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Supplementary material 

Telomere length 

Samples were made up of either separated peripheral blood mononuclear cells (PBMC) or whole 

blood collected in ACD-A blood collection vacutainers and kept frozen at -80°C.  All PBMC 

samples were separated and placed in storage within 3 days of draw date. 

 

DNA was extracted from PBMC and whole blood samples using the Qiagen QIAamp DNA Mini 

Blood Extraction kits (Catalog # 51306) according to manufacturers’ specifications. 

 

Average telomere length (ATL) was measured by quantitative PCR (qPCR) by comparing 

telomere sequence copy number in a subject sample (T), to single-copy number (S) from the 

same sample, as described by Dr. Richard Cawthon
22, 23 

and analysis by Dr. Jue Lin
24

. The 

resulting T/S ratio is proportional to ATL
25

.  

 

Average Telomere Length results or “T/S ratios” were determined for each sample by calculating 

the average telomere signal normalized to a single copy gene, based off of the standard curve. 

 

Variable Pre-processing 

Age, height, weight, and telomere length are continuous variables, whereas the remaining 

variables are discrete. Full descriptions of the variables are given in Supplementary file 1. All 

variables were imputed for missing values and (for discrete variables) encoded. Furthermore, to 

account for variable interactions, we formed all possible products of input variables and added 
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them to the model. This turned out to significantly improve cross-validation performance of the 

algorithm as measured by the survival difference between predicted-positive and predicted-

negative groups. The introduction of interactions (products) in the model substantially increased 

computational complexity of learning, and reduced interpretability. Nevertheless, the gain in 

estimated performance justified the penalty. 

Following the formation of products, all resulting variables were centered to zero mean and 

scaled to unit standard deviation. Therefore, the final set of variables that was input to the 

machine learning workflow consisted of the pre-processed normalized values of the variables 

listed in Table 2, and their products.  

 

Variable Selection and Classifiers 

Most practical classification devices utilize two stages: feature selector or extractor, and 

classifier. The feature selector chooses which of the input variables shall be input to the classifier 

algorithm, whereas feature extractor transforms all input variables into a (usually) smaller 

number of derived variables, which are then input to the classification algorithm. In our context, 

the features are the patient/donor variables listed in Table 2, and their products. Some 

algorithms, like ElasticNet
26

, perform feature selection internally, whereas others require 

external feature selector. In this work, we used external feature ranking based on Pearson 

correlation coefficient between feature value and class label
27

 (Preferred or NotPreferred); the 

features with highest absolute value of the correlation were fed to the classifier stage.  

 

We experimented with several state-of-the-art classifiers, including Support Vector Machines
28

, 

Random Forest
29

, Elastic Net and Normal Mixture Modeling
29

 as well as survival models as 
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explained above. In the search for the clinically most useful model, we employed meaningful 

combinations of feature selectors, feature extractors and classifiers. The best combination that we 

found entailed combining the features selected by Pearson correlation ranking in combination 

with the SVM classifier. The final set of features used in the classifier is listed in the 

Supplementary file 2. 

 

Model Selection  

Each predictive model (i.e., classifier) is defined by a set of parameters (weights), similar to 

coefficients of linear regression. Most of the weights, but not all, are optimized using a core, off-

the-shelf classification algorithm. The process of deciding the values of the remaining 

parameters is called model selection. For example, a non-linear Support Vector Machine model 

is defined by the weights and four additional parameters: 1) the list of input features 2) cost 3) 

gamma 4) decision threshold. Model selection is the process of determining these values. The 

approach that we used is called "grid-search"
30

, and it involves trying out a relatively large 

number of possible combinations of these four parameters, and choosing the best one. Other 

methods of model selection exist, but none have been shown to consistently match or surpass 

performance of the grid search when the number of parameters is low. 

 

The decision threshold plays a special and crucial role in controlling whether the classification 

system will have clinical utility. Most core classifiers output a score (numerical value). The 

classifiers that we considered produce positive scores which increase with the probability that the 

donor is conferring better survival on the recipient (i.e., higher score means better donor for the 

given recipient). The decision threshold is used to convert this score to the Preferred or 
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NotPreferred label by comparing the classifier score with the decision threshold value. High 

values of the decision threshold correspond to classification systems which consider fewer 

donors to be Preferred, but each has a higher likelihood of being a good match for the recipient 

(as a result, more patients would be unlikely to find a Preferred donor when high decision 

threshold values are used). Conversely, lower values of the decision threshold correspond to 

models that identify more donors as Preferred, albeit with lesser chance of achieving the five-

year survival outcome. Therefore, there is a trade-off between clinical utility (increasing survival 

chances) and practicality (identifying at least one Preferred donor for a reasonable proportion of 

acute leukemia HCT recipients). Decision thresholds correspond to the “stringency” of a test in 

calling a donor Preferred. 

 

Given these considerations, the model selection process proceeded as follows. We evaluated 

each grid point (i.e., each donor classifier) using repeated ten-fold cross-validation
31

 analysis of 

the classifier performance, with each cross-validation run was repeated 30 times. This is, to our 

knowledge, the most reliable method available to assess the quality (i.e., accuracy) of the 

classifier predictions, short of fully independent validation. The result was a table of (proportion, 

survival) values, one for each classifier, where “proportion” measures how frequently the 

corresponding test labeled donors as Preferred, and “survival” measures the probability that a 

patient would survive at least five years if receiving HCT from a donor labeled Preferred by the 

model. The best model was the one which labeled at least 10% of the donors Preferred, and 

maximized the survival benefit experienced by the recipient.  
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To facilitate the selection process and make it more intuitive, this table was visualized as a two-

dimensional dot plot of (proportion, survival) values. An example of such a graph is given in Fig. 

2. It should be noted that statistics of each model (i.e., combination of weights) was evaluated for 

100 different values of decision threshold, resulting in about a million different classifiers, 

although the number of substantially distinct models was about 10,000. 
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