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SUMMARY
Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of

these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an opti-

mized all-optical electrophysiology, ‘‘Optopatch,’’ pipeline for high-throughput functional characterization of human iPSC-derived

neuronal cultures.We demonstrate themethod in a human iPSC-derivedmotor neuron (iPSC-MN)model of amyotrophic lateral sclerosis

(ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants

showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic

stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature re-

sults in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels

may underlie the changes in electrophysiology in the SOD1 A4V mutation.
INTRODUCTION

Cell-reprogramming technologies have created an unprec-

edented opportunity to study human neurons in vitro,

probing disease mechanisms under each patient’s unique

genetic constellation (Han et al., 2011; Pankevich et al.,

2014). Many studies have used induced pluripotent stem

cell (iPSC)-based and direct conversion methods to model

neurological, neuropsychiatric, and neurodegenerative dis-

eases, effectively describing disease-related phenotypes in

multiple neuronal subtypes (Ichida and Kiskinis, 2015).

Here we present methodology for the design and analysis

of optical electrophysiology experiments on iPSC-based

disease models, with application to a model of amyotro-

phic lateral sclerosis (ALS).

Electrical spiking is the dominant function of every

neuron. The spiking patterns, the action potential wave-

forms, and the subthreshold voltages under different stim-

ulus waveforms represent an integrative phenotype that

reflects the activity of a large number of ion channels,

transporters, and pumps, as well as the underlying cellular

metabolism. While it is not, in general, possible to deduce

the complete ion channel composition of a cell from its

spiking patterns (Brookings et al., 2014), differences in

spiking patterns between disease-model and control states

can point to likely differences in ion channel function,
Stem Cell R
This is an open access article under the C
and pharmacological rescue of disease-associated func-

tional phenotypes can support efficacy of a candidate

therapeutic.

Electrophysiology data have been traditionally difficult

to attain. Manual patch-clamp measurements can be

highly accurate but are labor-intensive and slow. Multi-

electrode arrays and calcium imaging probe overall sponta-

neous activity of a culture, but do not probe details of

action potential (AP) waveforms, nor are these techniques

typically combined with precisely targeted stimulation.

The large effort required to record manually from many

neurons, combined with the intrinsic variability of

iPSC-derived cultures, presents a major obstacle to system-

atic exploration of patient populations or experimental

conditions.

A recently developed system for all-optical electrophysi-

ology (‘‘Optopatch’’) addresses this bottleneck (Hochbaum

et al., 2014). Optogenetic actuation occurs through a blue

light-activated channelrhodopsin, called CheRiff. Voltage

imaging occurs through a spectrally orthogonal near-

infrared genetically encoded fluorescent voltage indicator

called QuasAr2. Specialized optics and software allow

simultaneous stimulation and recording frommultiple sin-

gle cells embedded in a complex network (Werley et al.,

2017; Zhang and Cohen, 2017). However, low expression

levels of the Optopatch construct limited its application
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to highly robust primary neuron cultures and to commer-

cially produced iPSC iCell neurons (Hochbaum et al.,

2014). Furthermore, limitations in data handling and anal-

ysis constrained previous applications to relatively small

numbers of well-separated neurons.

Scaling up the Optopatch platform for iPSC-based disease

modeling posed a number of challenges in automated data

analysis and statistical interpretation. We developed image

segmentation techniques to extract the fluorescence traces

and morphology of individual neurons, even when they

were clumped and overlapping. We developed a suite of

filteringandfitting techniques robust to thedominantnoise

sources in our dataset to extract spike times and AP wave-

form parameters (Cunningham and Yu, 2014; Druckmann

et al., 2013). We then employed systematic regression tech-

niques to determine population- and subpopulation-level

differences between the mutant and control cell lines while

controlling for significant sources of cell-to-cell variability.

Here we apply Optopatch assays to study the electrical

properties of human iPSC-derived motor neurons

(iPSC-MNs) in a model of ALS. We developed improved

expression constructs and cell-culture protocols to measure

spontaneous andoptogenetically induced spiking inhuman

iPSC-MNs. We applied these tools to a previously validated

modelofALSwith the SOD1A4Vmutation, and its gene-cor-

rected but otherwise isogenic control. We measured 1,771

single cells across six differentiations, for mutant and con-

trol, in two independent isogenic pairs. We found that

SOD1 A4V mutant cells had higher spontaneous activity

than isogenic controls and greater firing rate at low stimula-

tion, but lowerfiring rate under strong stimulationdue to an

increased likelihood of entering depolarization block.

Mutant cells also had smaller-amplitude APs. Mutant and

genome-corrected cells had indistinguishable maximum

firing rates and intra-stimulus accommodation behavior.

To gain mechanistic insight into this array of seemingly

distinct functional comparisons, we explored simplified

conductance-based Hodgkin-Huxley-type models. Varia-

tion of a delayed rectifier potassium channel was sufficient

to account for the bulk of our findings. The relative ease

of acquiring Optopatch data creates an opportunity to

explore electrophysiology in cell-based models of neuro-

logical disease in detail and at a population scale, and to

make quantitative comparisons with theory.
RESULTS

Expression and Characterization of Optopatch in

Human iPSC-Derived Motor Neurons

We developed an experimental pipeline to apply Opto-

patch to an established (Kiskinis et al., 2014; Wainger

et al., 2014) human iPSC-based model of ALS (Figure 1A).
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The major steps were (1) differentiation of iPSCs into

MNs, (2) delivery of Optopatch genes, (3) optical stimula-

tion and recording, (4) image segmentation, (5) voltage

trace parameterization, (6) statistical analysis of population

differences, and (7) comparison with numerical simula-

tions. We applied the pipeline to two iPSC lines: one

derived from an ALS patient (39b) harboring the A4V mu-

tation in the SOD1 gene, the other an isogenic control

cell line (39b-Cor), generated by correcting the mutation

in SOD1 through zinc finger nuclease (ZFN)-mediated

gene editing. Both lines have been extensively charac-

terized and validated for pluripotency markers, develop-

mental potency, and genomic integrity described

previously (Kiskinis et al., 2014; Wainger et al., 2014). We

validated the key results in a second patient-derived line

with the samemutation in SOD1 (RB9d), and a correspond-

ing isogenic control line (RB9d-Cor) (Figures S1A and S1B).

We differentiated the iPSC lines into post-mitotic, spinal

MNs using a previously described protocol based on forma-

tion of embryoid bodies and subsequent neuralization

through dual-SMAD inhibition (Figure 1B). MN specifica-

tion was achieved through addition of retinoic acid and a

Smoothened agonist (Kiskinis et al., 2014; Boulting et al.,

2011). We and others have previously shown that the ma-

jority of MNs generated through this protocol are FOXP1/

HOXA5 positive, indicative of a lateral motor column iden-

tity with a rostral phenotype, and are able to form neuro-

muscular junctions (Kiskinis et al., 2014; Amoroso et al.,

2013). This 24-day protocol resulted in highly neuralized

cultures (>95%MAP2/TUJ1+ cells) and significant numbers

of spinal MNs (>30% of MAP2/TUJ1+ were ISL1/2 [ISL]+)

(Figures S1A and S1B). At the end of the differentiation,

MN cultures were plated onto poly-D-lysine/laminin-

coated glass-bottomed dishes for subsequent maturation

and electrophysiological analysis.

We tested the calcium-calmodulin-dependent kinase II

type a (CamKIIa) promoter as a means to achieve selective

and specific expression in iPSC-MNs. Previously published

RNA-sequencing data acquired fromfluorescence-activated

cell sorting-isolated HB9+ MNs differentiated through this

protocol (Kiskinis et al., 2014) revealed strong expression

of CAMK2A (Figure S1C). The CaMKIIa promoter is known

to be active in mature excitatory neurons (Lund and

McQuarrie, 1997). To validate the specificity of the

CamKIIa promoter for MNs, we infected iPSC-derived

MN cultures with a CamKIIa-EGFP lentiviral construct

and performed immunocytochemistry for EGFP and ISL

(Figure S1D). Of the ISL+ MNs, 75% expressed EGFP. Of

the EGFP+ cells, 89% were also ISL+ MNs (n = 1,147 ISL+

MNs and 1,289 EGFP+ cells; Figure S1E).

The previously published Optopatch construct (Hoch-

baum et al., 2014) contained the CheRiff and QuasAr2

genes joined by a self-cleaving 2A peptide. We found



Figure 1. Optopatch Reports Firing Pat-
terns of iPSC-Derived Motor Neurons in a
Model of ALS
(A) Pipeline for disease modeling with op-
tical electrophysiology.
(B) Timeline of motor neuron differentia-
tion, gene transduction, maturation, and
measurement.
(C) Top: domain structure of Optopatch
constructs. Bottom: images of an iPSC-
derived motor neuron expressing both
CheRiff-EGFP and QuasAr2-mOrange2.
(D) Simultaneous fluorescence and patch-
clamp recordings of spiking in iPSC-derived
motor neurons under optical stimulation.
Left: images from mutant and genome-cor-
rected controls. Right: fluorescence (red,
black) and voltage (blue). Illumination
protocols are shown above.
All scale bars, 10 mm. See also Figure S1.
that this construct did not express highly enough for

robust functional recordings in iPSC-MNs. The expression

level was considerably higher when the two genes were

packaged in separate lentiviruses. We generated low-titer

lentiviruses (see Experimental Procedures) for QuasAr2-

mOrange2 (Addgene #51692) and CheRiff-EGFP (Addg-

ene #51693), both under control of the CamKIIa

promoter (Figure 1C). We delivered the Optopatch genes

via lentiviral transduction of the MN cultures 10 days

before each recording.

Neurons were imaged 22–28 days post plating. Neurons

showed robust expression of EGFP, indicative of CheRiff
expression, as well as near-infrared fluorescence indicative

of QuasAr2 expression (Figure 1C). Both proteins showed

extensive membrane trafficking in the soma and in distal

processes, although QuasAr2 also showed some intracel-

lular puncta.

Optopatch expression was reported not to have signifi-

cant effects on electrical properties of primary or iPSC-

derived neurons (Hochbaum et al., 2014), but those

measurements did not include MNs. To test for effects

of expression on MN electrophysiology, we performed

manual patch-clamp measurements in iPSC-MNs express-

ing either CaMKIIa-driven Optopatch or a CaMKIIa-driven
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 1993



EGFP control (see Experimental Procedures). Optopatch

expression did not significantly perturb resting voltage,

membrane resistance, membrane capacitance, rheobase,

or AP threshold voltage relative to control cultures express-

ing EGFP (Figures S2A–S2E). Both Optopatch and EGFP-

transduced cells had slightly lower membrane resistance

and higher membrane capacitance than non-transduced

controls, indicating that within the heterogeneous in vitro

neuronal population, the CaMKIIa promoter targeted

expression to neurons with larger surface area, a marker

of greater maturity. We further tested for differences in AP

properties between EGFP- and Optopatch-expressing MNs

in both SOD1A4Vand genome-corrected controls. Individ-

ual cells showed widely varying firing patterns, particularly

in the vicinity of depolarization block, ranging from single

spikes to tonic firing.Many cells showed subthreshold ring-

ing oscillations that gradually diminished as the cell

entered depolarization block. In neither genotype did we

observe significant differences between EGFP- and Opto-

patch-expressing MNs in AP amplitude, maximum firing

rate, or width of the first spike following stimulus onset

(Figures S2F–S2H).

