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Figure S1. Estimated genetic correlation from GREML and LDSC (without constraining 

the intercept) in different simulation scenarios based on UK Biobank data. 

The x-axis labels of 0, 10 or 20 are the percentage of overlapping individuals between the first 

and second traits. Nr: The number of available phenotype records in each trait. The horizontal 

lines stand for the simulated true genetic correlation (0.6). The error bars are 95% CI obtained 

from 100 replications.  



 

Figure S2. Estimated genetic correlation using simulated phenotypes based on UK Biobank 

genotypes. 

Bars are 95% CI based on 100 replicates. The grey dashed line stands for the true simulated 

genetic correlation 0.6. This result was based on 858K SNPs (after QC) and 10,000 individuals 

that were randomly selected from the UK Biobank. SNPs in each bin were randomly and 

independently drawn from the 858k SNPs. The number of causal SNPs was 10,000 that were 

randomly selected in each bin. The true simulated value for the genetic correlation was 0.6 and 

that for the heritability was 0.5 for both traits. Overlap (0%, 10% and 20%) stands for the 

percentage of overlapping individuals in the first and second traits. 

 



 

Figure S3. The ratio of SE of LDSC estimate to that of GREML estimate using simulated 

phenotypes based on UK Biobank genotypes.  

Bars are 95% CI based on 100 replicates. The x-axis shows the number of individuals in each 

trait. Out of 858,991 SNPs, 10,000 SNPs were randomly selected as causal variants. Overlap 

(0%, 10% and 20%) stands for the percentage of overlapping individuals in the first and second 

traits. The horizontal dashed lines are the ratios of SE at 1 and 2. 

 

 



 

Figure S4. Estimated genetic correlation based on LDSC with or without intercept 

constrained to zero. 

  



 

 

 

Figure S5. Genetic correlation of GREML and LDSC based on different simulated genetic 

architectures. 

Gamma: the same simulation except that SNP effects were drawn from a multivariate gamma 

distribution with a shape parameter of one. Random: two sets of non-overlapped SNPs 

(N=10,000) were randomly selected and each set was assigned as causal SNPs to each trait (SNP 

effects were generated from a multivariate normal distribution). Odd/Even: two sets of SNPs 

were randomly selected such that one set was strictly selected from odd and the other set was 

selected from even number of chromosomes, and each set was assigned as causal SNPs to each 

trait (SNP effects were generated from a multivariate normal distribution). 

 



 

Figure S6. The ratio of SE of LDSC estimate to that of GREML estimate using simulated 

phenotypes based on WTCCC2 genotypes.  

Bars are 95% CI based on 100 replicates. The x-axis shows the number of individuals in each 

trait. The total sample size of WTCCC2 was 20,659; therefore, the maximum number of 

individuals for each trait for the analyses was 10,000. Overlap (0%, 10% and 20%) stands for the 

percentage of overlapping individuals in the first and second traits. The horizontal dashed lines 

are the ratios of SE at 1 and 2. 

 



 

Figure S7. The ratio of SE of LDSC estimate to that of GREML estimate using simulated 

phenotypes based on GERA genotypes.  

Bars are 95% CI based on 100 replicates. The x-axis shows the number of individuals in each 

trait. Overlap (0%, 10% and 20%) stands for the percentage of overlapping individuals in the 

first and second traits. The horizontal dashed lines are the ratios of SE at 1 and 2. 

 



 

Figure S8. The ratio of SE of LDSC estimate to that of GREML estimate using simulated 

phenotypes based on raw genotype data of the UK Biobank.  

Bars are 95% CI based on 100 replicates. The x-axis shows the number of individuals in each 

trait. Overlap (0%, 10% and 20%) stands for the percentage of overlapping individuals in the 

first and second traits. The horizontal dashed lines are the ratios of SE at 1 and 2. 

 



 

Figure S9 Estimated genetic correlation of simulated data based on a genomic partitioning 

model.  

