Stem Cell Reports, Volume 10

### **Supplemental Information**

### Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that

### Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response

Norihiro Ueda, Yasushi Uemura, Rong Zhang, Shuichi Kitayama, Shoichi Iriguchi, Yohei Kawai, Yutaka Yasui, Minako Tatsumi, Tatsuki Ueda, Tian-Yi Liu, Yasutaka Mizoro, Chihiro Okada, Akira Watanabe, Mahito Nakanishi, Satoru Senju, Yasuharu Nishimura, Kiyotaka Kuzushima, Hitoshi Kiyoi, Tomoki Naoe, and Shin Kaneko

# **Supplemental Information**

### Supplemental method

#### Cells

We isolated peripheral blood mononuclear cells (PBMCs) from healthy donors as described.(Liu et al., 2008) Human monocyte-derived-DCs were induced as described.(Uemura et al., 2009) Human CML cell line K562, human myelogenous leukemia cell line THP-1, and human lung-cancer cell line PC9 were purchased. Mouse L-fibroblasts transfected with HLA class II genes were used as described.(Tabata et al., 1998) For cells isolated from healthy adults, informed consent about their use was obtained from all donors. The entire study was conducted in accordance with the Declaration of Helsinki and with the approval of the appropriate institutional ethics boards.

#### **Transfectants**

cDNA encoding *HLA-DR9 (DRB1\*09:01)* was previously described.(Ueda et al., 2016) cDNA encoding *BCR-ABL p210* was purchased from Addgene (Cambridge, MA, USA).(He et al., 2002) cDNA encoding *BCR-ABL p210*, *HLA-A24 (A\*24:02)*, *HLA-DRA*, or *HLA-DR9*, or minigene encoding HLA-A24-restricted modified WT1<sub>235-243</sub> epitope was inserted into lentiviral vector CSII-EF-MCS (RIKEN BioResource Center, Tsukuba, Japan). Lentivirus transduction was performed as described.(Zhang et al., 2015) K562-expressing luciferase gene (K562-Luc) was transduced with lentivirus vectors to express *HLA-A\*24:02* and minigene encoding modified WT1<sub>235-243</sub> epitope (K562-Luc-A24-WT1 minigene). THP-1 was transduced with lentivirus vectors to express *HLA-DRA\*01:01* and *HLA-DRB1\*09:01* and/or *BCR-ABL p200* (THP-1-DR9, THP1-DR9-BCRABL).

#### Flow cytometry and antibodies used for functional assays

The monoclonal antibodies (mAbs) used for flow cytometry and functional assays are listed in Table S1. HLA-A\*24:02/WT1<sub>235-243</sub> tetramer was used to detect WT1 peptide-specific CTLs, with HLA-A\*24:02/HIV Env<sub>584-592</sub> tetramer serving as a negative control. The stained cell samples were analyzed using FACSCalibur and FACSAria II flow cytometer (BD Biosciences), and the data were processed using FlowJo software (Tree Star, Ashland, OR, USA). Relative fluorescence intensity (RFI) was calculated as the ratio of the mean fluorescence intensity (MFI) of specific markers to the MFI of isotype controls.

### **RNA Sequencing**

cDNA was synthesized using a SMARTer Ultra Low Input RNA and sequenced with Illumina Sequencing-HV kit (Clontech, Mountain View, CA, USA), after which the Illumina library was prepared using Low Input Library Prep kit (Clontech). The libraries were sequenced using HiSeq 2500 in 101 cycle Single-Read mode. All sequence reads were extracted in FASTQ format using BCL2FASTQ Conversion Software 1.8.4 in the CASAVA 1.8.2 pipeline. The sequence reads were mapped to hg19 reference genome, downloaded on December 10, 2012, using TopHat v2.0.8b, and quantified using RPKMforGenes. The data have been deposited in NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/, accession number GSE94332). Subpopulations from iPS-T cells were obtained on the basis of CD161 and c-Kit expression (Figure S2C), and their gene expression profiles were compared to NK cells, ILC1s, ILC2s, ILC3s,  $\alpha\beta$  T cells, and  $\gamma\delta$  T cells. NK cells, ILC1s, ILC2s, ILC3s,  $\alpha\beta$  T cells, and  $\gamma\delta$  T cells were separated from PBMCs of healthy donors (Figure S2D). For pathway analysis, differentially expressed genes were defined by calculating the fold-change of the averaged expression ( $|\log 2FC| \ge 1$ ). Hypergeometric tests were conducted using org.Hs.eg.db 3.2.3 of R3.2.2 with GOstats 2.36.0 along with the annotation packages of GO.db 3.2.2 (Gene Ontology analysis) and KEGGprofile 1.12.0 along with the annotation packages of KEGG.db 3.2.2 (KEGG pathway analysis).