To test whether the optical measurements were a faithful

reporter of AP waveforms, we acquired simultaneous

manual patch-clamp and optical recordings, with optoge-

netic stimulation (Experimental Procedures and Figure 1D).

Fluorescence traces were extracted from single-cell re-

cordings using a previously described pixel-weighting

algorithm that automatically identified pixels whose fluo-

rescence correlated with the whole-image mean (Kralj

et al., 2012). APs were resolved optically on a single-trial ba-

sis and tagged with an automatic spike-finding algorithm

(Supplemental Experimental Procedures). Of the optically

identified spikes, 4% were not automatically identified in

the patch-clamp recordings; of the electrically identified

spikes, 5% were not automatically identified in the optical

recordings (n = 148 spikes, 4 cells). These discrepancies

came not from shot noise (which contributed an error

rate of <10�6) but from low-amplitude oscillations near de-

polarization blockwhose classification as spike or not-spike

was ambiguous even to human observers (see Figure 6B for

an example).

We compared AP parameters of spikes recorded simulta-

neously optically and electrically. Optically recorded APs

had a root-mean-square error of 1.2 ms in time of peak de-

polarization relative to the electrical signal (n = 148 spikes,

4 cells), and a systematic overestimate of spike full-width at

half-maximum (FWHM) by 1.8 ± 1.1 ms (mean ± SD)

compared with an electrically recorded mean spike

FWHM of 5.6 ms (Figure S2I). These mean widths included

exceptionally broad spikes near onset of depolarization

block. The average width for the first electrically recorded

AP after stimulus onset was 3.9 ms, comparable with the
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literature on developingmotor neurons (in rat, AP duration

is 9.3 ms at embryonic day 15–16 and 3.4 ms at postnatal

day 1–3, at 27�C–29�C [Ziskind-Conhaim, 1988]). In the

electrical recordings, the first AP after stimulus onset was

narrower in width (3.9 ms versus 6.7 ms FWHM) and

higher in amplitude (74 mV versus 60 mV) than subse-

quent APs. In the optical recordings the first AP was also

narrower than subsequent APs (5.7 ms versus 8.7 ms), but

appeared smaller in amplitude (2.5% DF/F versus 2.8%

DF/F) than subsequent APs. The differing trends in

apparent spike amplitude are explained by low-pass

filtering of the optical signal due to the 2-ms exposure

time of the camera and the 1.2-ms response time of

QuasAr2. This level of time resolution enabled robust spike

counting and coarse parameterization of APwaveforms but

not detailed analysis of submillisecond dynamics.

The fluorescence signal showed a slow increase in base-

line during each optical stimulus epoch (Figure 1D), which

we traced to blue light photoproduction of a red-fluores-

cent product, as has been reported previously for other

Arch-derived voltage indicators (Venkatachalam et al.,

2014; Hou et al., 2014) (see Supplemental Discussion).

This effect had been negligible in previous experiments

in primary rodent neurons (Hochbaum et al., 2014) on ac-

count of higher CheRiff expression (necessitating lower

blue stimulus intensity) in the primary cells. We did not

include gradual changes in baseline in the analysis,

focusing instead on spike timing and shape parameters.

Probing Neuronal Excitability with Optopatch

Figure 2A shows the illumination protocol used to probe

the cell-autonomous excitability of human iPSC-MNs. Re-

cordings were acquired at 500-Hz frame rate for 9,000

frames. Illumination with red light (635 nm, 800 W/cm2)

induced near-infrared voltage-dependent fluorescence of

QuasAr2. Cells were monitored for 10 s without stimula-

tion to quantify spontaneous activity. Cells were then stim-

ulated with eight 500-ms pulses of blue light of linearly

increasing intensity from 6 mW/cm2 to 100 mW/cm2. Af-

ter each blue stimulus pulse, cells were recorded for another

500 ms without blue stimulus and then given 5 s of rest

with neither red nor blue illumination. Mutant SOD1

A4V and genome-corrected control MN cultures were

differentiated in parallel, and recordings from paired cul-

tures were performed on the same day.

Image Segmentation and Data Processing

To accommodate the large quantities of Optopatch data

(1,039movies, 200 gigabytes in total), we developed a pipe-

line for analysis in a parallel computing environment (Fig-

ure S3). The first stage comprised image segmentation.

Cells often clustered, with overlapping somas and inter-

twined processes. On average, 60% of each cell body area



Figure 2. Optopatch Measurement and
Analysis Pipeline
(A) Cells were subject to 10 s of
unstimulated recording to measure spon-
taneous activity (red), and then to eight
stimulation pulses of 500 ms duration and
increasing intensity (blue).
(B) Activity-based movie segmentation.
Image stacks were filtered spatially and
temporally, then processed via principal
components analysis (PCA) followed by in-
dependent components analysis (ICA) to
identify clusters of pixels whose fluores-
cence values co-varied in synchrony. The
movie was decomposed into a sum of over-
lapping neuron images, each with its own
spiking pattern.
(C) Parameterization pipeline. Spikes
were identified in the fluorescence traces.
Spiking patterns were analyzed within
stimuli, between stimuli, and between
populations. AP waveforms were also
parameterized, enabling comparison of
width, height, and after-polarization within
and between cells. The results of the seg-
mentation in the spatial domain enabled
measurement of morphological features
(soma versus dendrite) and of CheRiff-EGFP
expression level. Finally, all of this infor-
mation was integrated to build a coherent
picture of phenotypic differences between
mutant and control cell lines.
All scale bars, 10 mm. See also Figures
S2–S4.
overlapped with other cells in the controls, and 63% in the

mutants (distribution difference p = 0.07 by Mann-Whit-

ney U test, not significant). The large degree of overlap

implied a need to un-mix the fluorescence signals from

overlapping cells.

Our segmentation approach was derived from an inde-

pendent components analysis (ICA) algorithm, originally

developed for calcium imaging (Mukamel et al., 2009),

with modifications to accommodate the differing morpho-

logical, statistical, and noise properties of voltage imaging

data (see Supplemental Experimental Procedures). In brief,

movieswere high-pass filtered in time to accentuate the sig-

nals from spikes, and low-pass filtered in space to suppress

spatially uncorrelated shot noise. Movies were then sub-

jected to principal components analysis (PCA) to reduce
the dimensionality of the dataset, then time-domain ICA

to identify linear combinations of principal components

thatmaximized statistical independence between intensity

traces. The spatial filters produced from ICA were then

applied to the original (unfiltered) movie to extract the un-

derlying intensity traces (Supplemental Experimental Pro-

cedures and Figure 2B).

Complex images of up to six overlapping neurons were

readily decomposed into single-cell traces. No information

about cell morphology was used in the image seg-

mentation, so emergence of neuron-shaped objects with

corresponding stereotyped AP waveforms confirms the

effectiveness of the algorithm. Inspection of the firing pat-

terns revealed negligible crosstalk between signals derived

from overlapping cells. Single-cell fluorescence traces
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 1995



Figure 3. Comparison of Spiking Patterns in SOD1 A4V and Control Motor Neurons
(A) Top: representative optical trace with stimulus protocol (blue) and identified spikes (red stars). Bottom: raster plot showing spike
timing for a subset of the recorded cells. Black are controls, red are SOD1 A4V.
(B) Spontaneous activity.
(C) Population-average number of APs as a function of optogenetic stimulus strength.
(D and F) Histograms of number of APs as a function of stimulus intensity for (D) controls and (F) SOD1 A4V mutants.
(E) Left: spike train in a control neuron showing monotonically increasing number of APs as a function of stimulus strength. Right: image
of the cell.

(legend continued on next page)
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were then processed with a spike-finding algorithm that

used a dynamically adjusted threshold to accommodate

different signal-to-noise ratios in different cells (Supple-

mental Experimental Procedures and Figure 2C). Sources

were classified as active cells if they showed five or more

spikes during the experiment and had a signal-to-noise

ratio greater than 5, ensuring a shot noise contribution to

errors in spike calling of <10�6.

The second stage of the pipeline comprised parameteriza-

tion of the spike waveforms. A standard set of parameters

has been proposed to describe AP waveforms recorded

via conventional electrophysiology (Druckmann et al.,

2013). Fluorescence differs from patch clamp in that fluo-

rescence has a lower signal-to-noise ratio, does not have

an absolute voltage scale, is subject to baseline drift, and

has lower time resolution. To determine which parameters

we could use robustly, we first described spikes with a large

set of parameters and then used an information-theoretic

approach to eliminate redundancies (Supplemental Discus-

sion and Figure S4). Our final set of parameters described

the upstroke duration, downstroke duration, initiation

threshold relative to baseline, spike amplitude relative to

baseline, and after-hyperpolarization relative to baseline.

Our image segmentation method also enabled quantita-

tive description of cellular morphology. We used filters

derived from the activity-based segmentation to identify

the two-dimensional footprint of each cell. We then em-

ployed morphological image processing to identify cell

soma and dendrites (Supplemental Experimental Proced-

ures and Figure S4).

Comparison of Mutant SOD1 A4V with Isogenic

Control MNs

We compared the firing patterns between iPSC-MNs with

the SOD1 A4V mutation (n = 331) and genome-corrected

controls (n = 843). Figure 3A shows a raster plot of the spike

timing for a subset of the cells (not including the recording

of spontaneous activity at the start of each trace). Figure 3B

shows that, on average, SOD1 A4V cells had higher sponta-

neous activity than genome-corrected controls (mean

spontaneous rates 1.50 ± 0.18 Hz in mutant, 0.98 ±

0.12 Hz in control; p = 0.003, Wilcoxon signed-rank test

used because of non-normal distribution). Figure 3C shows

the population-average spike count in a 500-ms stimulus as

a function of stimulus intensity for the two genotypes. The

curves formutant and control crossed: in themost strongly
(G) Left: spike train in an SOD1 A4V mutant showing depolarization b
(H) Number of APs as a function of stimulus strength among the
No significant differences were observed between mutant and contro
(I) Fraction of cells in depolarization block as a function of stimulus
Error bars represent SEM. Asterisks indicate significance differences b
n = 834 control neurons, n = 331 SOD1 A4V, and six rounds of differe
stimulated epoch, mutant cells fired less on average than

controls (mean rates 12.6 ± 0.5 Hz in mutant, 14.6 ±

0.3 Hz in control; p = 0.0012, unpaired t test). We then per-

formed matched experiments in a second patient-derived

SOD1 A4V cell line (RB9d) and its isogenic control (RB9d-

Cor). As with the 39b line, the RB9d mutant cells showed,

on average, enhanced spontaneous activity, hyperexcit-

ability at weak stimulus, and hypoexcitability at strong

stimulus (Figure S5).

Population-level differences in activity could arise from

uniform shifts in all cells or from redistribution of cells

among subpopulations with different firing patterns. The

single-cell Optopatch data allowed us to examine the un-

derlying distributions of single-cell behavior that led to

the population-average differences (Figure 3D for controls

and Figure 3F for mutants).