Simulation was based on 10,000 individuals that were randomly selected from UKBB with 858K 

SNP. Based on Gusev et al.1, the 858K SNPs across the genome were stratified as two 

categories: DHS (194K SNPs with 2268 causal SNPs) and non-DHS (664K SNPs with 7732 

causal SNPs). The genetic correlation for the simulated phenotypes between the first and second 

traits was 0.6 and -0.3 in DHS and non-DHS region, respectively. Bars are 95% CI based on 100 

replicates. LDSC-CEU: Using LD-scores estimated from 1KG reference data. LDSC-OWN: 

Using LD-scores estimated from UKBB. sLDSC-CEU: Using stratified LD-scores estimated 

from 1KG reference data. sLDSC-OWN: Using stratified LD-scores estimated from UKBB. The 

presented results were based on 0% overlapping samples between the first and second traits and 

those based on other scenarios (e.g. 10% and 20%) are presented in Table S1. 

  



 

Figure S10. Estimated heritability with GREML and LDSC (without constraining the 

intercept) based on UKBB, WTCCC2, GERA and UKBBr. 

UKBB: Imputed genotype data of UK Biobank sample; WTCCC2: Wellcome Trust Case 

Control Consortium 2; GERA: Genetic epidemiology research on adult health and aging cohort; 

UKBBr: Raw genotype data of UK Biobank sample. LDSC-noConstrain-CEU: using LD scores 

estimated based on the 1KG CEU reference sample. LDSC-noConstrain-OWN: using LD scores 

estimated based on the target sample (i.e. UKBB, WTCCC2, GERA or UKBBr). 

 



 

 

 

Figure S11. Estimated heritability using simulated phenotypes based on UKBB genotypes. 

The number of causal SNPs in each bin reduced proportionally when the total number of SNPs 

decreased. 



 

Figure S12. Estimated heritability using simulated phenotypes based on UKBB genotypes. 

The number of SNPs in X-axis refers to SNPs used for GREML and LDSC. The simulated 

phenotypes were based on 6M SNPs (after QC) from which 10,000 SNPs were randomly 

selected as causal variants. SNPs in each bin were randomly and independently drawn from 6M 

SNPs. Thus, the number of causal SNPs in each bin reduced proportionally when the total 

number of SNPs decreased. LDSC-noConstrain-CEU: using LD scores estimated based on the 

1KG CEU reference sample. LDSC-noConstrain-OWN: using LD scores estimated based on the 

target sample (i.e. UKBB).



 

 

Figure S13. The ratio of SE of LDSC estimate (using LD-scores estimated from 1KG 

reference sample) to that of GREML based on the results from Figure S10. 

 



 

 

 

Figure S14. The ratio of SE of LDSC estimate (using LD-scores estimated from UKBB (in-

sample)) to that of GREML based on the results from Figure S10. 

 



 

 

Figure S15. Estimated SNP-heritability of simulated data based on a genomic partitioning 

model.  

LDSC-CEU: Using LD-scores estimated from 1KG reference data. LDSC-OWN: Using LD-

scores estimated from UKBB. sLDSC-CEU: Using stratified LD-scores estimated from 1KG 

reference data. sLDSC-OWN: Using stratified LD-scores estimated from UKBB. 

 

 

 



 

Figure S16. Genetic correlation between BMI and SCZ and heritability estimated with 

GREML and LDSC.  

GREML: Analysis was based on quality controlled genetic data for BMI (from UK Biobank with 

111,019 individuals and 518,992 SNPs) and schizophrenia (from PGC with 41,630 individuals 

and 518,992 SNPs). LDSC: The data sets used in LDSC were the same as in GREML. LDSC-

meta1: GWAS summary statistics for BMI were based on meta-analysed GWAS results of 

UKBB individual-level genetic data (with 111,019 individuals and 518,992 SNPs) and of 

GIANT (245,051 individuals and 477,163 SNPs). For SCZ, the GWAS summary statistics from 

the full PGC sample based on 77,096 individuals were used. LDSC-meta2: The data sets used in 

LDSC-meta2 were the same as in LDSC-meta1 except for the increased number of SNPs 

(1,011,748) with which its performance was checked. Bars are standard errors. 



 

Figure S17. Genetic correlation between height and SCZ and heritability estimated with 

GREML and LDSC.  