#### Analysis of T cell antigen receptor (TCR) gene rearrangement of T cell clone

The *V*, *D*, and *J* segments of the rearranged TCR- $\alpha$  and TCR- $\beta$  chains of T cells or iPS-T cells were identified as described.(Uemura et al., 2003) The gene-segment nomenclature used follows the ImMunoGeneTics (IMGT) usage; the *V*, *D*, and *J* segments were identified by comparing the resulting sequences against the IMGT database (http://www.imgt.org/) with an online tool (IMGT/V-QUEST).

#### **Real-time PCR**

Total RNA was extracted from iPSCs using an RNeasy Micro kit (Qiagen, Valencia, CA). cDNA was synthesized using High Capacity cDNA Reverse Transcription kits (Applied Biosystems, Foster City, CA, USA) with random 6-mer primers, followed by RT-PCR using ExTaq HS (Takara, Shiga, Japan) and by quantitative-PCR using a TaqMan Array Human Stem Cell Pluripotency Card (Applied Biosystems). Individual PCR reactions were normalized against 18S rRNA.

### In vivo bioluminescence imaging

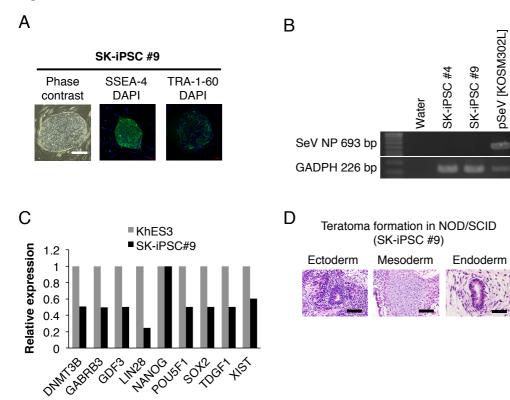
Tumor-bearing mice were injected with 200 µl D-Luciferin (15 mg/ml, VivoGlo Luciferin; Promega, Madison, WI, USA) under 2% inhaled isoflurane anesthesia, and bioluminescent images were obtained using IVIS Lumina II with Living Image Software 3.2 (Xenogen, Alameda, CA, USA).

#### REFERENCES

He, Y., Wertheim, J.A., Xu, L., Miller, J.P., Karnell, F.G., Choi, J.K., Ren, R., and Pear, W.S. (2002). The coiled-coil domain and Tyr177 of bcr are required

to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood *99*, 2957-2968.