Under strong stimulus, two clear subpopulations

emerged: cells that fired rapidly and tonically (Figure 3E)

and cells that generated just one or two spikes before going

quiet (Figure 3G). We presumed that these quiet cells were

constitutively inactive. However, a majority of these cells

(64% in the control, 72% in the mutant) fired four or

more times during a stimulus of intermediate intensity.

These results established that a subpopulation of neurons

showed a non-monotonic dependence of firing rate on

stimulus strength, with a maximum in firing rate at inter-

mediate stimulus strength.

We then examined the fluorescence waveforms of the

cells that inactivated under strong stimulus. These cells

were depolarized but not firing, a signature of depolariza-

tion block (Pontiggia et al., 1993). To quantify the popula-

tions in depolarization block, we defined the onset of

depolarization block as a decrease in number of spikes

upon an increase in stimulus strength. Cells that did not

show depolarization block had statistically indistinguish-

able firing rates in mutant and control populations at

high intensity (p = 0.11, unpaired t test at the strongest

stimulus; Figure 3H). However, the proportion of cells

that entered depolarization block differed significantly be-

tween mutant and control: at the strongest stimulus, the

SOD1 A4V cells were 32% more likely to be in depolariza-

tion block than the controls (p = 0.008, binomial model

t test with Holm-Bonferroni correction, two hypotheses;

Figure 3I). This difference in propensity to enter depolariza-

tion block under strong stimulus was the most dramatic

difference between mutant and control.
lock upon strong stimulus. Right: image of the cell.
subpopulation of cells that did not enter depolarization block.
l.
number.
etween mutant and control, *p < 0.01. Data in all panels based on
ntiation. Scale bars, 10 mm. See also Figures S5 and S6.
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Figure 4. Characteristic Firing Pattern
of iPSC-MNs as a Function of Stimulus
Strength
(A and B) Heatmaps showing universal
shape of the F-I curves for control and SOD1
A4V mutant iPSC-MNs. F-I curves from each
cell were rescaled along the x and y axes as
follows. Firing rate was expressed as a per-
centage of the cell’s maximum firing rate.
Stimulus intensities were aligned to the
lowest intensity stimulus at which this
maximum firing rate was achieved. This
rescaling revealed typical F-I trajectory
shapes in a manner that was independent of
changes in CheRiff expression level. Control
(A) and SOD1 A4V mutant iPSC-MNs (B)
showed a linear increase in firing rate versus
stimulus strength for weak stimuli, a plateau
in firing rate for moderate stimuli, and a
collapse in firing under strong stimuli. Data
based on n = 834 control neurons, n = 331
SOD1 A4V, and six rounds of differentiation.
(C) Top: fluorescence traces from a single
representative cell passed through three
distinct stages of firing in response
to monotonically increasing optogenetic
stimulus strength. Bottom: fit of piecewise-
continuous F-I curves to the data in (A) and
(B) for (black) genome-corrected and (red)
SOD1 A4V mutant cell lines. Curves were
constructed from measurements of sponta-
neous rate, average slope of the F-I curve
(controlling for expression level), maximum
firing rate, and the number of stimulus steps
spent at the maximum.
Aligning all cells’ F-I curves by the stimulus pulse at

which they reached their maximum firing rate revealed a

stereotyped F-I curve (Figure 4). Cells showed linear depen-

dence of firing rate on stimulus strength up to amaximum,

maintenance of the maximum firing rate in a plateau

phase, and then a rapid collapse into depolarization block.

The mutant population tended to have a narrower plateau

phase and a greater propensity to enter depolarization

block than the controls. For cells with matched firing rates

at a given stimulus strength, the odds of a cell going into

depolarization block in the next stronger stimulus

were 88% higher in the mutants than in the controls

(p = 1.7 3 10�4, logistic regression coefficient t test). The

mutant and control neurons reached the same maximum

firing rate (mean rates 8.7 ± 0.4 Hz in mutant, 9.2 ±

0.3 Hz in control; p = 0.51, linear model coefficient t test).

We next studied the timing of the APs within each stim-

ulus epoch. After the first two APs, cells showed nearly con-

stant firing rate throughout the stimulus, provided that the

cell was not in depolarization block (Figure 5). To quantify
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the degree of firing rate adaptation, we defined the nth in-

ter-spike interval by ISIn = tn+1 – tn, where tj represents the

time of peak of spike j. We then defined the degree of firing

rate adaptation by
D
ISIn+1

ISIn

E
� 1, where the average is over all

spikes during a stimulus epoch. This quantity did not differ

significantly between SOD1 A4V and control neurons

(8.7% in control, 8.9% in mutants; p = 0.87, unpaired

t test). We also detected no differences between mutant

and control in the ratio of first inter-spike interval to the

average inter-spike interval during a stimulus epoch, ISI1
hISIi

(33% in control, 34% in mutant; p = 0.45, unpaired t test).

Finally, we studied the waveforms of individual APs.

Within each 500-ms stimulus epoch, the AP waveform of

each single cell was consistent from spike to spike, after

the first two spikes, provided that the cell was not in depo-

larization block (Figure 5 and Supplemental Discussion).

AP waveforms did vary with firing rate and with stimulus

intensity. After controlling for these parameters, average

AP waveforms still differed between mutant and control

iPSC-MNs. In the weak stimulus regime, where firing rate



Figure 5. Comparison of AP Waveforms
in Mutant and Control
(A and B) Average phase plots,�

dðDF=FÞ
dt vs DF=F

�
, from steps with

nine action potentials, for (A) control and
(B) SOD1 A4V cell lines. The first two spikes
are highlighted in blue, after which the cells
converged to a stable limit cycle.
(C and D) Average AP waveforms from all
stimuli, which produced (C) two and (D)
nine APs during a single stimulus epoch.
APs from stimuli during which the cell
entered depolarization block were
excluded. Spikes were aligned in time by
their peak and in DF=F by their pre-peak
minimum. Average waveforms from stimulus
epochs with different numbers of APs are
quantified in Table S2.
was proportional to stimulus strength, mutants had 10%

smaller AP peak amplitude than controls (p = 3.1 3 10�8,

linear model coefficient t test, significant after Holm-

Bonferroni multiple comparison correction; Figure 5 and

Table S2).

In accord with previous findings (Kiskinis et al., 2014),

we observed statistically significant morphological differ-

ences between the mutant and control MNs. The mutants

had a smaller soma and fewer projections than the controls

(Figure S6 and Supplemental Experimental Procedures).

This observation suggested that the changes in excitability

seen in the mutant cells might be a by-product of the

mutant line’s differences in morphology. We included

terms for soma area and ratio of soma area to whole-cell

area (‘‘soma fraction’’) in a logistic regression model for

the probability of depolarization block as a function of

firing rate. When trained on control data, the coefficients

on these morphological parameters were not significant

(p = 0.06 for soma area, p = 0.47 for soma fraction, separate

models, logistic regression coefficient t test). Whenmutant

data were controlled for these parameters, the difference

between mutant and control remained significant

(p = 1.43 10�4 for soma area, p = 1.23 10�4 for soma frac-

tion, logistic regression coefficient t test). Thusmorpholog-

ical parameters (soma area and soma fraction) did not

predict the probability of depolarization block either

within or between genotypes. While this analysis cannot

rule out possible contributions from other morphological
parameters, we focused subsequent analysis on electro-

physiological variables.

Simulations

We sought to relate the phenotypic differences and simi-

larities between SOD1 A4V mutant and control neurons

to hypotheses about underlying disease mechanisms.

While complex multi-compartment models of MNs have

been developed (Powers et al., 2012; Powers and Heck-

man, 2015), it is well established that voltage recordings

alone are insufficient to constrain the parameters of

such models (Brookings et al., 2014). Furthermore, consid-

ering the large cell-to-cell variability in the observed

firing patterns, a morphologically and molecularly

detailed model was deemed inappropriate. Instead, we

sought a parsimonious model that could account for mul-

tiple population-level observations with a small number

of parameters.

Previous studies have singled out potassium channels

in general (Kanai et al., 2006) and KV7 (KCNQ) channels

in particular (Wainger et al., 2014) as a target of investi-

gation in both SOD1 and C9ORF72 models of ALS, but

it is not clear how these mutations affect ion channel

expression or function. We asked whether changes in

Kv7 current alone could account for some or all of the

observed functional effects. We performed numerical

simulations of a minimal Hodgkin-Huxley-type model,

containing only a NaV channel, a fast KV channel, a
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 1999



Figure 6. Numerical Simulation of Firing Patterns with Variable Channel Levels
(A) Simulation (blue) and fluorescence trace (black) of a neuron showing tonic firing.
(B) Simulation (blue) and fluorescence trace (black) of the same neuron shown in (A) approaching the transition to depolarization block
under strong stimulus.
(C–E) Each trace shows the number of APs in a 500-ms interval as a function of the optogenetic stimulus strength (gm). Maximum
conductances of the indicated channels were varied from 0.67- to 1.5-fold basal level. (C) Variation in NaV level. (D) Variation in KV
(delayed rectifier) level. (E) Variation in KV7 level. The changes in the F-I curve that came with lower KV7 conductance phenotypically
matched the differences and similarities between SOD1 A4V and control neurons.
slow KV7 channel, and a channelrhodopsin (Powers

et al., 2012; Powers and Heckman, 2015). We varied the

model parameters systematically and studied the result-

ing simulated firing patterns using the same parameters

as for the experimental data.

The starting ion channel parameters were taken from

previous numerical simulations of a human MN (Powers

et al., 2012; Powers and Heckman, 2015), and the chan-

nelrhodopsin was modeled as a conductance with a

reversal potential of 0 mV and an opening time constant

of 1 ms. Following our experimental illumination proto-

col, simulations were runwith steps of increasingmaximal

channelrhodopsin conductance. To account for the capac-

itive load from passive membrane structures and to match

simulated firing rates to the range observed experimen-

tally, we increased the membrane capacitance beyond

the literature value (see Supplemental Experimental Pro-

cedures). The simulated cells showed stimulus-dependent

firing and depolarization block, clearly recapitulating the

main qualitative features of the data (Figure 6A). The
2000 Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018
experimentally recorded waveforms varied considerably

from cell to cell, so we focused on studying the depen-

dence of spiking properties on channel conductances

rather than on trying to match simulated and experi-

mental waveforms precisely.

We varied each conductance in the model to determine

its effect on low-stimulus excitability, threshold for depo-

larization block, maximum firing rate, and AP waveform.

Figure 6 shows simulated firing rate as a function of optoge-

netic stimulus strength, for a range of channel conduc-

tances bracketing the original model parameters. Decreases

in KV7 conductance increased low-stimulus excitability,

decreased threshold for depolarization block, decreased

spike height, and had no effect on maximum firing rate

(Table S3). Thus, remarkably, changes only in the KV7

conductance were sufficient to reproduce all the major

functional phenotypes and null results cataloged in our

Optopatch experiments. Neither variation in the NaV
conductance nor in the fast KV channel showed the correct

qualitative trends (Figure 6).



DISCUSSION

Our demonstration of optical electrophysiology recordings

in a delicate and complex human cellular preparation

opens the prospect to record large quantities of functional

data in this and other human models of neuronal disease.