GREML: Analysis was based on quality controlled genetic data for height (from UK Biobank 

with 111,143 individuals and 518,992 SNPs) and schizophrenia (from PGC with 41,630 

individuals and 518,992 SNPs). LDSC: The data sets used in LDSC were the same as in 

GREML. LDSC-meta1: GWAS summary statistics for height were based on meta-analysed 

GWAS results of UKBB individual-level genetic data (with 111,143 individuals and 518,992 

SNPs) and of GIANT (253,280 individuals and 476,824 SNPs). For SCZ, the GWAS summary 

statistics from the full PGC sample based on 77,096 individuals were used. LDSC-meta2: The 

data sets used in LDSC-meta2 were the same as in LDSC-meta1 except for the increased number 

of SNPs (1,010,783) with which its performance was checked. Bars are standard errors.  



 

Figure S18. Genetic correlation between SCZ and BMI and heritability based on SNPs in 

partitioned genomic regions estimated with GREML. 

A joint model was applied by fitting four genomic relationship matrices simultaneously, each 

estimated based on the set of SNPs belonging to each of the functional categories (DHS, 

intergenic and intronic regions, and regulatory). The bars are standard errors. 

 

 



 

Figure S19. Genetic correlation and standard error between SCZ and height estimated 

with LDSC.  

P-values for the estimate significantly different from 0 were 0.04, 0.38, 0.61 and 0.71 for LDSC-

noConstrain-CEU, and 0.007, 0.45, 0.74 and 0.40 for LDSC-noConstrain-OWN for regulatory, 

intronic, intergenic and DHS regions, respectively. LDSC-noConstrain-CEU: using LD-scores 

estimated from 1KG reference data. LDSC-noConstrain-OWN: using LD-scores estimated from 

in-sample. 

 

 

 

 



 

Figure S20. Heritability and standard error of height and SCZ (in liability scale) estimated 

with LDSC. 

LDSC-noConstrain-CEU: using LD-scores estimated from 1KG reference data. LDSC- 

noConstrain-OWN: using LD-scores estimated from in-sample.  

 



 

Figure S21. Scatter plot of heritability from GREML and LDSC using UKBB, WTCCC2, 

or GEAR data. 



 

Figure S22. Scatter plot of genetic correlation from GREML and LDSC using UKBB, 

WTCCC2, or GEAR data. 

 



 

Figure S23. Empirical and theoretical SE for GREML and LDSC. 

 



Table S1a. Covariance and heritability estimated from LDSC and GREML when a simulated genetic covariance between the 

first and second trait is 0.15 and -0.3 for DHS and non-DHS, respectivelya. 

 %Overlapping 
Method LD score 

Covariance Variance I Variance II 

 

Estimate SEb Estimate SE Estimate SE 

True in DHS 
 

 

0.15 0.25 0.25 

DHS 

0 

LDSC 
CEU -0.14 0.01 0.76 0.01 0.77 0.01 

OWN -0.13 0.01 0.70 0.01 0.71 0.01 

SLDSC 
CEU 0.09 0.01 0.54 0.31 0.57 0.06 

OWN 0.09 0.00 0.17 0.01 0.17 0.01 

GREML GREML 0.15 0.00 0.25 0.01 0.24 0.01 

10 

LDSC 
CEU -0.14 0.01 0.75 0.01 0.77 0.01 

OWN -0.13 0.01 0.70 0.01 0.71 0.01 

SLDSC 
CEU 0.10 0.01 1.40 0.85 0.52 0.04 

OWN 0.10 0.00 0.17 0.01 0.17 0.01 

GREML GREML 0.15 0.00 0.25 0.00 0.24 0.00 

20 

LDSC 
CEU -0.14 0.01 0.76 0.01 0.77 0.01 

OWN -0.13 0.01 0.71 0.01 0.71 0.01 

SLDSC 
CEU 0.09 0.01 0.64 0.18 0.54 0.05 

OWN 0.09 0.00 0.19 0.01 0.16 0.01 

GREML GREML 0.15 0.00 0.25 0.01 0.24 0.01 

True in nonDHS 
 

 

