2m

. . .

( κn

κn+s )2m

) U′

= U


κ2

1

2κ1+s

. . .
κ2
n

2κn+s

 U′, (A29)

where the last line follows from writing the expression for a geometric sum of series and simplifying.
Finally, we can approximate the steady-state error covariance S∗+ as

S∗+ = U


κ2

1+sκ1

2κ1+s

. . .
κ2
n+sκn

2κn+s

 U′.

This is equation (7) in theorem 1. Now we have an analytical expression for the steady-state error
covariance as a function of the learning rate s. In the next section we derive the convergence rate
as a function of s, which is the second result, equation (8), in theorem 1.

Analytical Function for the Convergence Time

Ensuring that the convergence time of error E[gt] is below an upper-bound value—while minimizing
the steady-state error covariance—is another objective for which we can design the calibration
algorithm to select the learning rate s. To derive the calibration algorithm corresponding to this
objective, here we find an analytic function that relates the convergence time to the learning rate.
We again start from the error dynamics equation in (A18). Taking expectation over both sides of
(A18), we have that

E[gt] = (I−Ktv̂
′
t)E[gt−1]

= (St|tS
−1
t|t−1)E[gt−1]. (A30)

From (A30), the convergence time is determined by St|t and St|t−1 during the transient state of the
KF and before steady state; however, the transient values of the covariances are dependent on the
initialization in the KF and are not computable in general. Hence to enable the computation of
the convergence time, we set the initial value of the parameter covariance in the KF as S0|0 = S̃+

so that the covariance matrix is already at steady state even initially. This is practical since
the initialization S0|0 is a user’s choice and since S̃+ can be calculated offline from (A19) and
(A20). Both (A19) and (A20) are independent of neural observations {yt}. Thus we can derive the
convergence time under this initialization choice.
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Since S0|0 = S̃+, we could approximate St|t and St|t−1 as their steady-state values, S̃+ and

S̃− = S̃+ + S in (A30), respectively. So using (A28), (A30) becomes

E[gt] = S̃+(S̃+ + S)−1 × E[gt−1]

= (U


κ1

κ1+s

. . .
κn

κn+s

 U′)× E[gt−1].

This is equation (8) in theorem 1.
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Appendix E: Generalizing the Calibration Algorithm to Non-Periodic
Training States

Here we show why we assumed periodicity of the behavioral state ṽt during training in our math-
ematical derivation of the calibration algorithm, and also demonstrate what extra assumption we
need in order to extend the derivation to the non-periodic case. As shown in Figs 5 and 6B, the
calibration algorithm is also accurate in the non-periodic case; as we will show below, this is be-
cause this extra assumption is relatively mild. For conciseness, we use the KF case as an example.
S2 Fig shows the sketch of the derivations for periodic and non-periodic cases to show that their
distinction is in this one assumption.

Appendix D shows that to derive the analytic calibration algorithm, we need to analytically
compute the average steady-state value of the prediction covariance St+1|t, which is the solution of
a time-varying DRE equation (equation (A17) in Appendix C). However, before we do so, the first
step is to ensure that this average exists theoretically. It is precisely for ensuring this existence that
we required the periodicity of the behavioral state ṽt in the training session. This is because here
the DRE coefficients are a function of ṽt (equation (A17) in Appendix C); moreover, as shown in
Theorem 6.12 in reference [9], when the coefficients of the DRE are periodic, the solution St+1|t of
the corresponding discrete periodic Riccati equation (DPRE) would converge toward a symmetric,
periodic and positive definite (SPPD) solution. Consequently, since in this case St+1|t would become
periodic, it would have a bounded and theoretically well-defined average.

In contrast, if the coefficient ṽt of the DRE is not periodic but random, we don’t know if St+1|t
has bounded steady-state moments or not, so we cannot guarantee that its steady-state average
exists. That is why for rigorous derivation of the calibration algorithm, we considered periodic ṽt
in the training session. So the only reason for assuming periodicity is to ensure the existence of
the average of St+1|t at steady state. After this step, we don’t need the periodicity assumption.
That is precisely why the calibration algorithm still applies to the non-periodic case if we have a
well-behaved St+1|t with a bounded steady-state average, which is a relatively mild requirement.
The periodicity assumption simply guarantees the existence of the average of St+1|t at steady state
for derivation purposes, instead of assuming this existence.