Key to extracting meaning from these data is a statistically

robust analysis pipeline and comparisons with numerical

simulations at an appropriate level of detail.
Patch versus Optopatch

The optical and manual patch-clamp techniques offer

different tradeoffs in resolution and throughput, and thus

should be seen as complementary rather than competing

techniques. One must exercise caution in applying con-

cepts from conventional electrophysiology to Optopatch.

Principally, Optopatch and patch deliver different kinds

of stimulation. CheRiff is a conductance while electrical

stimulation is via a current source. CheRiff current reverses

directionwhen themembrane voltage crosses 0mV,while a

current clamp maintains constant current irrespective of

membrane voltage. In ourMN simulation, the dependence

of firing rate on stimulus strength and channel levels had

the same qualitative features for CheRiff stimulation as for

current injection. In other parameter regimes, however,

the two modes of stimulation induced strikingly different

firing patterns. Spike trains induced optogenetically may

be a more faithful indicator of in vivo firing because AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

receptors are a conductance with reversal potential

of �0 mV, not a current source. One can simulate mem-

brane conductances with dynamic patch clamp (Prinz

et al., 2004), but this technique is not widely used.

Optical and electrical recordings also are subject to

different types of noise and artifacts (Cohen and Venkata-

chalam, 2014). Patch-clamp recordings remain the gold

standard for accuracy and time resolution: one can record

submillivolt changes in membrane voltage on a submilli-

second timescale. One can also use a voltage clamp to

dissect the contributions of distinct conductances to mem-

brane currents. However, patch-clamp measurements are

slow and laborious (four cells per hour in the present exper-

iments), increasing the risk of statistical artifacts from small

sample sizes in highly heterogeneous stem cell-derived cul-

tures. Furthermore, in themost commonly used whole-cell

configuration, manual patch clamp risks dialyzing cyto-

plasmic contents. Manual patch-clamp measurements

also lack spatial resolution and are exceedingly difficult to

apply to a single cell on successive days.

Optopatch has lower temporal resolution (1–2 ms) and

lower precision than patch clamp. The signal-to-noise ratio

in the optical recordings was 13.0 ± 6.7 (mean ± SD), corre-
sponding to a noise level of approximately 5.2 mV in a

500-Hz bandwidth. The lower signal-to-noise ratio relative

to published results in primary rodent neurons (Hochbaum

et al., 2014) was due to a smaller soma size and lower Opto-

patch expression in the iPSC-derived neurons. Cell-to-cell

variations in QuasAr2 expression level prevented assign-

ment of absolute voltage values to fluorescence measure-

ments. Thus, Optopatch measurements are most useful

for determining spiking statistics and for examining AP

waveforms, and at present less so for quantifying sub-

threshold events or absolute voltage values.

Optopatch has considerably higher throughput than a

manual patch clamp (34 cells per hour in the present

experiments). Wide-field imaging systems could poten-

tially increase this throughput considerably (Hochbaum

et al., 2014). Although not used here, Optopatch measure-

ments can, in principle, be readily combined with genetic

or immunohistochemical targeting with cell-type-specific

markers. Measurements targeted to MNs (e.g., via HB9-Cre

[Peviani et al., 2012] or post-measurement HB9 staining)

are a natural extension of the work. Optopatch can also

probe spatial relations of electrical activity, both within

and between cells.

Neuronal Excitability in ALS

Our simple computational models showed non-mono-

tonic dependence of firing rate on stimulus strength in all

cases, consistent with our data. Variations in KV7 currents

led to firing rate curves that crossed each other. Together,

these observations show that ‘‘excitability’’ is not a well-

defined attribute of a neuron, but rather depends on the

magnitude of the stimulus strength. In our data, in both

the mutant and controls cells with a higher spontaneous

rate were more likely to show a decrease in firing under

strong stimulus: the odds of entering depolarization block

increased by 34% with every 1-Hz increase in spontaneous

rate (p = 0.005, logistic regression coefficient t test) in con-

trol and 49% per Hz in mutant (p = 0.0004). Thus neurons

that appeared hyperexcitable under weak or zero stimulus

tended to appear hypoexcitable under strong stimulus.

One should therefore use caution in speaking of hyper- or

hypoexcitability as intrinsic neuronal properties.

These observations also highlight the importance of

analyzing neuronal recordings at the single-cell level rather

than simply looking at aggregate population-level statis-

tics. The population-average curves of firing frequency

versus stimulus strength may be strikingly different from

the curves for every individual neuron. Due to the non-

linear dependence of firing frequency on ion channel

levels, efforts to fit the population-average data may lead

to incorrect mechanistic conclusions.

By recording data in two pairs of mutant and genome-

corrected lines, we can compare the effect size due to the
Stem Cell Reports j Vol. 10 j 1991–2004 j June 5, 2018 2001



SOD1 A4V mutation versus the effect size due to line-to-

line differences (39b-Cor versus RB9d-Cor). In our record-

ings, the line-to-line differences in firing rate were

comparable in magnitude with the difference between

mutant and corrected within each line (Figure S5). At pre-

sent it is not known whether these line-to-line differences

reflect underlying genetic heterogeneity or epigenetic

effects reflecting the different histories of the iPSC lines.

Resolving that questionwould require comparisons ofmul-

tiple lines derived from the same individuals, as well as

lines derived from different individuals. Nonetheless, these

results highlight the importance of making matched

isogenic comparisons when looking for mutation-associ-

ated phenotypes at the level of individual lines.

The pathways by which mutations in ALS-causing genes

lead to a change in neuronal excitability remain unknown.

The KV7 potassium channel has recently emerged as a po-

tential therapeutic target and is the subject of an ongoing

clinical trial of retigabine for ALS (McNeish et al., 2015).

While expression profiling did not identify effects of the

SOD1 A4V mutation at the transcriptional level (Kiskinis

et al., 2014), there aremany post-translationalmechanisms

for regulating the KV7 current. This channel has multiple

interaction partners (Delmas and Brown, 2005), is regu-

lated by PtdIns(4,5)P2 (Suh and Hille, 2008), and is redox

sensitive (Gamper et al., 2006). Thus defects in any of these

interaction partners, in lipid metabolism, or in redox ho-

meostasis could contribute to excitability defects. Recently,

deficits in trafficking of RNA granules have been found in a

TDP43 model of ALS (Alami et al., 2014). These findings

provide a plausible mechanism for proteostatic deficits in

ALS, including deficits in ion channels.

In a mutant C9ORF72 model of ALS, Sareen et al. (2013)

reported hypoexcitability of the mutants relative to con-

trols. However, the previously published plots of firing fre-

quency as a function of stimulus strength (Figures 3H and

S12 of Sareen et al.) resemble our data showing depolariza-

tion block at strong stimulus (Figures 3B and 3C). Although

we did not probe the C9ORF72 model, these observations

raise the intriguing possibility that loss of KV7 conductance

could provide a common mechanism across genotypes.

The sufficiency of a KV7 deficit to account for both hyper-

and hypoexcitability phenotypes cannot rule out other

possible contributions to the electrophysiology, including

other ion channels, shifts in channel kinetics or gating

thresholds, and shifts in cellular morphology, resting po-

tential, or ion channel spatial distribution.

The iPSC-MNs studied here represent an immature

developmental state, while ALS typically strikes in adult-

hood. Whereas the disease-causing mutation is present

throughout the life of the patient, its effect is clearly age

dependent. It is not known whether time in vitro is a real-

istic proxy for chronological age in vivo and, if so, the rela-
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tive scaling of these timelines. Thus, while time-course data

in vitro may yield interesting changes in function or

physiology, it is not clear whether such data provide infor-

mation relevant to age-related processes. Despite these

limitations, functional optogenetic screening has potential

uses in identifying diseasemechanisms, testing prospective

therapeutics, and stratifying patients.
EXPERIMENTAL PROCEDURES

Cell Culture
All cell cultures were maintained at 37�C and 5% CO2. Cells tested

negative for mycoplasma contamination. Pluripotent stem cells

were grown on Matrigel (BD Biosciences) with mTeSR1 medium

(STEMCELL Technologies). Culture medium was changed every

24 hr and cells were passaged byDispase (Gibco) or Accutase (Inno-

vative Cell Technologies) as required.

Motor Neuron Differentiation
Stem cell cultures were differentiated into motor neurons as previ-

ously described (Kiskinis et al., 2014). In brief, iPSCs were dissoci-

ated to single cells and plated in suspension in low-adherence

flasks (400 k/mL), in mTeSR medium with 10 mM ROCK inhibitor.

Medium was gradually diluted (50% on day 3 and 100% on day 4)

to knockout serum replacement (KOSR) (DMEM/F12, 10% KOSR)

between days 1 and 4 and to a neural induction medium

(DMEM/F12 with L-glutamine, non-essential amino acids

[NEAA], 2 mg/mL heparin, N2 supplement [Invitrogen]) for days

5–24. From days 1–6 cells were cultured in the presence of 10 mM

SB431542 (Sigma-Aldrich) and 1 mM dorsomorphin (Stemgent),

and fromdays 5–24with 10ng/mLbrain-derived neurotrophic fac-

tor (BDNF; R&D Systems), 0.4 mg/mL ascorbic acid (Sigma), 1 mM

retinoic acid (Sigma), and 1 mM Smoothened agonist 1.3 (Calbio-

chem). On day 24 floating cell aggregates were dissociated to single

cells with Papain/DNase (Worthington Bio) and plated onto poly-

D-lysine/laminin-coated dishes for electrophysiological analysis.

Once dissociated, MN cultures were fed every 2–3 days with

complete neurobasal medium (neurobasal with L-glutamine,

NEAA, Glutamax, N2, and B27), with 10 ng/mL BDNF/ciliary neu-

rotrophic factor/glial cell-derived neurotrophic factor (R&D) and

0.2 mg/mL ascorbic acid (Sigma).

Gene Editing
Correction of the SOD1 A4Vmutation in the ALS patient iPSC line

RB9d was performed using ZFN-mediated targeting as described

previously (Kiskinis et al., 2014).

Electrophysiology
Measurements were conducted in Tyrode’s solution containing

125 mM NaCl, 2.5 mM KCl, 3 mM CaCl2, 1 mM MgCl2, 10 mM

HEPES, and 30 mM glucose (pH 7.3) and adjusted to 305–310

mOsm with sucrose. Prior to imaging, neurons were incubated

with 5 mM all-trans retinoic acid for 30 min and then washed

with Tyrode’s solution.

Synaptic blockers were added to the imaging medium for mea-

surements of single-cell electrophysiology. The blockers comprised



10 mM NBQX (Tocris), 25 mM D(�)-2-amino-5-phosphonovaleric

acid (Tocris), and 20 mM gabazine (SR-95531; Tocris). Patch-clamp

data were used if and only if access resistance was <25MU, and did

not vary over the experiment. Recordings were terminated if mem-

brane resistance changed by >10%. Experimentswere performed at

23�C under ambient atmosphere.
Optopatch Recordings
Cells were imaged on a custom-built epifluorescence inverted mi-

croscope. Imaging experiments were conducted in Tyrode’s buffer

(pH 7.3). Excitation of QuasAr2 was via a 500-mW 640-nm diode

laser (Dragon Lasers), which provided a field of view of 31 3

37 mm, with an intensity at the sample of 800W/cm2. Blue illumi-

nation from a 50-mW 488-nm solid-state laser (Coherent OBIS)

was modulated by an acousto-optical tunable filter (Gooch and

Housego) to control timing and amplitude of the optogenetic stim-

ulation. The blue and red beams were then combined and imaged

onto the sample through the objective lens. Images were collected

with a 603water objective (Olympus, numerical aperture 1.2) and

imaged onto a scientific CMOS camera (Flash 4.0, Hamamatsu).