-0.30 0.50 0.50 

non-DHS 

0 

LDSC 
CEU -0.17 0.01 0.74 0.01 0.74 0.01 

OWN -0.17 0.01 0.69 0.01 0.68 0.01 

SLDSC 
CEU -0.20 0.01 -0.36 0.26 0.02 0.11 

OWN -0.19 0.00 0.33 0.01 0.31 0.01 

GREML GREML -0.29 0.00 0.48 0.01 0.50 0.01 

10 LDSC CEU -0.18 0.01 0.74 0.01 0.74 0.01 



OWN -0.17 0.01 0.69 0.01 0.68 0.01 

SLDSC 
CEU -0.22 0.01 -1.19 0.95 0.12 0.09 

OWN -0.20 0.00 0.31 0.01 0.31 0.01 

GREML GREML -0.29 0.00 0.48 0.01 0.49 0.00 

20 

LDSC 
CEU -0.18 0.01 0.75 0.01 0.74 0.01 

OWN -0.17 0.01 0.69 0.01 0.68 0.01 

SLDSC 
CEU -0.21 0.01 0.03 0.20 0.20 0.08 

OWN -0.19 0.00 0.33 0.01 0.31 0.01 

GREML GREML -0.29 0.00 0.48 0.01 0.49 0.01 
a Simulation was based on 10,000 individuals that were randomly selected from UKBB with 858K SNP. Based on Gusev et al.1 , the 

SNPs across the genome were stratified into two categories: DHS (194K SNPs with 2268 causal SNPs) and non-DHS (664K SNPs 

with 7732 causal SNPs). The genetic correlation (genetic covariance) for the simulated phenotypes between the first and second traits 

was 0.6 (0.15) and -0.6 (-0.3) in DHS and non-DHS region, respectively. The phenotypic variance is one. The genetic variance of two 

traits and covariance for DHS and non-DHS are presented in the table. 

b The standard error were estimated based on 100 replicates. 

 

  



 

Table S1b. Covariance and heritability estimated from LDSC and GREML when a simulated genetic covariance between the 

first and second trait is 0.15 and -0.15 for DHS and non-DHS, respectivelya. 

 %Overlapping 
Method LD score 

Covariance Variance I Variance II 

 

Estimate SEb Estimate SE Estimate SE 

True in DHS 
 

 

0.15 0.25 0.25 

DHS 

0 

LDSC 
CEU 0.01 0.00 0.76 0.01 0.76 0.01 

OWN 0.01 0.00 0.71 0.01 0.71 0.01 

SLDSC 
CEU 0.12 0.01 0.77 0.18 0.58 0.08 

OWN 0.09 0.00 0.17 0.01 0.17 0.01 

GREML GREML 0.15 0.00 0.25 0.01 0.24 0.01 

10 

LDSC 
CEU 0.03 0.00 0.75 0.01 0.77 0.01 

OWN 0.03 0.00 0.70 0.01 0.71 0.01 

SLDSC 
CEU 0.13 0.01 1.27 0.45 0.81 0.26 

OWN 0.10 0.00 0.17 0.01 0.17 0.01 

GREML GREML 0.15 0.00 0.25 0.00 0.24 0.00 

20 

LDSC 
CEU 0.05 0.00 0.76 0.01 0.77 0.01 

OWN 0.05 0.00 0.71 0.01 0.71 0.01 

SLDSC 
CEU 0.12 0.01 1.17 0.76 -0.24 0.80 

OWN 0.09 0.00 0.18 0.01 0.16 0.01 

GREML GREML 0.15 0.00 0.25 0.00 0.24 0.01 

True in nonDHS 
 

 

-0.15 0.50 0.50 

non-DHS 0 

LDSC 
CEU 0.00 0.00 0.74 0.01 0.74 0.01 

OWN 0.00 0.00 0.69 0.01 0.68 0.01 

SLDSC 
CEU -0.11 0.01 -0.23 0.30 0.00 0.15 

OWN -0.09 0.00 0.31 0.01 0.32 0.01 



GREML GREML -0.15 0.00 0.48 0.01 0.49 0.01 

10 

LDSC 
CEU 0.02 0.00 0.74 0.01 0.74 0.01 

OWN 0.02 0.00 0.69 0.01 0.69 0.01 

SLDSC 
CEU -0.12 0.01 -1.97 1.47 -0.13 0.21 

OWN -0.10 0.00 0.31 0.01 0.31 0.01 

GREML GREML -0.15 0.00 0.48 0.00 0.49 0.00 

20 

LDSC 
CEU 0.04 0.00 0.75 0.01 0.74 0.01 

OWN 0.04 0.00 0.69 0.01 0.68 0.01 

SLDSC 
CEU -0.11 0.01 -0.61 0.89 -0.02 0.27 

OWN -0.10 0.00 0.31 0.01 0.33 0.01 

GREML GREML -0.14 0.00 0.48 0.01 0.49 0.01 
a Simulation was based on 10,000 individuals that were randomly selected from UKBB with 858K SNP. Based on Gusev et al.1, the 