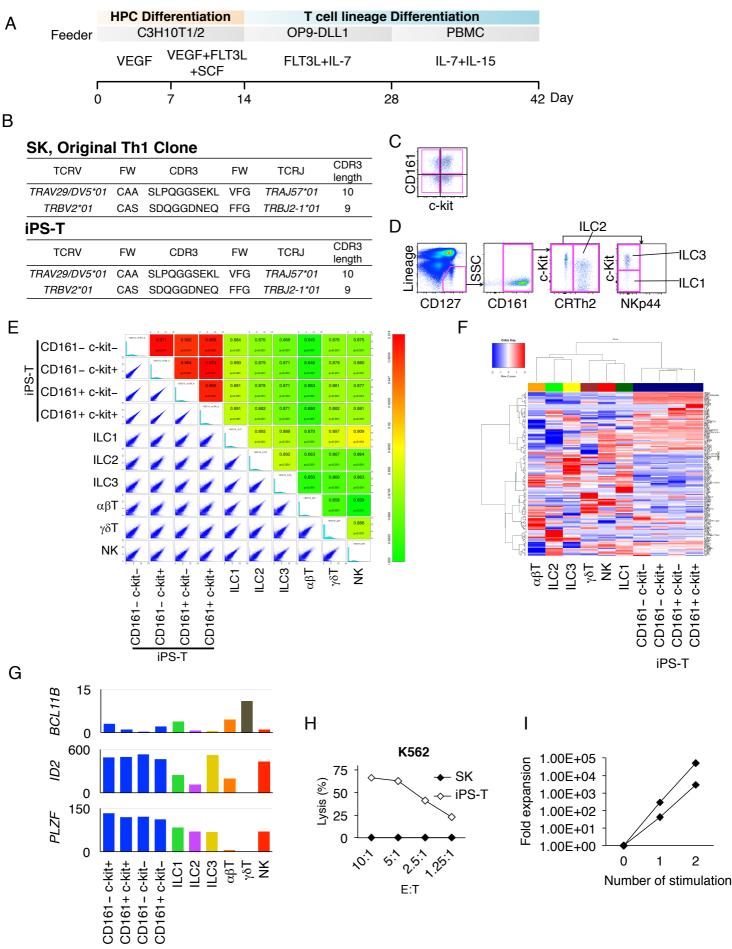
Liu, T.Y., Uemura, Y., Suzuki, M., Narita, Y., Hirata, S., Ohyama, H., Ishihara, O., and Matsushita, S. (2008). Distinct subsets of human invariant NKT cells differentially regulate T helper responses via dendritic cells. European journal of immunology *38*, 1012-1023.


Tabata, H., Kanai, T., Yoshizumi, H., Nishiyama, S., Fujimoto, S., Matsuda, I., Yasukawa, M., Matsushita, S., and Nishimura, Y. (1998). Characterization of self-glutamic acid decarboxylase 65-reactive CD4+ T-cell clones established from Japanese patients with insulin-dependent diabetes mellitus. Human immunology *59*, 549-560.

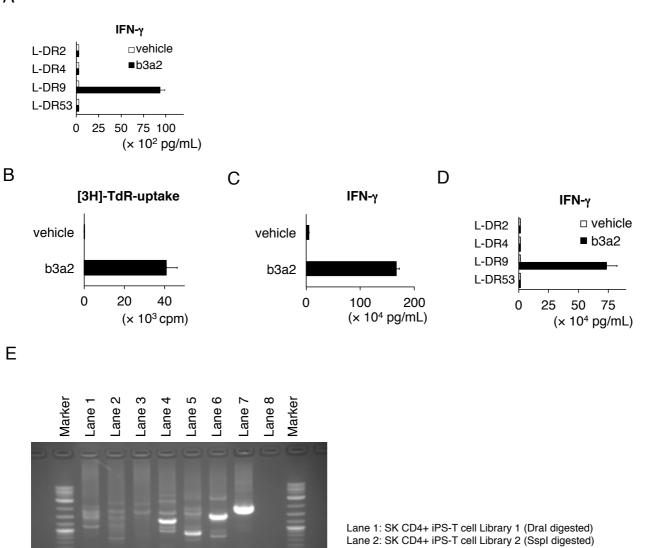
Ueda, N., Zhang, R., Tatsumi, M., Liu, T.Y., Kitayama, S., Yasui, Y., Sugai, S., Iwama, T., Senju, S., Okada, S., *et al.* (2016). BCR-ABL-specific CD4+ T-helper cells promote the priming of antigen-specific cytotoxic T cells via dendritic cells. Cell Mol Immunol.

Uemura, Y., Liu, T.Y., Narita, Y., Suzuki, M., Nakatsuka, R., Araki, T., Matsumoto, M., Iwai, L.K., Hirosawa, N., Matsuoka, Y., *et al.* (2009). Cytokine-dependent modification of IL-12p70 and IL-23 balance in dendritic cells by ligand activation of Valpha24 invariant NKT cells. Journal of immunology *183*, 201-208.