Data were collected at a frame rate of 500 Hz. Custom code written

in LabView (National Instruments) controlled the hardware.

The stimulation protocol consisted of:

1. 10 s of continuous red light to measure spontaneous firing

2. 50 ms with red light only

3. 500 ms with red and blue light to stimulate firing

4. 500 ms with red light only

5. 5 s with no light for cell recovery

Steps 2–5 were repeated 8–10 times with increasing intensities of

blue light.

Procedures for immunocytochemistry, virus production, gene

delivery, data analysis, and simulation are described in detail in

Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Discussion,

Supplemental Experimental Procedures, six figures, and three ta-

bles and can be found with this article online at https://doi.org/

10.1016/j.stemcr.2018.04.020.
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Figure S1. Characterization of human motor neurons derived from iPSCs.  Related to Fig. 1. (A) ALS 
patient-iPSC lines and isogenic controls used in this study.  (B) Sequencing chromatographs of exon 1 of 
SOD1 in patient line RB9d before and after gene-targeting demonstrate the successful correction of the 
A4V mutation. Editing was performed using Zinc Finger Nucleases as described previously (Kiskinis et al., 
2014).  (C) Immunocytochemistry for a MN marker (ISL1/2), a pan-neuronal marker (MAP2) and a 

nuclear marker (DAPI).  Scale bar 50 m.  (D) Quantification of MN populations.  Error bars represent 
standard deviation of the percentage of ISL1/2+ cells from 4 images from 1 differentiation (SOD1 A4V: n 
= 407 MAP2+ cells; Corrected: n = 291 MAP2+ cells).  (E) Analysis of previously published RNA-Seq data 
from iPSC-derived HB9+ MNs purified via FACS (Kiskinis et al., 2014; GEO entity: GSE54409).  These cells 

expressed CAMK2, HB9, TUJ1 and CHAT, while the glial marker GFAP and the interneuron marker 
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GAD1 were absent.  (F) Immunocytochemistry to detect the selectivity and specificity in MNs of 

lentivirally delivered constructs with the CamKII promoter.  Images show MN cultures infected with 

lentivirus containing CamKII-driven eGFP.  Cells were labelled by immunocytochemistry with 

antibodies for ISL1/2 and eGFP, and DAPI; scale bar 30 M.  (G) Quantification of images as in (E).  89% 
of eGFP+ cells were also ISL+.  75% of all ISL+ MNs were also eGFP+.  Error bars represent s.e.m. from 42 
images taken from 2 independent differentiations, n = 1147 ISL+ human iPSC-MNs. 
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Figure S2.  Validation of Optopatch measurements in iPSC-MNs.  Related to Fig. 2. (A-E) Effect of 
Optopatch expression on baseline electrophysiology.  Comparisons between iPSC-MNs expressing no 
lentivirus, Optopatch constructs, or an eGFP control showed no significant differences between 
Optopatch and eGFP expression in (A) membrane resistance, (B) membrane capacitance, (C) rheobase 

current, (D) resting potential, and (E) action potential initiation threshold (See Table S1).  The CaMKII 
promoter targeted expression (of either eGFP or Optopatch) to more mature, and hence larger MNs (Prè 
et al., 2014), leading to smaller membrane resistance and larger membrane capacitance compared to 
non-transduced cells.  Error bars represent s.e.m..  Measurements were on n = 10 – 14 cells per 
condition.  (F – H) Comparison of spiking parameters in iPSC-MNs expressing either Optopatch 
constructs or an eGFP positive control, as recorded by manual patch clamp. Current was injected in 500 
ms pulses of nineteen amplitudes (5 pA to 95 pA; n = 8 39b-Cor cells with eGFP, n = 15 39b-Cor cells 
without Optopatch, n = 9 39b cells with eGFP and n = 9 39b cells with Optopatch).  (F) Within each 
genotype, cells that expressed eGFP and those that expressed Optopatch had indistinguishable average 
action potential amplitude (p = 0.90 for 39b, p = 0.36 for 39b-Cor, unpaired t-test).  (G) The cells reached 
indistinguishable maximum firing rates (p = 0.50 for 39b, p = 0.49 for 39b-Cor, unpaired t-test). (H) The 
width of the spikes at rheobase was indistinguishable (p = 0.85 for 39b, p = 0.29 for 39b-Cor, unpaired t-
test).  (I) Comparison of action potential width measured optically vs. electrically.  Optical 
measurements reported an AP width that was greater than the electrically recorded width by 1.8 ± 
1.1 ms (mean ± s.d.; n = 148 spikes, 4 cells). 
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Figure S3. Data pipeline for image segmentation and spike parameterization.  Related to Fig. 2. 
Metadata from each experiment and sub-experiment is created using a graphical user interface. The 
hierarchically organized metadata is then flattened into a matrix listing each recording and its associated 
metadata. This organization facilitates parallel analysis on a computer cluster. In the first stage of 
analysis, movies are translated into a set of fluorescence traces via image segmentation; morphological 
and expression level measurements are also recorded. Summary figures of each movie’s analysis are 
created and data from each movie’s analysis is saved individually. The metadata is then broken up by 
cell (rather than by movie) and sent to the parameter extraction pipeline which again is parallelized. In 
this stage, each cell’s fluorescence trace is loaded and parameterized. A summary figure is created and 
again the results are saved individually. The final list of cells and their parameterizations can then be 
loaded for further analysis. The entire pipeline is implemented in MATLAB and run on the Odyssey 
Research Computing cluster at Harvard University. 
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Figure S4. Data reduction and parameterization of spiking waveforms. Related to Fig. 2. (A) Fluorescence 
traces were temporally filtered with a specialty ordinal filter to separate spikes from baseline (window 
size of 20 ms, 40th percentile taken as baseline estimate).  (B) A threshold for spike identification was set 
based on an estimate of the noise.  (C – F) Information-theoretic determination of optimal 
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parameterization of optically recorded spike waveforms.  We created a hierarchy of models with 
different number of parameters; adding more parameters increased flexibility but decreased robustness 
to noise. The least complex model of the AP downstroke consisted of two lines meeting at a point. The 
next model added one spline joining the two lines.  The most flexible model contained two splines. (C) 
Fit of each model to an AP waveform recorded by manual patch clamp.(Bean, 2007) (D) Fit of each 
model to single-trial Optopatch data. Corrected Akaike’s information criterion (AICc) balances the 
quality-of-fit with the complexity of the model. Lower scores indicate a better model for the given data. 
In this example (as in 95% of tests), AICc was lowest for the least complex and most robust two-line 
model. (E) Parameterization of optically recorded action potential waveforms (F) and baseline 
waveforms.  (G) Final parameterization, consisting of the fitted baseline and action potential models. (H) 
Automated identification of soma (dark blue) and processes (cyan) calculated from the activity-based 
map of the single-cell profile. 
 

 
Figure S5.  Replication of core experimental results in two distinct isogenic pairs.  Related to Fig. 3. A) 
The 39b SOD1(A4V) line and its isogenic corrected pair.  B) The RB9d SOD1(A4V) line and its isogenic 
corrected pair.  As in the 39b cell line, the SOD1 (A4V) cells showed hyperexcitability under weak 
stimulus, but hypo-excitability under strong stimulus. 
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Figure S6. Morphological differences between control and SOD1 A4V motor neurons.  Related to Fig. 3.  
Images show (A) corrected control and (B) SOD1 A4V mutant iPSC-MN.  Fluorescence is from QuasAr2. 

Scale bars in (A) and (B) 20 m.  (C) Median fraction of the cell area occupied by soma (as opposed to 
dendrite) in the control and mutant iPSC-MNs; error bars show the 25th and 75th percentiles of the 
population. The difference between the two populations was significant to p = 1×10-10 (0.66 in control, 
0.72 in mutant, unpaired t-test). (D) Median size of the control and mutant cell somas, normalized to the 
population median; error bars show 25th and 75th percentile. The difference between the two 
populations was significant to p = 8×10-17 (1.11 a.u. in control, 0.84 in mutant, unpaired t-test).  (E) 
Difference in median CheRiff expression level between control and mutant cells, normalized to the 
whole population median. Error bars shows the 25th and 75th percentile. The difference between the two 
populations is significant (0.92 a.u. in control, 1.22 in mutant, p = 2×10-5, unpaired t-test).  In C – E, 
control n = 843 cells, mutant n = 331 cells. 
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  no virus Optopatch eGFP 

  mean 
std. 
dev. mean 

std. 
dev. mean 

std. 
dev. 

Rm (M)  1829  374  1345  339  1284  375  

Cm (pF)  14.9  7.1  37.0  17.5  37.0  8.5  

Resting potential (mV) -46.2  3.0  -46.6  6.9  -45.0  6.4  

Threshold potential (mV) -28.9  5.4  -30.2  3.6  -27.3  3.4  

Rheobase (pA) 9.2  4.9  7.8  4.1  8.7  1.7  

 
Table S1.  Comparison of electrophysiological parameters of iPSC-MN infected with either no virus, 
CaMKIIa-driven Optopatch, or CaMKIIa-driven eGFP.  The data are shown graphically in Fig. S2. 
 
 

 
Table S2. Changes in action potential waveform parameters between SOD1 A4V and genome corrected 
controls (see Figure S5 for definitions). We performed a linear regression to determine the factors that 
influenced average waveform parameters for each stimulus and each cell, up to the stimulus at which 

SOD1 A4V – Corr. Difference 

Change with Number of APs per Stimulus 

Change with Increasing Stimulus at Maximum Firing Rate  
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the maximum firing rate first occurred.  The control parameters were: cell line (mutant or control, a 
categorical variable), number of action potentials in the stimulus epoch, stimulus strength (to control for 
blue light-induced photoartifacts), and dish recording day (to control for day-to-day variability).  Each 
column of the SOD1 A4V - Corr. Difference table lists the regression coefficient for genotype (mutant vs. 
control), the percent change relative to the control’s average, and the p value from the regression 
coefficient t-test.  Coefficients are highlighted in olive-green which are significant to an α = 0.01 
threshold after Holm-Bonferroni multiple hypothesis correction (9 hypotheses from the 9 parameters). 