Once we know the steady-state average of St+1|t exists (whether in the periodic or non-periodic
case), we can compute it analytically through a second step. In this second step, since the DRE
(equation (A17) in Appendix C) in the calibration algorithm has time-variant coefficients, we first
approximate this time-variant DRE with a time-invariant one by computing the expected value
of the coefficients from the training data. We then derive the solution for this special DRE with
time-invariant (i.e., constant) coefficients in Appendix J to finally compute the steady-state average
of St+1|t. We show in Appendix D that, if the average exists, we can estimate it by calculating
Have, which is the average of ṽtṽ

′
tZ
−1. So for the periodic case we compute this average over one

period and for the general non-periodic case (if we just assume that St+1|t has bounded steady-
state moments), we can take the average over all time (i.e., set T → ∞). Indeed our numerical
simulations demonstrate that this averaging works for random non-periodic coefficients (Figs 5 and
6B).

In summary, the reason that we keep periodicity throughout the derivation of the calibration
algorithm is for making it more mathematically rigorous. But in practice, the same algorithm
can be applied on non-periodic cases. Intuitively, even for a very large period, periodicity of a
variable still ensures that the variable needs to come back to its initial value at some point, and
will therefore have a well-defined bounded average. If we don’t assume periodicity (i.e., infinite
period), the variable does not have to come back to its initial value and thus, for example, could
even be unbounded with an unbounded average. Thus we cannot ensure that the average exists.
Again as we indicated above, we can simply assume that the average exists—which is a relatively
mild assumption—and extend the derivation to the non-periodic case (see S2 Fig).
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Appendix F: The Inverse Functions for the Convergence Time and the
Steady-State Error Covariance in KF

Here we show how we derive (9) and (10) from (7) and (8).
Learning rate analytical expression for a given steady-state error covariance. We first

derive the inverse function to compute the learning rate for a given steady-state error covariance.
The goal is to solve for the learning rate s from the inequality limt→∞ ‖Cov[ψt|t]‖ ≤ Vbd. Note that
limt→∞ ‖Cov[ψt|t]‖ = ‖S∗+‖ is the largest eigenvalue of S∗+ due to its positive definite property.
From theorem 1, each eigenvalue of S∗+ can be expressed as

κ2
m + sκm
2κm + s

=
s√

h2
ms

2 + 4hms
≤ Vbd (m = 1, ..., n). (A31)

The maximal eigenvalue corresponds to the minimal hm, which is h1. After some algebraic manip-
ulations, this optimal learning rate is given by

s =
4h1

1
V 2
bd
− h2

1

with
1

V 2
bd

> h2
1.

This is equation (9) in theorem 2.
Learning rate analytical expression for a given convergence time. We now find the

inverse function for calculating the learning rate from the convergence time constraint. By taking
norm on both sides of (8), we have

‖E[gt]‖ ≤
κ1

κ1 + s
× ‖E[gt−1]‖.

Remember that the goal is calculating the learning rate s that could make ‖E[gt]‖
‖E[g0]‖ ≤ Erest before

the time given by the upper-bound of the convergence time Cbd. Assuming each step taking ∆
seconds, there are approximately Cbd

∆ steps before the given time constraint Cbd. Combining it with
the above equation, we can write the mathematical expression of this optimization problem as

‖E[gCbd
∆

]‖ ≤ (
κ1

κ1 + s
)

Cbd
∆ × ‖E[g0]‖ ≤ Erest × ‖E[g0]‖.

Now since from (A21)

(
κ1

κ1 + s
)

Cbd
∆ =

[ s
h1
× 4h2

1

(
√
h2

1s
2 + 4h1s+ h1s)2

]Cbd
∆ ,

the last inequality is equivalent to[ s
h1
× 4h2

1

(
√
h2

1s
2 + 4h1s+ h1s)2

]Cbd
∆ ≤ Erest.