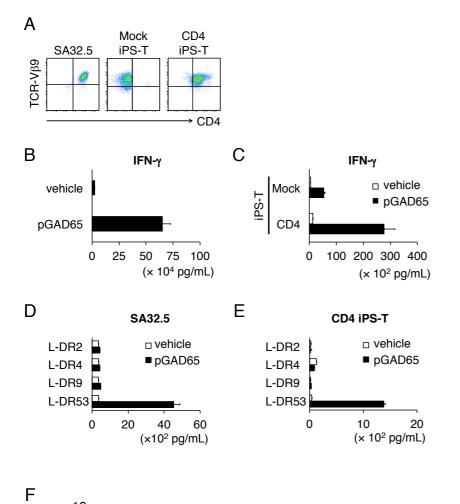
Uemura, Y., Senju, S., Maenaka, K., Iwai, L.K., Fujii, S., Tabata, H., Tsukamoto, H., Hirata, S., Chen, Y.Z., and Nishimura, Y. (2003). Systematic analysis of the combinatorial nature of epitopes recognized by TCR leads to identification of mimicry epitopes for glutamic acid decarboxylase 65-specific TCRs. Journal of immunology *170*, 947-960.

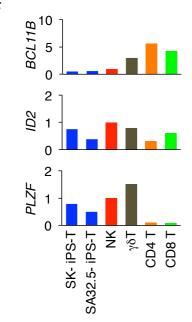

Zhang, R., Liu, T., Senju, S., Haruta, M., Hirosawa, N., Suzuki, M., Tatsumi, M., Ueda, N., Maki, H., Nakatsuka, R., *et al.* (2015). Generation of mouse pluripotent stem cell-derived proliferating myeloid cells as an unlimited source of functional antigen-presenting cells. Cancer immunology research.

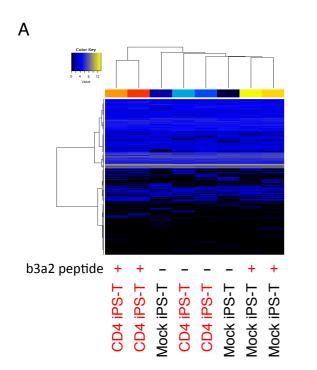


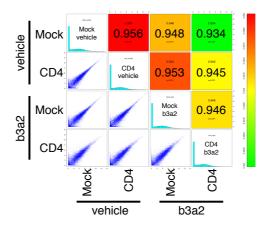

Е

> States N and and a second Serie Contraction COLORED C S. M 74 46 N đĝ 20 38 88 86 88 88 88 8


> SK-iPSC #9 46XY (20/20)



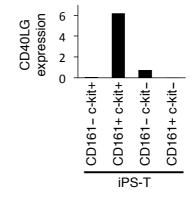



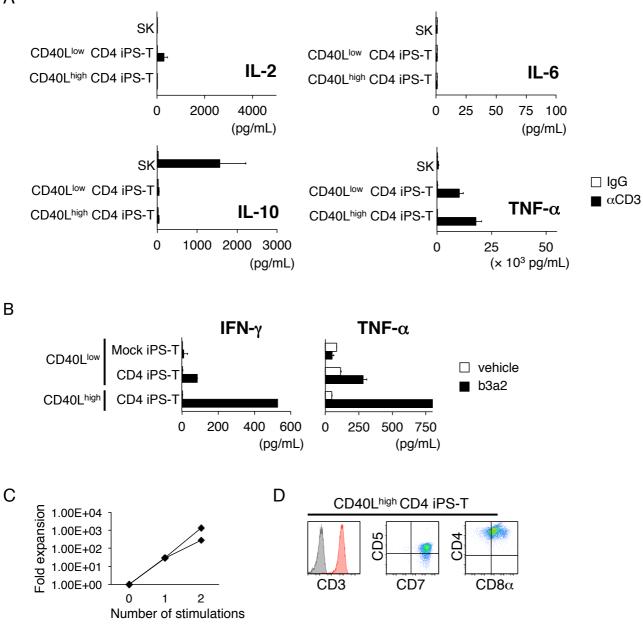

- Lane 3: SK CD4+ iPS-T cell Library 3 (Hpal digested) Lane 4: Retrovirus integrated iPSC clone, TkT3V1-7 Library 1 (Dral digested)
- Lane 5: Retrovirus integrated iPSC clone, TkT3V1-7 Library 2 (Sspl digested) Lane 6: Retrovirus integrated iPSC clone, TkT3V1-7 Library 3 (Hpal digested)
- Lane 7: Positive control (contained in the kit)
- Lane 8: Negative control (H2O)