 

 
 
Table S3. Change in action potential waveform in numerical simulations with increases in channel 
conductance. For each channel or set of channels, simulations were run with a range of conductances 
and a range of optogenetic stimulus strengths corresponding to changes in channelrhodopsin 
conductance (𝒈𝒎, see Fig. 6).  The simulated voltage trace was down-sampled to match the data 
acquisition frame rate (500 Hz), and action potentials were fit with the same set of parameters used in 
the fluorescence data. We then fit a linear regression on the average waveform parameter from each 
step with control variables for the channel conductance and the input conductance. Rows of the table 
show the regression coefficient (in units of waveform parameter per base simulation conductance) for 
variations in KV7, delayed rectifier KV, and NaV. The coefficient as a percentage of the base simulation 
average is shown in parenthesis. As another indicator of the strength of the relationship we also show 

the coefficient as a fraction of its standard deviation, 𝛽 (we can write 𝛽 =
𝑇

√𝑁−3
 where 𝑇 is the t-statistic 

and 𝑁 − 3 is the number of degrees of freedom in our regression). 
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Supplemental Discussion 

 

Optical crosstalk in Optopatch measurements 

The fluorescence signal showed a slow increase in baseline during each optical stimulus epoch 

(Fig. 1D). This increase did not occur in patch clamp recordings with optical stimulation, indicating that 

the increase did not correspond to a real increase in membrane potential. The increase also did not 

occur in optical recordings with stimulation via current injection from the patch pipette, indicating that 

the increase was not a slow response of the voltage indicator to membrane depolarization. The increase 

only occurred with simultaneous blue light stimulation and fluorescence imaging. These observations 

implied that the increase in baseline fluorescence was due to blue light photo-production of a 

fluorescent product.  This effect was not observed in prior experiments with rodent primary neurons 

due to higher CheRiff expression in the rodent cells (and consequently lower blue light intensities), and 

better membrane trafficking of QuasAr2 in the rodent cells. 

 

Spike parameterization and model reduction 

  In functional fitting, choosing a good functional form is critical. On the one hand, it must be 

capable of fitting the data well and providing a meaningful description of relevant parameters; on the 

other hand, it must be robust and avoid over-fitting. We first attempted to fit action potential data with 

exponential rise and decay functions, but the fit was often qualitatively poor. We found more success 

with combinations of lines and splines. For instance, to describe the shape of an action potential after its 

peak, one line could be used to fit the fast action potential down-stroke, a connected spline segment to 

model the after-hyperpolarization, and then another connected line to fit the return to baseline (Fig. 

S4). 

 To address the problem of robustness and overfitting we employed an information-theoretic 

model reduction scheme. Our line-spline-line functions lent themselves well to the creation of a 

hierarchy of models with varying degrees of complexity (Fig. S4). We tested three models, with zero, 

one, or two splines between two lines. The point at which each segment (line or spline) joined with the 

next was allowed to vary along both the F and time axes, but continuity between segments was 

enforced. These models had four, six and eight parameters respectively: the slope of the two lines and 

position of one, two, or three joining points.  

 To balance the tradeoff between quality-of-fit and model complexity we employed corrected 

Akaike information criteria (AICc).(Burnham and Anderson, 2003) This criterion enabled us to choose the 

model with the best level of complexity for our data, based on how closely the data matched the model, 

how many parameters must be fit in the model, and how many data points are being fit.  

 Our likelihood function assumed Gaussian noise in F; the width of the distribution was 

estimated by subtracting a median filtered copy of each cell’s recording (to remove baseline 

fluctuations) and then taking the 50th minus the 16th percentile in the residual. We fit a sample of 200 

action potentials randomly selected from 50 cells using the three models. Although these functional 

models describe action potential shape well both pre- and post-peak, we focused on post-peak since 

after-hyperpolarization is in general more difficult to describe. The results from AICc showed that the 

simplest model (0 splines) was optimal in 95% of sample action potentials, versus 3% for the one-spline 

model and 2% for the two-spline model. We therefore used the simplest model.  We fit the pre- and 
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post-peak sections of each action potential separately to a pair of lines which could vary in their slope 

and the point at which they met (Fig. S4). We called this model a “variable hinge.”   

 

AP waveform statistics 

 We studied action potential waveforms in the pre-depolarization block regime. Here, after the 

first two spikes upon stimulus onset, cells typically settled into a consistent limit cycle with little change 

in action potential waveform over the course of the stimulus (Fig. 5). We therefore averaged together 

the parameters of the waveforms of each action potential after the first 100 ms of stimulation.  

As action potential firing rate increased, action potential waveforms changed. We constructed a 

linear model for each average action potential waveform parameter from each step stimulus, with a 

control coefficient for the number of action potentials in the step from which the waveform was taken. 

To control for any residual variation caused by blue light crosstalk, we also included a control coefficient 

for the stimulus number in our linear model. To study differences between control and mutant lines, we 

added a categorical variable to the model for cell line (this variable was non-interacting with the others). 

The model was fit to a dataset containing waveform parameters from every step in every cell up to and 

including the first step at which the maximum firing rate was reached. In reporting parameters that 

changed significantly between the two populations, we applied the Holm-Bonferroni method to correct 

for multiple hypothesis testing (see Methods). Regression coefficients and p values are presented in 

Table S2. 

 We compared the set of differences and similarities between action potential waveforms from 

mutant and control cells to other axes of variability between action potential waveforms. The set of 

genotype-dependent changes was different from those which occurred as the firing rate increased 

(Table S2). Genotype-dependent changes were nearly identical, however, to the set of changes which 

occurred as one moved from the first stimulus at which the maximum firing rate was reached to the last 

stimulus at which the maximum firing rate occurred before depolarization block (Table S2). This 

observation suggests that the differences in waveform between control and mutant cell lines may come 

from the same mechanism that produced differences in the probability of depolarization block. 

 

Supplemental Experimental Procedures 

 

Immunocytochemistry  

Cell cultures were fixed in 4% PFA for 15 min at 4 °C, permeabilized with 0.2% Triton-X in PBS for 2 hours 

and blocked with 10% donkey serum in PBS-T (Triton 0.1%). Cells were then incubated in primary 

antibody overnight and secondary antibodies for 1 hour in 2% donkey serum in PBS-T after several 

washes in between. DNA was visualized by a Hoechst stain. The following antibodies were used: Islet1 

(1:200, DSHB, 40.2D6), TUJ1 (1:1000, Sigma, T2200), MAP2 (1:10000, Abcam ab5392), GFP (1:500, Life 

Technologies, A10262). Secondary antibodies used (488, 555, 594, and 647) were AlexaFluor (1:1000, 

Life Technologies) and DyLight (1:500, Jackson ImmunoResearch Laboratories).  

 

Virus production 

Lentivirus was produced in HEK293-T cells from previously described plasmids(Hochbaum et al., 2014) 

DRH334 (CamKII-QuasAr2, Addgene plasmid 51692) and DRH313 (CamKII-CheRiff, Addgene plasmid 
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51693). HEK293-T cells were grown in 15 cm dishes to ~50% confluence at 37 °C and 5% CO2. 

Transfection of each gene, as well as packaging and coat proteins (psPAX2 and VSVg, respectively), was 

performed with poly-ethylenimine (PEI). For each 15 cm dish, a cocktail of 22 g psPAX2, 16 g gene, 

and 10 g VSVg was suspended in 500 L of Optimem. PEI was added to the Optimem mixture (140 L 

from a 1 mg/mL stock) and vortexed briefly to mix. The mixture was incubated at room temperature for 

15 minutes. After incubation, 25 mL of pre-warmed DMEM was added to the DNA/PEI mixture and 

gently mixed. Medium was aspirated off the 15 cm plate and the DNA/PEI/DMEM mixture was added 

gently onto the cells and the plate was returned to the incubator. After 48 hours, the supernatant was 

collected and spun for 5 minutes at 1200 g to pellet any collected cells. The supernatant was then 

filtered through a 0.45 m filter, aliquoted into 1.5 mL volumes, and frozen at -80 °C. 

 

Gene delivery 

Approximately 40,000 cells of differentiated motor neuron cultures were plated on poly-D-

lysine/laminin-coated 35 mm glass bottom dishes (MatTek) for Optopatch recordings. Each dish was 

transduced with lentiviruses 7-10 days before scheduled recording times. A mixture of 200 L of 

QuasAr2 and 70 L of CheRiff lentiviruses were combined with 200 L of the complete neurobasal 

medium, added onto the cells and left overnight in the incubator. The next morning the virus mixture 

was removed, plates were washed and replenished with fresh, complete neurobasal medium.  

 

Data analysis 

Data cleaning 

 Under external synchronous triggering, the Flash 4.0 camera rounds the exposure time to the 

nearest 10 s.  This variation in exposure time is inconsequential for long exposures, but led to spurious 

noise of 0.5% at an exposure time of 2 ms, due to the asynchronicity of the computer clock triggering 

the camera and the camera’s internal clock.  We used the whole-field image intensity to estimate this 

rounding error and then divided the pixel values in each frame by the estimated exposure time to 

correct for the variation in exposure time. 

 

Image processing and segmentation 

 Our image segmentation pipeline was adapted from that of Mukamel and coworkers (Mukamel 

et al., 2009) and consisted of pre-process filtering, PCA-ICA in the time domain, and post-process 

statistical analysis.  A key technical challenge in the analysis was that each pixel had a low signal-to-noise 

ratio (SNR) due to the short exposure time (2 ms) and the low intrinsic brightness of QuasAr2.  Noise 

from neighboring pixels was uncorrelated, while true signals from neighboring pixels tended to be 

correlated because each cell extended over many pixels.  We thus started the analysis by performing 

median spatial filtering to improve the per-pixel signal-to-noise ratio.  This procedure also removed the 

effect of sparse bad pixels in the camera image sensor. 

 A second key challenge was that the dominant fluorescence dynamics corresponded to (a) 

whole-field photobleaching, and (b) stepwise increases and decreases in whole-cell fluorescence 

triggered by the blue stimulus illumination.  Both of these sources of temporal variation were highly 

correlated between cells and thus were not good signals for activity-based image segmentation.  Single-
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cell spiking patterns, however, were statistically independent between cells and provided a robust 

segmentation signal.  We therefore applied high-pass filtering in the time domain with a mean-

subtracted Gaussian filter set to accentuate action potentials (window size of 20 ms, Gaussian with 

standard deviation of 3 ms).  

 A third key challenge was that the signals of interest were sparse in space and time, while the 

noise was broadly distributed.  The PCA-ICA protocol involved calculations of cross-correlation functions.  

Inclusion of noise-dominated elements of the data in these calculations led to increases in noise without 

improvements in beneficial signal.  We therefore chose only to apply PCA-ICA to the region in time 

corresponding to our staircase stimulation, rather than including the spontaneous imaging region, since 

most activity occurred during stimulation.  

 Using the notation 𝐴𝑥,𝑦 for matrices where x and y represent the domains a matrix maps from 

and to respectively, these last two steps translated a movie matrix 𝑀𝑟,𝑇 (where r is the pixel domain and 

T is the time domain) into a high-pass-filtered and abbreviated movie matrix 𝐻𝑟,𝑡 (where t is the 

abbreviated time domain). 