SNPs across the genome were stratified into two categories: DHS (194K SNPs with 2268 causal SNPs) and non-DHS (664K SNPs 

with 7732 causal SNPs). The genetic correlation (genetic covariance) for the simulated phenotypes between the first and second traits 

was 0.6 (0.15) in DHS and -0.3 (-0.15) in non-DHS region, respectively. The phenotypic variance is one. The genetic variance of two 

traits and covariance for DHS and non-DHS are presented in the table. 

b The standard error were estimated based on 100 replicates. 

 

 

 

 

  

  



Table S2 Heritability and genetic correlation based on different data sets 

Method #SNPs Data 
#individuals h2 height h2 SCZ (liability scale) Genetic correlation 

Mean SD Estimate SE Estimate SE Estimate SE P 

GREML 518992 
UKBB+ 

SCZ 
152961.0 

 
0.386 4.10E-03 0.192 4.39E-03 -0.016 1.40E-02 0.247 

LDSC 516519 
UKBB+ 

SCZ 
151385.1 1433.7 0.487 3.28E-02 0.280 1.63E-02 0.026 3.35E-02 0.439 

LDSC-meta1 476824 

UKBB+ 

GIANT+ 

PGCSCZ 

437303.9 8173.6 0.253 1.62E-02 0.259 1.28E-02 0.010 2.46E-02 0.675 

LDSC-meta2 1010783 

UKBB+ 

GIANT+ 

PGCSCZ 

428349.1 28211.2 0.277 1.47E-02 0.261 1.03E-02 0.007 1.84E-02 0.712 

GREML: Analysis was based on quality controlled genetic data for height (from UK Biobank with 111,143 individuals and 518,992 

SNPs) and schizophrenia (from PGC with 41,630 individuals and 518,992 SNPs). 

LDSC: The data sets used in LDSC were the same as in GREML. 

LDSC-meta1: GWAS summary statistics for height were based on meta-analysed GWAS results of UKBB individual-level genotype 

data (with 111,143 individuals and 518,992 SNPs) and of GIANT (253,280 individuals and 476,824 SNPs). For SCZ, the GWAS 

summary statistics from the full PGC sample based on 77,096 individuals was used.  

LDSC-meta2: The data sets used in LDSC-meta2 were the same as in LDSC-meta1 except for the increased number of SNPs 

(1,010,783) with which its performance was checked.  

Due to different call rates of each SNP, the numbers of individuals for each SNP used in GWAS were different (see the column of the 

number of individuals with mean and SD).

  



Table S3 Heritability estimated from GREML and stratified LDSC based on the real data sets in the genomic partitioning 

analyses 

BMI 

  GREML Stratified LDSCa 

 Proportion  

of SNPs 

Estimate SE (Estimate) Ratiob SE 

(ratio)c 

Enrichment 

_P-valued 

Estimate SE (Estimate) Ratio 

Regulatory 0.065 0.016 0.002 0.085 0.012 5.61E-02 0.012 0.006 0.060 

DHS 0.225 0.055 0.005 0.298 0.025 1.74E-03 0.084 0.015 0.411 

Intron 0.287 0.055 0.004 0.298 0.018 5.54E-01 0.054 0.008 0.262 

Intergenic 0.424 0.059 0.004 0.320 0.017 1.76E-09 0.055 0.009 0.267 

Total  1.000 0.185 - 1.000 - - 0.206 0.012 1.000 

Whole genomee 1.000 0.184 0.004 - - - 0.255 0.014 - 

Height 

  GREML Stratified LDSC 

 Proportion  

of SNPs 

Estimate SE (Estimate) Ratio SE 

(ratio) 