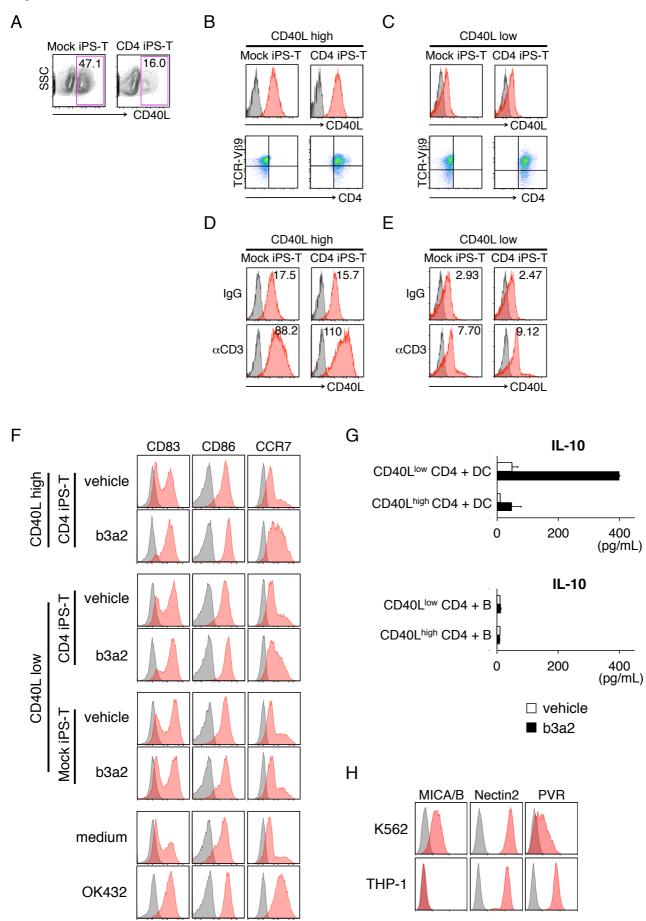




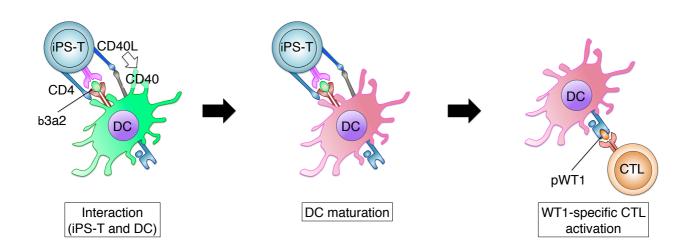




# С

| GO term                                  | p value  |  |  |  |  |  |
|------------------------------------------|----------|--|--|--|--|--|
| Cell proliferation-related gene ontology |          |  |  |  |  |  |
| Mitosis                                  | 5.47E-14 |  |  |  |  |  |
| Nuclear division                         | 5.47E-14 |  |  |  |  |  |
| M phase of mitotic cell cycle            | 8.54E-14 |  |  |  |  |  |
| Cell cycle phase                         | 1.4E-13  |  |  |  |  |  |
| Organelle fission                        | 1.47E-13 |  |  |  |  |  |
| Cell cycle process                       | 2.31E-13 |  |  |  |  |  |
| Mitotic cell cycle                       | 7.85E-13 |  |  |  |  |  |







В



А







Generation of iPSCs from b3a2-specific CD4<sup>+</sup> Th1 clone, related to materials and methods

(A) iPSC colonies derived from b3a2-specific CD4<sup>+</sup> Th1 clone (SK). Shown are representative phase contrast and immunofluorescent images. Scale bar represents 100 μm. (B) PCR-based analysis for detection of SeVdp genomic RNA remnants. Established iPSC colonies from the original CD4<sup>+</sup> Th1 clone (SK) (SK-iPSC) did not retain remnant SeVdp (KOSM) 302L vector. (C) Quantitative PCR analysis of pluripotency-related genes in SK-iPSCs. Individual PCR results were normalized to 18S ribosomal RNA levels (rRNA). Relative expression values to an embryonic stem cell line (KhES3) are indicated. (D) Representative HE-stained sections of a SK-iPSC-derived teratoma from an NOD/ShiJic-scid mouse. iPSCs differentiated into cell lineages derived from endoderm, mesoderm, and ectoderm. Scale bars represent 500 μm. (E) Representative karyotype analysis of SK-iPSCs.