 There were fewer frames than pixels in our movies, so we employed time-domain-covariance 

matrix PCA to reduce dimensionality of the data. The covariance matrix 𝐻𝑟,𝑡
˕𝐻𝑟,𝑡 was decomposed into 

its eigenvectors 𝐸 with eigenvalues in the diagonal matrix 𝐷; the twenty with the largest eigenvalues 

were retained to form the eigenvector/principal component matrix 𝐸𝑡,𝑝
˕ (where p is the principal 

component index). We applied ICA to the matrix 𝐸𝑡,𝑝
˕ using the FastICA algorithm with a symmetric 

approach. The expected distribution of fluorescence values for each pixel was a Gaussian (noise) with a 

one-sided long tail (action potentials). This distribution has high skew and so we employed the function 

𝑔(𝑢) = 𝑢3 as a contrast function.(Hyvärinen and Oja, 2000) Six independent components, 𝐶𝑡,𝑣, were 

calculated, but these did not correspond to true neuronal activity waveforms because they were 

extracted from the temporally high-pass-filtered movie. 

 ICA produced a separation matrix 𝑆𝑝,𝑣 which mapped from the principal component domain to 

the ICA temporal voices domain (v), i.e. 𝐶𝑡,𝑣 = 𝐸𝑡,𝑝𝑆𝑝,𝑣,  We generated a spatial filter 𝐹𝑟,𝑣 which mapped 

from the spatial pixel domain to the spatial voices domain: 

     𝐹𝑟,𝑣 = 𝐻𝑟,𝑡𝐸𝑡,𝑝𝐷
−1𝑆𝑝,𝑣. 

Application of this filter to each frame of the original movie provided a final fluorescence trace, T𝑣,𝑇, for 

each cell in the movie, i.e. T𝑣,𝑇 = 𝐹𝑟,𝑣
˕𝑀𝑟,𝑇.   

 Once the traces were constructed, we performed spike finding (see below). Traces with five or 

fewer spikes in the entire recording were considered to be either noise or inactive cells and were 

discarded. A common failure mode for ICA produced traces with positive spikes on top of an inverted 

baseline. These were also automatically discarded by checking for negative changes in baseline during 

high stimulus. 

 We also extracted an image of each cell, 𝐼𝑟,𝑣, by cross-correlating the high-pass-filtered time-

trace of each cell with the high-pass-filtered movie, i.e.  𝐼𝑟,𝑣 = 𝐻𝑟,𝑡𝐶𝑡,𝑣.  Cells may be partially 

overlapping but they are still spatially sparse in the sense that they typically only cover a relatively small 

region of the whole frame.  The distribution of values in 𝐼𝑟,𝑣 comprised Poisson-distributed background 

noise, with a long tail corresponding to the cell.  We set a dynamic threshold of 1.8 times the estimated 

Poisson parameter λ to determine which pixels were most likely to be on-cell. The final cell mask for a 
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given cell 𝑣𝑗 was then given by 𝑅𝑟𝑖 ,𝑣𝑗 = I[𝐼𝑟𝑖 ,𝑣𝑗 > 1.8 ∗
(∑ 𝐼𝑟𝑘 ,𝑣𝑗
𝑟max
𝑘=1 )

𝑟𝑚𝑎𝑥
] where I is the indicator function 

and 𝑟𝑚𝑎𝑥  is total number of pixels. 

  

Morphological analysis and calibration of ∆F/F 

The PCA-ICA method described above produced traces which were scaled and offset versions of 

the true fluorescence trace; while this is acceptable for spike-counting, comparison of spike waveforms 

required an estimate of the underlying fractional change in fluorescence, ∆F/F.  To the extent that 

resting potentials were approximately the same between cells, ∆F/F provided a measure of relative 

changes in voltage and thus enabled comparisons of spike amplitude and after-hyperpolarization. 

A naïve algorithm would simply fit the clean but uncalibrated ICA-generated trace to a noisy 

trace with true ∆F/F generated from averaging the raw signal over the entire area of the cell. That is, we 

might take the average trace 𝐴𝑣𝑘,𝑇 = 𝑅𝑟,𝑣𝑘
˕ 𝑀𝑟,𝑇 for a given cell and scale the uncalibrated trace to 

match: T𝑣𝑘,𝑇
′

= �̂� T𝑣𝑘,𝑇 + �̂� where �̂�, �̂� = argmin𝑎,𝑏 (∑ (𝑎 T𝑣𝑘,𝑇𝑖 + 𝑏 − 𝐴𝑣𝑘,𝑇𝑖)
2𝑇𝑚𝑎𝑥

𝑖=1 ). Then the baseline 

(the F in  ∆F/F) would come from low pass filtering this new trace T𝑣𝑘,𝑇
′

, and spikes (the ∆F) would be 

measured relative to this baseline. The problem is that the average trace 𝐴𝑣𝑘,𝑇 may contain crosstalk 

from other cells. We therefore sought a better way to estimate an unbiased offset and amplitude for the 

fluorescence signal. 

 Instead of using the entire cell mask (𝑅𝑟,𝑣) to calculate  𝐴𝑣,𝑇, we identified spatial regions which 

were unobstructed by neighboring cells. For a cell indexed by 𝑣𝑘 we calculated the “pure” mask by 

excluding all the pixels at which other cells were present: 

𝑃𝑟,𝑣𝑘 = (1 − 𝑅𝑟,𝑣1) ⊙ (1 − 𝑅𝑟,𝑣2) ⊙…⊙ (1 − 𝑅𝑟,𝑣𝑘−1) ⊙ 𝑅𝑟,𝑣𝑘⊙ (1 − 𝑅𝑟,𝑣𝑘+1)  ⊙ …⊙ (1 − 𝑅𝑟,𝑣𝑚𝑎𝑥) 

where ⊙ represents elementwise multiplication. In certain rare cases a cell had no regions which were 

not shared by others. These cells were excluded. To further refine our mask, we identified those pixels 

within the pure region which matched the ICA-derived trace as closely as possible.  We first high pass 

filtered the movie  and the ICA-derived trace in the time domain with a mean-subtracted Gaussian filter 

set to accentuate action potentials (window size of 20 ms, Gaussian with standard deviation of 3 ms), 

giving the movie 𝑀𝑟,𝑇
𝑓
= 𝑃𝑟,𝑣

˕ 𝑀𝑟,𝑇⊗𝐺𝑇 and the trace 𝑇𝑣,𝑇
𝑓
= T𝑣,𝑇⊗𝐺𝑇 where⊗represents a 

convolution and 𝐺𝑇 represents the temporal filter. Following the maximum likelihood pixel weighting 

algorithm described in Kralj et al. (Kralj et al., 2012), we calculated for each pixel of the movie a set of 

coefficients describing the best fit (by a least squares error) of the ICA-derived trace to the pixel trace. 

The error on this best fit, normalized the variance of the pixel’s signal, gives an indicator of quality-of-fit: 

𝜁𝑟,𝑣𝑘 =
min𝑎,𝑏(∑ (𝑎 Tf𝑣𝑘,𝑇𝑖+𝑏−𝑀

𝑓
𝑣𝑘,𝑇𝑖

)
2𝑇𝑚𝑎𝑥

𝑖=1 )

∑ (𝑀𝑓𝑣𝑘,𝑇𝑖−
1

𝑇𝑚𝑎𝑥
∑ 𝑀𝑓𝑣𝑘,𝑇𝑖
𝑇𝑚𝑎𝑥
𝑖=1

)
2𝑇𝑚𝑎𝑥

𝑖=1

. Our final mask was then 𝑍𝑟𝑖,𝑣𝑘 =
1

∑
1

𝜁𝑟

{
1/𝜁𝑟𝑖 𝑃𝑟𝑖,𝑣𝑘 = 1

0 𝑃𝑟𝑖,𝑣𝑘 = 0
. At 

last, we can construct a new average trace: 𝐴′
𝑣𝑘,𝑇

= 𝑍𝑟,𝑣𝑘
˕ 𝑀𝑟,𝑇 for each cell and perform the fit 

�̂�, �̂� = argmin𝑎,𝑏 (∑ (𝑎 T𝑣𝑘,𝑇𝑖 + 𝑏 − 𝐴′𝑣𝑘,𝑇𝑖
)
2𝑇𝑚𝑎𝑥

𝑖=1 ) to obtain a trace with real fluorescence units, 

T𝑣𝑘,𝑇
′

= �̂� T𝑣𝑘,𝑇 + �̂�.    
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This fluorescence signal still contained artifacts from photobleaching. We estimated the 

photobleaching baseline using a filter that took the minimum in a sliding window of duration 1 s. 

Dividing the fluorescence signal by this photobleaching estimate at each time point provided our final 

∆F/F trace.  

 

Estimating morphological parameters 

We also used the cell mask, 𝑅𝑟 ,𝑣𝑗 , to study the structural morphology of each neuron (see 

Morphological analysis above). Soma and dendrite can be distinguished on the basis of how “thin” they 

are:  pixels on the soma are likely to be surrounded by other on-cell pixels, while pixels on the dendrite 

are more likely to be adjacent to off-cell pixels.  We applied morphological opening to the cell mask 

𝑅𝑟 ,𝑣𝑗  with a disk-shaped structuring element of diameter 5 pixels (~1 μm). This procedure removed thin 

areas like dendrites but also shrank the soma. Then we applied morphologically dilation with the same 

structuring element to restore the soma to its original size without restoring the dendrites.  The set of 

on-cell pixels which are not on the soma, S, gives the dendrites. We can now directly calculate the 

fraction of the cell that is soma as 
∑ 𝐼[𝑟𝑖∈𝑆]𝑟𝑖

∑ 𝐼[𝑅𝑟𝑖,𝑣𝑗=1]𝑟𝑖

 where 𝐼[… ] is the indicator function.   

 

Spike finding 

Identification of action potentials in fluorescence traces is complicated by two factors. The first is 

temporally uncorrelated photon shot noise; the second is low frequency changes in QuasAr2 baseline 

caused by photobleaching and blue light crosstalk. Action potentials lie at an intermediate frequency 

between these two noise sources. To deal with low frequency behavior we employed a specialty 

percentile filter to approximate the baseline fluorescence around each action potential. The filter 

identified those points in a sliding window (10 frames, 20 ms long) at the 40th percentile and assigned 

them baseline status. At points not assigned to the baseline, the local baseline value was inferred via 

linear interpolation. Signal height was then measured relative to this baseline. We found this method to 

be more robust than conventional linear filtering in regions of rapid baseline change: near stimulus 

onset, for example, it creates less “delay” in the baseline estimate while still enabling detection of action 

potentials. 

 To handle high frequency noise we set a dynamic threshold. The data were median-filtered 

(with a window of 400 ms) and the difference between the median and the 16th percentile (i.e. -1) was 

taken as a noise estimate. The threshold for spike detection in the high pass filtered data was set to five 

times this noise estimate. Our conclusions are robust to changes in this threshold multiplier value. Due 

to high frequency noise, occasionally the same spike crossed the threshold twice. To avoid double-

counting, we set a hard limit on the time between two spikes (no less than 18 ms). We found only a very 

small number of cases where cells approached this frequency limit.  

 Once spikes were identified, all further characterization was performed on the original 

(unfiltered) trace. 

 

Spike parameterization 
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Spike parameterization is illustrated in Fig. S4 and the approach is justified in Supplemental Discussion.  

After identifying spikes, we defined windows around each spike on which to perform a functional fit. In 

the case of an isolated spike, these windows were set to -90 ms and +100 ms from the spike peak. When 

another spike was within this window, the window was shortened to avoid the neighboring peak.  