Enrichment 

_P-value 

Estimate SE (Estimate) Ratio 

Regulatory 0.065 0.094 0.004 0.246 0.009 7.60E-92 0.117 0.012 0.261 

DHS 0.225 0.167 0.005 0.438 0.014 2.38E-54 0.421 0.031 0.942 

Intron 0.287 0.071 0.004 0.187 0.011 7.83E-22 -0.017 0.014 -0.038 

Intergenic 0.424 0.049 0.004 0.130 0.009 7.29E-226 -0.074 0.016 -0.165 

Total  1.000 0.381 - 1.000 - - 0.447 0.026 1.000 

Whole genome 1.000 0.386 0.004 - - - 0.487 0.033 - 

SCZf 

  GREML Stratified LDSC 

 Proportion  

of SNPs 

Estimate SE (Estimate) Ratio SE 

(ratio) 

Enrichment 

_P-value 

Estimate SE (Estimate) Ratio 

Regulatory 0.065 0.013 0.003 0.068 0.014 1.67E+00 0.021 0.008 0.095 

DHS 0.225 0.048 0.006 0.249 0.031 3.62E-01 0.068 0.020 0.303 

Intron 0.287 0.067 0.004 0.347 0.022 3.72E-03 0.076 0.009 0.340 

Intergenic 0.424 0.064 0.005 0.335 0.022 2.41E-05 0.059 0.010 0.262 



Total  1.000 0.192 - 1.000 - - 0.244 - 1.000 

Whole genome 1.000 0.192 0.004 - - - 0.280 0.016 - 
aGWAS summary statistics used in the stratified LDSC were based on the same genotype data used in GREML (Table 3). Because we 

used our own annotation that had discrete categories, for which the stratified LDSC does not provide stratified LD scores, we had to 

calculate stratified LD scores using the individual-level genotype data.  

bRatio is the proportion of each estimate over the sum of all estimates.  

cSE (ratio) is estimated using the delta method implemented in MTG2. For such discrete annotated categories, the stratified LDSC 

does not provide the SE of the ratio. 

dEnrichment p-value was obtained from the Wald test.  

eWhole-genome analyses were based on all the SNPs across the genome (i.e. Table 3). 

fThe estimates of SCZ are in the liability scale. 



Table S4. The computational and memory requirements for bivariate GREML and LDSC for 800k SNPs using a single CPU 

running at 2.1 GHz  

Methods #individuals/trait Memory Time (minute) 

GREML 
5,000 

1333MB 4 

LDSC 544MB 1 

GREML 10,000 6228MB 32 

LDSC 544MB 1 

GREML 20,000 18.5GB 198 

LDSC 544MB 1 

 

It is noted that MTG2 software used for the bivariate GREML can facilitate parallel computing and increase the computation efficiency 

approximately by a factor of 10 when using 20 CPUs. 

 

 



SUPPLEMENTAL METHODS 

Genetic data 

Schizophrenia (SCZ) data 

The SCZ GWAS data were from the second phase of the Psychiatric Genomic 

Consortium2 (PGC). Quality control (QC) and imputation of raw autosomal SNPs was performed 

by PGC using the imputation program IMPUTE2/SHAPEIT3; 4 with CEU samples from the 1000 

Genomes Project dataset5 as the reference set. Post-imputation quality control was performed for 

each cohort as described in Mehta et al.6, and subsequently merged across all cohorts. Based on 

the merged genotype data, we utilized HapMap3 SNPs with a call rate ≥ 0.9 and individuals with 

a call rate ≥ 0.9. In addition, one individual in a pair was randomly excluded if their genomic 

relationship was ≥ 0.05. After QC, 688,145 SNPs and 41,630 individuals (18,987 cases and 

22,673 controls) remained. 