This equation can be simplified as

s

(
√
h2

1s
2 + 4h1s+ h1s)2

≤ 1

4h1
× (Erest)

∆
Cbd .

Defining Ctime = 1
4h1
× (Erest)

∆
Cbd , which is independent from the learning rate s, and after some

algebraic manipulations, the optimal learning rate is given by

s =
Ctime
4h2

1

× (
1

Ctime
− 4h1)2.

This is equation (10) in theorem 2.
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Appendix G: PPF is Asymptotically Unbiased

Here we show that the posterior mean φt|t in (18) is asymptotically unbiased and the posterior
covariance Qt|t converges to a symmetric, periodic, and positive definite (SPPD) solution in PPF.
We want to find a recursion for the expected value E[φt|t] using the nonlinear equations in (15)–(18).
Given the nonlinearity of (15)–(18), we perform an approximation by replacing the random variable,
Nt, in (18) with its expected value, λ(t|φ∗)∆ = E[Nt]. This is also the instantaneous firing rate.
Since the only random variable Nt in (15)–(18) is replaced by its expected value, the series {φt|t}
becomes deterministic in this case. Let’s denote this deterministic series by {φ̃t|t} to distinguish it
from the original stochastic series {φt|t}. Thus the expected value of the original series E[φt|t] can

be approximated by {φ̃t|t}. Intuitively, φ̃t|t is the best value for describing the instantaneous firing
rates from time 1 to t—and consequently the neural spike observations N1:t—with the corresponding
{ṽ1:t}. Since all firing rates have the same constant parameter φ, intuitively, there should be only
one optimal value for describing all firing rates and consequently all neural spike observations. This
implies that the limit of {φ̃t|t}, which is estimated using these observations, should exist. The
existence of this limit is verified by our numerical simulations in the Results section (Fig 7). We
now show that if the limit of {φ̃t|t} exists, then limt→∞ E[φt|t] ≈ limt→∞ φ̃t|t = φ∗. This would
thus imply that the original series {φt|t} in (15)–(18) is unbiased.

Lemma 1. Let’s denote by {φ̃t|t} the series in (15)–(18) that is obtained by replacing Nt with

λ(t|φ∗)∆ in (18). Let’s assume that limt→∞ φ̃t|t exists. Then limt→∞ φ̃t|t = φ∗ (i.e., the solution
is unique.)

Proof. Denote limt→∞ φ̃t|t = φ̂. Taking t→∞ in (18), it becomes

φ̂ = φ̂+ lim
t→∞

Qt|tṽt[λ(t|φ∗)− λ(t|φ̂)]∆. (A32)

Since Qt|t is nonsingular and ṽt explores the dynamic range of possible behavioral states in a well-
designed training experiment (i.e., it is not zero most of the time), for (A32) to hold, we must have

λ(t|φ∗)−λ(t|φ̂) = 0 for ∀t. Remember that λ(t|·) is log-linear. We thus can write the difference as

λ(t|φ∗)− λ(t|φ̂) = exp(ṽ′tφ
∗)− exp(ṽ′tφ̂)

= exp(ṽ′tφ
∗)× [1− exp(ṽ′t(φ̂− φ

∗))]

= 0 for ∀t ≥ 0. (A33)

So for the above relation to hold we must have 1 = exp(ṽ′t(φ̂−φ
∗)), which implies that ṽ′t(φ̂−φ

∗) =

0 for all t. Thus φ̂ = φ∗.

Note that in the proof of lemma 1, we assume that limt→∞Qt|t is nonsingular. As noted above,
in a well-designed training experiment this will be the case as also confirmed in our numerical
simulations in the Results section. Further, this nonsingularity can be inferred by observing that
{Qt|t−1} will converge to a SPPD solution as follows. Due to the similarity between equation sets
(4)–(5) and (16)–(17), we can derive the recursive equation for Qt|t−1 by following the same steps
as in Appendix C. This recursive equation is