Characteristics of T-lineage cells from CD4<sup>+</sup> Th1 clone-derived iPSCs, related to Figure 1

(A) Culture protocol for re-differentiation of T-lineage cells from  $CD4^+$  Th clone-derived iPSCs. (B) TCR gene usage and V-(D)-J junction region sequences of the original CD4<sup>+</sup> Th1 clone (SK) and iPS-T cells. (C) CD161 and c-Kit expression profiles on iPS-T cells. (D) Representative flow cytometry profile of ILC subpopulations from PBMCs of healthy donors. ILC1s, ILC2s, and ILC3s were defined by expression of the indicated molecules. The lineage cocktail contained antibodies for CD1a, CD3, CD11c, CD14, CD19, CD34, CD94, CD123, BDCA2, FcεR1, TCRαβ, and TCRγδ. (E) Scatter plots representing the expression of each gene in the indicated pairs of cell types. Numbers in the panels denote pair-wise Pearson's correlation scores. (F) Two-way clustering of 146 selected gene expression profiles related to T cell/ILC differentiation and function (Table S3). (G) BCL11B, ID2, and PLZF expression in the indicated population. mRNA expression levels were determined by RNA-seq. (E-G) Subpopulations from iPS-T cells separated based on CD161 and c-Kit expression shown in (C) were compared to NK cells, ILC1s, ILC2s, ILC3s,  $\alpha\beta$  T cells, and  $\gamma\delta$  T

cells. **(H)** Cytotoxic activities of original CD4<sup>+</sup> Th1 clone (SK) and iPS-T cells to K562 cells. Cytotoxicity was measured by <sup>51</sup>Cr-release assay for 4 h at the indicated effector/target (E:T) ratios. Data are representative of two independent triplicate experiments. **(I)** Expansion of iPS-T cells. iPS-T cells were stimulated by PHA-P in the presence of PBMCs at 14-day intervals. Shown are representative results from two independent experiments.

### Figure S3

HLA-DR9-restricted, b3a2 peptide-specific response of original CD4<sup>+</sup> Th1 clone, related to Figure 1

(A) HLA-DR-restricted IFN- $\gamma$  production by CD4<sup>+</sup> iPS-T cells. CD4<sup>+</sup> iPS-T cells (5 × 10<sup>4</sup>) were co-cultured with irradiated L-cell transfectants expressing the indicated HLA-DR (4 × 10<sup>4</sup>) prepulsed with b3a2 peptide (10  $\mu$ M). (B) Proliferative response of the original CD4<sup>+</sup> Th1 clone (SK) to antigenic peptide. T cells were co-cultured with autologous PBMCs in the presence of b3a2 peptide (10  $\mu$ M). Proliferation was determined by the [<sup>3</sup>H]-thymidine incorporation assay. Data shown are the means ± SD

and are representative of two independent triplicate experiments. (C) b3a2 peptide-specific IFN- $\gamma$  production by the original CD4<sup>+</sup> Th1 clone. The original CD4<sup>+</sup> Th1 clone (1 × 10<sup>5</sup>) was co-cultured with autologous DCs (5 × 10<sup>4</sup>) that had been prepulsed with the b3a2 peptide (10  $\mu$ M). (D) HLA-DR-restricted IFN- $\gamma$  production by the original CD4<sup>+</sup> Th1 clone. The original CD4<sup>+</sup> Th1 clone (5 × 10<sup>4</sup>) was co-cultured with irradiated L-cell transfectants (4 × 10<sup>4</sup>) prepulsed with b3a2 peptide (10  $\mu$ M). (A, C, D) IFN- $\gamma$  level in the culture supernatant (24 h) was measured by ELISA. Data shown are the means  $\pm$  SD of triplicate cultures and are representative of two independent experiments. (E) Retroviral integration site analysis of CD4<sup>+</sup> iPS-T cells by LAM-PCR. Retrovirus-integrated iPSC clone, TkT3V1-7, served as a positive control.