UK Biobank (UKBB) 

Based on the data released in the first version of UKBB7, which were collected from a 

community sample, there were initially 152,249 individuals and 72,355,667 imputed SNPs 

available. Non-ambiguous strand SNPs identified in HapMap3 with imputation INFO ≥ 0.6, 

minor allele frequency (MAF) ≥ 0.01, call rate ≥ 0.95 and Hardy-Weinberg equilibrium P-value 

≥ 10-7 were retained. Individuals with call rate ≥ 0.95 and clustered as Caucasian, which were 

within six standard deviations from the mean of the EUR reference sample8 based on the first 

and second principal components of the genomic relationship matrix were retained. Similar to 

the SCZ sample, one individual per pair was randomly excluded if their genomic relationship 



was > 0.05 within the UKBB sample. In addition, UKBB samples were excluded if their 

genomic relationship with SCZ samples was > 0.05. After QC, 111,330 individuals, 858,991 

SNPs were available. In addition to the imputed UKBB data, the raw genotype data of UKBB 

(UKBBr) were used for a comparison analysis. Raw genotypes were available for 805,426 SNPs 

from the UK Biobank and UK BiLEVE Axiom array. After the same QC process as above and 

matching with the HapMap3 SNPs, 111,330 individuals and 123,921 SNPs were used for the 

simulation study. 

Wellcome Trust Case Control Consortium 2 (WTCCC2) 

The WTCCC2 data9-12 were combined from four disease datasets (ischaemic stroke, 

multiple sclerosis, primary biliary cirrhosis, and psoriasis) and two controls (1958 Birth cohort 

and UK Blood Service) which were genotyped with Illumina Human 1M-Duo BeadChip and 

QCed separately as follows: SNPs were excluded due to either call rate ≤ 0.95, MAF < 0.01, 

HWE P-value <1E-4 or significantly (P < 1E-5) different call rates between cases and controls. 

Individuals were excluded due to either individual call rate ≤ 0.97, being duplicated, genomic 

relationship > 0.185 or being of non-CEU ancestry. In the combined genotype data, we further 

excluded those SNPs with a call rate ≤ 0.95, HWE P-value ≤ 10E-7, or MAF ≤ 0.01 and one 

random individual in a pair with high relatedness (> 0.05). After QC, 20,659 individuals each 

with 432,663 SNPs were available for the simulation study. 

Genetic epidemiology research on adult health and aging cohort (GERA) 

The details of GERA data and its QC process was described in Lee et al.13. Briefly, 

genetic data were strictly from participants of the Kaiser Permanente GERA cohort with 

European ancestry14. In the QC step, SNPs were excluded due to either call rate ≤ 0.95, HWE p-



value ≤ 10E-4, or MAF ≤ 0.01. Only HapMap3 SNPs were retained for the simulation and 

analyses. Individuals were excluded due to either call rate ≤ 0.95 or being population outliers 

(i.e. greater than six SD from the first and second principal components). One individual in a pair 

with genomic relationship larger than 0.05 was randomly excluded. After QC, 46,345 individuals 

each with 239,976 SNPs were available for the simulation study.   

Simulation 

The simulation process was based on the individual-level genotype data of UKBB 

(111,330 individuals and 858,991 imputed or 123,921 raw genotyped SNPs), WTCCC2 (20,659 

individuals and 432,663 SNPs), and GERA (46,345 individuals and 239,976 SNPs), respectively. 

Phenotype Simulation  

For the bivariate model, 10,000 SNPs were randomly selected as causal variants, and 

assigned two sets of causal effects following a multivariate normal distribution with mean [0, 0] 

and (co)variance matrix as [
1 0.6
0.6 1

]. Thus, the genetic correlation between the first and second 

traits was 0.6. True breeding values or genetic profile scores were obtained from the products of 

SNP genotypes and the corresponding SNP effects. The simulated phenotypes were generated as 

the sum of the true genetic profile scores and the residual effects that were drawn from a 

multivariate normal distribution with mean [0, 0] and the covariance matrix [
1 0.8
0.8 1

]. 

Therefore, the simulated true heritability was 0.5 for both first and second traits.  

For the sample available in each dataset, a random set of 10,000 individuals was made 

available for the first and second trait, respectively, such that the percentage of overlapping 

individuals between the first and second traits was 0, 10 or 20%. Genetic correlation between 



two simulated traits was estimated using GREML and LDSC. The details of the methods are well 

documented elsewhere15-19. The number of replicates was 100. The simulation process was 

conducted using MTG215; 20. 