Qt+1|t = Qt|t−1 + Q−
Qt|t−1ṽtṽ

′
tQt|t−1

kt
, (A34)

where kt = (λ(t|φt|t−1)∆)−1 + ṽ′tQt|t−1ṽt is a time dependent scalar. If the coefficients (i.e., ṽt
and λ(t|φt|t−1)) are periodic (which is approximately the case for us), (A34) becomes DPRE and
{Qt|t−1} will converge to a SPPD solution from Appendix C. Numerical simulation again confirmed
this convergence to an (approximate) SPPD solution. Note that Qt|t also converges to a SPPD
solution from (16). So Qt|t−1 and Qt|t are nonsingular. These results are also useful in deriving
the calibration algorithm for PPF in Appendix H.
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Appendix H: Derivation of the Steady-State Error Covariance as a Func-
tion of the Learning Rate r in PPF

Here we derive equation (19), an analytic expression of the steady-state error covariance Q∗+ with
respect to the learning rate r, in theorem 3. Our derivation will be similar to that for the continuous
neural signals and KF in Appendix D. We first express the estimation covariance Qt|t in (17) and the
difference Qt|t−Q∗t|t (where Q∗t|t is the true parameter error covariance) as functions of the learning
rate r. We then take the limit t→∞ to write the steady-state error covariance Q∗+ = limt→∞Q∗t|t
as an analytic function of r.

From (15) and (18), the dynamics model of the parameter error et = φ∗ − φt|t is

et = et−1 −Qt|tṽt[Nt − λ(t|φt−1|t−1)]∆. (A35)

As in the case of the continuous signal, the average values of Qt|t and Qt|t−1 are critical in deriving
Q∗+ from (A35). Next, we first find Qt|t and Qt|t−1 at steady state and then solve for the steady-
state error covariance Q∗+ from (A35).

Analytical Function for the Steady-State Error Covariance

Here, we first find the steady-state average of Qt|t, denoted by Q̃+, as an analytic function of the
learning rate. We then write the steady-state error covariance Q∗+ = limt→∞Q∗t|t in terms of this
average and hence in terms of the learning rate. As in theorem 3, we assume that the state, e.g.,
the intended velocity {vt}, is periodic with period T for rigorousness in derivation to ensure that
the steady-state average values exist theoretically. From Appendix G, Qt|t and Qt|t−1 in (16) and
(17) will converge to SPPD solutions. We denote the average of Qt|t and that of Qt|t−1 at steady

state by Q̃+ and Q̃−, respectively. Remember that the noise covariance matrix is Q = rIn (r > 0)
and r is the learning rate. As before, we take an average over both sides of (16) and (17) to get

Q̃− = Q̃+ + Q (A36)

Q̃−1
+ = Q̃−1

− +
1

T

T∑
t=1

ṽtṽ
′
tλ(t|φ∗)∆ (A37)

Note that we replace λ(t|φt|t−1) with λ(t|φ∗) in (A37) since at steady state, E[φt|t−1] = E[φt−1|t−1] ≈
φ∗ from Appendix G. We define Mave = 1

T

∑T
t=1 ṽtṽ

′
tλ(t|φ∗)∆. As we derive in Appendix J, we

can express Q̃+ as an analytic function of the learning rate r as follows. Denoting the eigenvalue

decomposition of Mave = U diag(a1, ..., an) U′ (ai ≤ ai+1), we have Q̃+ = U diag(b1, ..., bn) U′

with eigenvalues

bm =

√
a2
mr

2 + 4amr − amr
2am

(A38)

am =
1

bm
− 1

bm + r
. (A39)

So we now can express Q̃+, the steady-state average of Qt|t, as an analytic function of the learning
rate r given above. Hence if we can also write Qt|t−Q∗t|t as an analytic function, then we know the
explicit connection between the steady-state error covariance Q∗+ = limt→∞Q∗t|t and the learning
rate r. Below, we derive Qt|t −Q∗t|t from a recursive equation for the error.