Windows were also truncated to avoid intersection with the stimulus turning on or off. 

We fit the pre- and post-peak sections of each action potential separately with a piecewise 

function with two linear components (termed a “variable hinge”). The function is defined as 𝑓(𝑡) =

 [
𝑦 + 𝑚1(𝑡 − 𝑥) 𝑡 ≤ 𝑥
𝑦 + 𝑚2(𝑡 − 𝑥) 𝑡 ≥ 𝑥

. To perform the fit we employed a constrained gradient descent algorithm to 

minimize least-squares error. Strictly piecewise functions are difficult to optimize, so we approximated 

f(t) using logistic functions with fast time constants compared to the steepest action potentials. That is, 

we used 𝑓(𝑡) = 𝑦 + 𝑚1(𝑡 − 𝑥) (
1

1+𝑒
(𝑡−𝑥)
𝜏

) + 𝑚2(𝑡 − 𝑥) (
1

1+𝑒
(𝑥−𝑡)
𝜏

), where 𝜏 is the timescale of the 

logistic (set to 2 × 10−6 ms). The error function was a Euclidean norm. 

After this initial parameterization, we obtained a model for the baseline fluorescence. We first 

obtained an approximate estimate of the baseline by removing spikes from the fluorescence trace. 

Points between the pre- and post-peak time constants of an action potential (that is, near the peak) 

were removed and replaced with a local linear fit to the five points before and after these boundaries. 

The remaining baseline dynamics at stimulus on and stimulus off were fit separately with variable hinge 

models, as above. 

In the model of the upstroke, the time coordinate of the meeting point was interpreted as the 

rise time constant and the y coordinate relative to the local baseline was interpreted as the action 

potential initiation threshold. In model of the downstroke, the time coordinate of the joint was 

interpreted as the fall time constant and the y coordinate of the joint relative to the local baseline was 

interpreted as the after-hyperpolarization.  We defined action potential height (in units of F/F) as the 

distance from the peak of each action potential to the local baseline, divided by the baseline. After-

hyperpolarization was similarly defined as the distance from the F coordinate of the hinge point to the 

local baseline, divided by the baseline.   

 

Statistical methods 

In all tests p < 0.01 was considered statistically significant. Nonparametric tests were employed 

to characterize spontaneous firing rates, the distribution of which showed extreme non-normality. 

Unpaired t-tests were used to compare firing rates under stimulus, where the average number of action 

potentials produced was much higher than 0 and the statistics were more closely Gaussian. The Holm-

Bonferroni method was used to correct for multiple hypothesis testing where appropriate (in particular, 

choosing between different mechanisms for high-stimulus differences in firing pattern and identifying 

significant changes in action potential waveform parameters). 

A cell was considered to have entered depolarization block at a particular stimulus intensity if it 

fired its maximum number of action potentials in the previous stimulus epoch, its maximum number of 

action potentials was higher than three, and in the current stimulus epoch there were fewer action 

potentials and more than half of those action potentials occurred in the first half of the stimulus epoch.  

These constraints were constructed to avoid noise from random small differences in spike timing. Cells 
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which never fired more than three action potentials in a single stimulus were considered constitutively 

inactive and were excluded from further analysis.  

To construct a CheRiff level-insensitive measure of activity, we studied the probability of 

depolarization block at stimulus n + 1 conditional on a given number, Y, of action potentials at stimulus 

n. We call this probability P(blockn+1|Yn).  We started with a dataset consisting of all stimulus epochs 

from all cells which contained more than three action potentials and which occurred prior to either 

depolarization block or prior to the last (strongest) stimulus. To avoid sampling errors, we further 

excluded stimulus epochs which contained the maximum number of action potentials (for that cell) but 

which were not the first stimulus epoch to do so; these would otherwise create a distortion which would 

depend on whether the last epoch in which the maximum number of action potentials occurred was the 

last epoch overall.  

To calculate P(blockn+1|Yn), we employed a generalized linear regression with a binomial 

distribution and logit linker function, and used cell line (mutant or control), dish recording day (as 

described in the previous section), the number of action potentials in the current step, and the slope of 

the F-I curve prior to depolarization block as regression variables. The first two of these variables were 

treated as categorical. The slope of the F-I curve was included to account for marginal increases in the 

difference between effective stimulus conductance caused by variations in CheRiff. The given p values 

come from t-tests on these regression coefficients.  

To calculate a CheRiff-independent measure of the maximum firing rate, we took only those 

cells that entered depolarization block to ensure that the maximum firing rate was reached prior to the 

strongest optogenetic stimulus. We further excluded cells which fired at their maximum rate for more 

than one stimulus, again to avoid sampling error. We then fit a linear regression to the maximum firing 

rates with cell line and dish recording day as categorical (non-interacting) regression variables. The given 

p values come from t-tests on these regression coefficients.  

In our study of differences in action potential waveform, we first averaged together waveform 

parameters for all action potentials which occurred later than 100 ms after blue light onset within each 

stimulus epoch (during this initial period the rising baseline caused significant distortion). Our dataset 

then consisted of waveform parameters from each stimulus epoch that occurred at or before the first 

maximum in the F/I curve. We employed a linear regression with coefficients for cell line (mutant or 

control), dish recording day, the number of action potentials in the current step, and the stimulus epoch 

number (to account for residual distortions caused by blue light cross-talk). The first two variables were 

treated as categorical. The given p values come from t-tests on these regression coefficients. All 

statistical analysis was done in MATLAB. 

 

Simulations 

We evaluated a Hodgkin-Huxley type model with parameters taken from Powers and co-

workers’ simulations of human motor neurons (Powers and Heckman, 2015, Powers et al., 2012).  (The 

parameters described in the publications (Powers and Heckman, 2015, Powers et al., 2012) are incorrect 

and do not give spiking behavior; we instead used the parameters in the associated NEURON simulation 

files provided in ModelDB). The sodium channel activation parameters were adjusted to reflect the 

recording temperature in our protocol and the slow inactivation component was dropped for simplicity. 

𝐾𝑉-activation parameters in Powers et al. were taken from a study (Kuo et al., 2006) in which recordings 
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were performed at the same temperature as in our experiments, and so were not adjusted. Basal K𝑉7  

conductances were doubled from 1 mS/cm2 to 2 mS/cm2. 

 We used the Hodgkin-Huxley equation 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= 𝑔𝑁𝑎𝑚

3ℎ (𝐸𝑁𝑎 − 𝑉) + (𝑔𝐾𝑛
4 + 𝑔𝐾v7𝑝

4)(𝐸𝐾 − 𝑉) + 𝑔𝑚(𝐸0 − 𝑉) 

Here 𝑔𝑚 is a combination of basal leak conductance and CheRiff input conductance. The inactivation 

particles’ time evolution followed the form 

𝑑𝑞

𝑑𝑡
=  
𝑞𝑖𝑛𝑓 − 𝑉

𝜏𝑞
 

with the parameters 

 

𝜏𝑚 = max

(

  
 1

0.4
𝑉 + 33

1 − 𝑒𝑥𝑝 (−
(𝑉 + 33)
7.2

)
− 0.124

𝑉 + 33

1 − 𝑒𝑥𝑝 (
𝑉 + 33
7.2

)

, 0.02

)

  
 
𝑚𝑠 

𝑚𝑖𝑛𝑓 =

0.4
𝑉 + 33

1 − 𝑒𝑥𝑝 (−
(𝑉 + 33)
7.2

)

0.4
𝑉 + 33

1 − 𝑒𝑥𝑝 (−
(𝑉 + 33)
7.2

)
− 0.124

𝑉 + 33

1 − 𝑒𝑥𝑝 (
𝑉 + 33
7.2

)

  

𝜏ℎ = max

(

  
 1

0.03
𝑉 + 48

1 − 𝑒𝑥𝑝 (−
(𝑉 + 48)
1.5

)
− 0.01

𝑉 + 48

1 − 𝑒𝑥𝑝 (
𝑉 + 48
1.5

)

, 0.5

)

  
 
𝑚𝑠 

ℎ𝑖𝑛𝑓 = 
1

1 + 𝑒𝑥𝑝 (
𝑉 + 53
4

)
 

𝜏𝑛 = 1.4 +
11.9 ∙ 𝑒𝑥𝑝 (

𝑉 + 39
5.5

)

(1 + 𝑒𝑥𝑝 (
𝑉 + 39
5.5

))
2  𝑚𝑠

𝑛𝑖𝑛𝑓 =
1

1 + 𝑒𝑥𝑝 (−
(𝑉 + 25)
20

)
 

𝜏𝑝 = 6.7 + 
93.3

𝑒𝑥𝑝 (−
(𝑉 + 61)
35

) + 𝑒𝑥𝑝 (
(𝑉 + 61)
25

)
 𝑚𝑠 

𝑝𝑖𝑛𝑓 =
1

1 + 𝑒𝑥𝑝 (−
(𝑉 + 61)
19.5

)
 

where 𝑉 is in millivolts. The ionic reversal potentials were set to  

𝐸𝑁𝑎 = 50 𝑚𝑉; 𝐸𝐾 = −77 𝑚𝑉; 𝐸0 = 𝐸𝐶ℎ𝑅 = 0 
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where 𝐸0 is the leak reversal potential and 𝐸𝐶ℎ𝑅  is the channelrhodopsin (CheRiff) reversal potential. 

Our model was evaluated in MATLAB using ode15s to handle stiff behavior, with a relative tolerance of 

0.003. 

Hodgkin-Huxley-type equations model a differential patch of membrane.  We sought to account 

for the effects of variations in cell size and morphology without creating a full compartment or cable 

model.  Since the active channels involved in action potential production are localized, an increase in cell 

size can produce an increase in total capacitance without a proportional increase in total active channel 

conductance. We therefore allowed the lumped capacitance 𝐶𝑚 to be a tunable parameter and set it to 

produce maximum firing rates in the range of those seen experimentally (a maximum firing rate before 

depolarization block of 10-20 action potentials within a 500 ms stimulus); in the simulations shown, it is 

20 
𝜇𝐹

𝑐𝑚2
 .  This represents an effective capacitive load, and is not intended to represent capacitance per 

geometrical membrane area. 

 For each set of conductance parameters, we allowed the system to evolve to steady state for 10 

seconds prior to delivering stimuli. To identify spikes in the simulation, we looked for peaks 25 mV 

above the steady-state baseline (obtained via a specialty ordinal filter, as discussed in Spike finding). 

Depolarization block was defined in the same way as in the real data. For step stimulations, the input 

conductance 𝑔𝑚 was turned on with a time constant of 1 ms. When the cell reached steady state 

(without entering depolarization block) we obtained more precise measurements of firing rate by 

running the simulation for 2500 ms and then multiplying the number of action potentials found by 1/5 

to obtain the expected number of action potentials per 500 ms, as displayed in Fig. 6.  

 Spike waveforms were parameterized using the same algorithm as was applied to real data. 

Simulated voltage time traces were down-sampled and their action potentials parameterized using the 

same models as applied to the real data. We then fit a linear regression on the average waveform 

parameter from each step with control variables for the channel conductance and the input 

conductance (Table S3).  
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