For sensitivity analyses using UKBB data, a different number of individuals (2500, 5000 

or 15000) or a different number of SNPs (100, 200 … 700k) was used. For testing a different 

number of SNPs, a subset of SNPs was randomly selected from 858,991 SNPs from which 

10,000 SNPs were randomly selected as causal variants to simulate phenotypes as above. We 

also tested a situation where the number of causal SNPs was proportionally reduced in a subset 

of randomly selected SNPs that used the same causal variants as the original 858,991 SNPs.   

Simulation for genomic partitioning analyses.  

This simulation was based on the QCed UKBB genotype data with 858,991 SNPs. 

According to Gusev et al.1, the genomic regions were divided into two categories: DHS (194,778 

SNPs) and non-DHS (664,213 SNPs). Phenotypes were simulated for the categories such that the 

heritability was 0.25 and 0.5 for the DHS region and non-DHS regions, respectively. The genetic 

correlation between the first and second traits was 0.6 and -0.6 for DHS and non-DHS regions, 

respectively. In an alternative scenario, we simulated the genetic correlation between DHS 

regions being 0.6 and the genetic correlation between non-DHS regions being -0.3. For the 

genetic correlation, we gave substantially different values between the DHS and non-DHS 

regions to make the contrast clear in the estimation, which also increased the power to access the 

performance of the methods. The residual correlation between two traits was 0.8. For the sample, 

10,000 individuals were randomly selected for each trait to perform GREML and LDSC with 

different levels (0, 10, or 20%) of overlapping individuals between the two traits. For the 

GREML genomic partitioning analysis, genomic relationship matrices9 (estimated based on the 



information of the functional categories) were jointly fitted to estimate SNP-heritability and 

genetic correlation for each category. For the LDSC partitioning analysis, we used the sLDSC 

(i.e. --h2 flag in sLDSC software)21, which could estimate SNP-heritability for each category, 

following Finucane et al.21 in the case of non-overlapping categories. We also used sLDSC to 

estimate genetic correlation between traits for each category (i.e. --rg flag). Unlike --h2 function 

in sLDSC, there is neither documented instruction nor a publication verifying the function, and 

the software does not provide SE of estimates. Therefore, we limited our use of the --rg function 

in sLDSC to simulated data only. Because of the limitation of sLDSC (--rg), we also used LDSC 

estimates based on a subset of SNPs belonging to each category to obtain a genetic correlation 

for each category, which also give more insights into the method.     

 

Real data analyses 

We used LDSC and GREML to estimate SNP-heritability and genetic correlation for the 

real data sets. Traits of interest were height, body mass index (BMI), and SCZ. After QC as 

described above, the number of phenotypic records was 111,143 for height and 111,019 for BMI 

from the UKBB, and 41,630 for SCZ from PGC. The number of SNPs was 518,992. The SNP 

number was reduced compared to the simulation study because only the SNPs common to both 

UKBB and SCZ could be used to build a genomic relationship in GREML. Phenotypic records 

of height and BMI were adjusted for age at interview, the assessment centre at which participant 

consented, genotype batch, year of birth and the first 15 principal components (PCs). SCZ were 

adjusted for sex, cohort and the first 15 PCs. The pre-adjusted phenotypes were used for 

GREML and LDSC estimations. In addition, publicly available GWAS summary statistics for 

height, BMI and SCZ were used for LDSC (LDSC-meta). The GWAS results for height and 



BMI from GIANT22; 23 and those for SCZ from the full PGC samples2 were meta-analysed with 

SNPs treated as fixed effects.  

Genomic partitioning analysis was applied. Based on Gusev et al.1, we stratified the 

genome into four categories, i.e. regulatory, DHS, intronic and intergenic region. The regulatory 

category includes promoters (within 2kbp of a transcription start site), UTR (overlapping a 5’ or 

3’ untranslated region) and coding (overlapping a coding exon). DHS includes chromatin zone 

that are sensitive to cleavage by the DNase I enzyme, observed in any cell-type. Intronic and 

intergenic regions include introns and all other intergenic variants except regulatory, DHS and 

introns. We used the GREML, LDSC and sLDSC to estimate SNP-heritability and genetic 

correlation for each category in the same manner as in the analyses of the simulated data except 

that we did not attempt using sLDSC with --rg flag for the real data analysis because of its 

incompleteness (e.g. SE estimates are not provided).  
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