To solve for the steady-state error covariance Q∗+ from (A35), we first derive a recursive equation
for Q∗t|t and then take the limit. To do this, we first write a recursive equation for the error et. We

can write the last term of (A35) as

et = et−1 −Qt|tṽt[λ(t|φ∗)− λ(t|φt−1|t−1)]∆−Qt|tṽt[Nt − λ(t|φ∗)∆]. (A40)
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Since at steady state, E[et] → 0 from Appendix G, we approximate λ(t|φ∗) − λ(t|φt−1|t−1) using
its Taylor series expansion as

λ(t|φ∗)− λ(t|φt−1|t−1) = exp(ṽ′tφ
∗)− exp(ṽ′tφt−1|t−1)

= exp(ṽ′tφt−1|t−1)× [exp(ṽ′t(φ
∗ − φt−1|t−1))− 1]

= exp(ṽ′tφt−1|t−1)× [exp(ṽ′tet−1)− 1]

≈ exp(ṽ′tφt−1|t−1)× (ṽ′tet−1)

= λ(t|φt−1|t−1)× (ṽ′tet−1). (A41)

The third line gives the fourth line using the Taylor series expansion of the exponential function
and because of the closeness of et−1 and 0 at steady state. Substituting (A41) in (A40), (A40)
becomes

et = et−1 −Qt|tṽtṽ
′
tet−1λ(t|φt−1|t−1)∆−Qt|tṽt(Nt − λ(t|φ∗)∆)

= [I−Qt|tṽtṽ
′
tλ(t|φt−1|t−1)∆] et−1 −Qt|tṽt(Nt − λ(t|φ∗)∆)

= Qt|tQ
−1
t|t−1et−1 −Qt|tṽt(Nt − λ(t|φ∗)∆), (A42)

where we get the third line from the second line by using (17). This gives a recursive equation for
et. By defining Ft = Qt|tQ

−1
t|t−1 and taking the covariance of both sides of (A42), the recursive

equation for the error covariance Q∗t|t is given by

Q∗t|t = FtQ
∗
t−1|t−1F

′
t + Qt|tṽtṽ

′
tQt|t[λ(t|φ∗)∆(1− λ(t|φ∗)∆)], (A43)

where to get the second term we used the fact that Nt is Bernoulli-distributed with parameter
λ(t|φ∗)∆. To calculate Qt|t −Q∗t|t for finding the steady-state error covariance Q∗+, we need the

recursive equation of Qt|t. From (16) and (17), this recursive function can be written in the Joseph
form of the covariance matrix [10] as follows

Qt|t = FtQt−1|t−1F
′
t + FtQF′t + Qt|tṽtṽ

′
tQt|tλ(t|φt|t−1)∆. (A44)

As mentioned above, since Q̃+, the steady-state average of Qt|t, can be expressed as a function of the

learning rate r, if we can calculate the difference between Q̃+ and Q∗t|t, we can express the steady-
state error covariance Q∗+ = limt→∞Q∗t|t as an analytic function of the learning rate r as well. So

we now subtract (A43) from (A44) and approximate φt|t−1 in (A44) with φ∗. This approximation
is reasonable since E[et−1] ≈ 0 at the steady state from Appendix G. The subtraction gives

Qt|t −Q∗t|t = Ft
[
Qt−1|t−1 −Q∗t−1|t−1

]
F′t + FtQF′t + Qt|tṽtṽ

′
tQt|tλ

2(t|φ∗)∆2. (A45)

Note that ṽtṽ
′
tλ

2(t|φ∗) is periodic since {vt} is periodic. (A45) is a discrete Lyapunov equation
[11] for (Qt|t − Q∗t|t) with time-variant coefficient matrices. From Appendix G, Qt|t and Qt|t−1

converge to SPPD solutions and since Ft = Qt|tQ
−1
t|t−1, both Qt|t and Ft are periodic and bounded.

Given these periodic and bounded properties and for computational tractability, we approximate
Ft, Qt|t, and ṽtṽ

′
tλ

2(t|φ∗)∆2 with their average values. Note that the average value of Ft is

F = Q̃+(Q̃+ + Q)−1 using its definition and (16). The average values of Qt|t, and ṽtṽ
′
tλ

2(t|φ∗)∆2

are Q̃+, and 1
T

∑T
t=1 ṽtṽ

′
tλ

2(t|φ∗)∆2, respectively. Thus (A45) becomes

Q̃+ −Q∗t|t ≈ F[Q̃+ −Q∗t−1|t−1]F′ + FQF′ + Q̃+

( 1

T

T∑
t=1

ṽtṽ
′
tλ

2(t|φ∗)∆2
)
Q̃+. (A46)

Note that limt→∞Q∗t|t = limt→∞Q∗t−1|t−1 = Q∗+, where Q∗+ is again the true steady-state param-
eter error covariance. We can now take the limit of the above equation and use the solution of the
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discrete Lyapunov equation [11] to get

lim
t→∞

(
Q̃+ −Q∗t|t

)
= Q̃+ −Q∗+

=

∞∑
k=0

Fk(FQF′ + Q̃+

( 1

T

T∑
t=1

ṽtṽ
′
tλ

2(t|φ∗)∆2
)
Q̃+)(F′)k. (A47)

For conciseness, define Ωave =
∑∞
k=0 FkQ̃+

(
1
T

∑T
t=1 ṽtṽ

′
tλ

2(t|φ∗)∆2
)
Q̃+(F′)k. Remember that

F = F′ is a symmetric matrix, F = Q̃+(Q̃+ + Q)−1 = U diag( bi
bi+r

) U′ with (i = 1, ..., n), and
Q = rIn where r is the learning rate. We now get the steady-state error covariance matrix Q∗+ as

Q∗+ = Q̃+ −
∞∑
k=0

Fk+1Q(F′)k+1 −Ωave

= Q̃+ − r ×
∞∑
k=0

F2k+2 −Ωave

= Q̃+ −U (r
∞∑
k=0

( b1
b1+r )2k+2

. . .

( bn
bn+r )2k+2

) U′ −Ωave

= U

b1 . . .

bn

 U′ −U


b21

2b1+r

. . .
b2n

2bn+r

 U′ −Ωave

= U


b21+b1r
2b1+r

. . .
b2n+bnr
2bn+r

 U′ −Ωave.

Note that the third line gives the fourth line by using the well-known formula for the geometric
series in the summation and using the identity Q̃+ = U diag(b1, ..., bn) U′. If we compare the last
line with (7) since both Q∗+ and S∗+ are steady-state error covariances, we see that the last line has
an additional term, Ωave. Practically, this term is very small since (12) is a good approximation
of a Bernoulli process and the firing probability, λ(t|φ∗)∆, is small. Hence we can ignore Ωave in
calculating Q∗+. Doing so, the steady-state error covariance, Q∗+, for the case of spikes becomes
(19) in theorem 3 and it has the same form as the equation obtained for the steady-state error
covariance for continuous signals given in (7).
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Appendix I: The Approximation in S̃+ Derivation

Here we show that the following holds when the learning rate s is small. This approximation is
used in the derivation of the steady-state error covariance.

(
1

T

t∗+T∑
t=t∗+1

St|t)
−1 − 1

T

t∗+T∑
t=t∗+1

S−1
t|t ≈ (

1

T

t∗+T∑
t=t∗+1

St|t−1)−1 − 1

T

t∗+T∑
t=t∗+1

S−1
t|t−1. (A48)

To show the above, we first prove the following lemma.

Lemma 2. Consider Yn = Xn + sI for n ∈ {1, · · · , N}, we define the following symbols:

V =
1

N

∑
n

X−1
n

W =
1

N

∑
n

Y−1
n

V̂ =
( 1

N

∑
n

Xn

)−1

Ŵ =
( 1

N

∑
n

Yn

)−1

We prove that Ŵ −W = (V̂ −V) + R with ‖R‖ = O(s) when s is close to 0. Here ‖R‖ = O(s)
means that there exist positive numbers M and δ such that ‖R‖ ≤M × s when ‖s‖ < δ.

Proof. First, we know that when Xn is invertible and s is small enough, we have [12]

(Xn + sI)−1 = X−1
n − sX−2

n + s2X−3
n − · · ·

= X−1
n +O(s).

This can be validated by multiplying (Xn + sI) on both sides of the equation and observing that

both sides become identity matrices. With this property, we can reformulate Ŵ −W as

Ŵ −W =
( 1

N

∑
n

(Xn + sI)
)−1 − 1

N

∑
n

(Xn + sI)−1

=
( 1

N

∑
n

Xn + sI
)−1 − 1

N

∑
n

(X−1
n +O(s))

= (V̂−1 + sI)−1 − 1

N

∑
n

X−1
n −O(s)

= V̂ +O(s)−V −O(s)

= (V̂ −V) +O(s).

So we have Ŵ −W ≈ V̂ − V for small s. Now if we take n = t, N = T , Yn = St|t−1,
and Xn = St−1|t−1, then equation Yn = Xn + sI above becomes (4). With these replacements,

Ŵ −W ≈ V̂ − V gives (A48). Note that St|t and St|t−1 are periodic with period T . So (A48)
holds regardless of the initial index in the summation (since the summation is over one period).
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Appendix J: Solving the Discrete Riccati Equation (DRE) Analytically
to Find the Average Estimation Covariances

Here we show how to solve for the average of the prediction and posterior covariances S̃− and S̃+ in
(A19) and (A20) for continuous valued observations in the KF. The same technique can be applied

for solving these covariances Q̃− and Q̃+ in (A36) and (A37) for point process observations in the
PPF. In particular, we show that these average covariances can be obtained as solutions to the
discrete Riccati equation (DRE) and derive an algorithm that can find this solution analytically for
our case.

First, we consider the general DRE as follows [8]

X = A′XA + Q−A′XB(R + B′XB)−1B′XA, (A49)

where X is the unknown symmetric matrix, A, B, Q and R are known coefficient matrices, and Q
and R are symmetric. The equivalent equation set is [8]

X = A′YA + Q

Y−1 = X−1 + BR−1B′ (A50)

where Y is a dummy variable. We now see that equations (A19)–(A20) and equations (A36)–
(A37) are a special form of (A50) with A = In, Q = qIn with q > 0, and BR−1B′ = H where
H is invertible. In (A20) H = Have = U diag(h1, ..., hn) U′ (0 < hi ≤ hi+1) and in (A37)
H = Mave = U diag(a1, ..., an) U′ (ai ≤ ai+1). This special form can thus be written as

X = Y + Q (A51)

Y−1 = X−1 + H (A52)

Note that by taking X = S̃− and Y = S̃+, equations (A19) and (A20) are equivalent to equations
(A51) and (A52), respectively, with q playing the role of the learning rate. So if we solve for X and

Y, we have also solved for S̃− and S̃+ in the KF. The same conclusion holds for Q̃− and Q̃+ in
the PPF.

In the following, we derive an algorithm that can solve for X and Y analytically for this special
form. The solution of Y is given by the following lemma.

Lemma 3. Denote the singular value decomposition (SVD) of Y and H in (A52) by

Y = UDY U′ with DY = diag(y1, ..., yn) (yi ≥ yi+1 > 0)

H = VDHV′ with DH = diag(h1, ..., hn) (hi+1 ≥ hi > 0)

then U = V and yk = 2√
h2
k+4hkq−1+hk

for ∀k ∈ {1, · · · , n}.

Proof. From (A51), X = U(DY + qIn)U′. Substituting this into (A52), we get H = VDHV′ =
Y−1 − X−1 = UDΓU′ where DΓ = diag(γ1, ..., γn) and γi = 1

yi
− 1

yi+q
. Because both sides are

positive definite, they can be diagonalized simultaneously, i.e., U = V and DH = DΓ, so hk = γk.
After solving this quadratic equation, we get yk = 2√

h2
k+4hkq−1+hk

.

In [13], a general solution is given for equations (A50). But it is hard to analyze the relation
between q, the learning rate in our context, and matrix Y in that general solution. Indeed, to
derive the calibration algorithm, we need to be able to write this relationship explicitly. Hence
we derived the above algorithm to derive an explicit relationship and thus enable solving for the
optimal learning rate. Having found Y, we can now find X as X = Y + Q. So we can solve for
both X and Y as functions of Q = qIn and H.
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