### Figure S4

# CD4 modification induces HLA class II-restricted responses in iPS-T cells derived from GAD65 peptide-specific CD4<sup>+</sup> Th clone, related to Figure 1

(A) Representative flow cytometry profiles of the indicated molecules on GAD65 peptide-specific CD4<sup>+</sup> Th clone (SA32.5) and iPS-T cells from SA32.5-derived iPSCs

transduced with Mock or CD4 gene. (B) GAD65 peptide-specific IFN- $\gamma$  production by SA32.5. (C) GAD65 peptide-specific IFN- $\gamma$  production by mock iPS-T cells and CD4<sup>+</sup> iPS-T cells, both from SA32.5-derived iPSCs. (B, C) IFN-y level in the culture supernatant was measured by ELISA. SA32.5, mock iPS-T cells, or CD4<sup>+</sup> iPS-T cells (1  $\times 10^5$ ) were co-cultured for 24 h with HLA-DR53 positive DCs (5  $\times 10^4$ ) that had been prepulsed with GAD65 peptide (10  $\mu$ M). Data shown are the means  $\pm$  SD and are representative of two independent triplicate experiments. (D) HLA-DR-restricted IFN- $\gamma$ production by SA32.5. (E) HLA-DR-restricted IFN- $\gamma$  production by CD4<sup>+</sup> iPS-T cells from SA32.5-derived iPSCs. (D, E) IFN- $\gamma$  level in the culture supernatant (24 h) was measured by ELISA. SA32.5 or CD4<sup>+</sup> iPS-T cells (5  $\times$  10<sup>4</sup>) were co-cultured with irradiated L-cell transfectants ( $4 \times 10^4$ ) that had been prepulsed with GAD65 peptide (10  $\mu$ M). Data shown are the means  $\pm$  SD of triplicate cultures and are representative of two independent experiments. (F) Measurement of BCL11B, ID2, and PLZF mRNA expression by real-time RT-PCR in the indicated population. Expression of each mRNA was normalized to that of ACTB mRNA (SK-iPS-T: iPS-T cells derived from b3a2-specific CD4<sup>+</sup> Th1 clone (SK), SA32.5-iPS-T: iPS-T cells derived from GAD65

peptide-specific CD4<sup>+</sup> Th clone (SA32.5)).

### Figure S5

#### Gene expression of CD4 modified iPS-T cells, related to Figure 1

(A) Two-way clustering showing global gene expression profiles. Mock iPS-T cells and CD4<sup>+</sup> iPS-T cells were stimulated with vehicle or b3a2 peptide. THP-1-expressing HLA-DR9 was used as APCs. (B) Scatter plots representing the expression of each gene in the indicated pairs of cell types. Numbers in the panels denote pair-wise Pearson's correlation scores. (C) Gene ontology (GO) term enriched in genes significantly up-regulated in b3a2-stimulated CD4<sup>+</sup> iPS-T cells compared to in b3a2-stimulated Mock iPS-T cells. (A–C) Mock iPS-T cells and CD4<sup>+</sup> iPS-T cells were stimulated with vehicle or b3a2 peptide. THP-1-expressing HLA-DR9 were used as APCs. (D) CD40L gene expression of subpopulations from iPS-T cells. mRNA expression levels were determined by RNA-seq.

Function and surface phenotype of CD40L<sup>high</sup> population from CD4<sup>+</sup> iPS-T cells, related to Figure 2

(A) Cytokine production by the indicated populations. Each population was stimulated with plate-bound control IgG or anti-CD3 mAb (10 µg/mL). The original CD4<sup>+</sup> Th1 clone (SK) served as a control. (B) Cytokine production by the indicated populations. Each population  $(1 \times 10^4)$  was co-cultured with autologous DCs  $(2.5 \times 10^4)$  that had been prepulsed with b3a2 peptide (10 µM). (A-B) Cytokine levels in the culture supernatant (24 h) were measured in a bead-based multiplex immunoassay. Data shown are the means  $\pm$  SD of triplicate cultures and are representative of two independent experiments. (C) Expansion of CD40L<sup>high</sup> CD4<sup>+</sup> iPS-T cells. CD40L<sup>high</sup> CD4<sup>+</sup> iPS-T cells were stimulated with PHA-P in the presence of PBMCs at 14-day intervals. Shown are representative results of two independent experiments. (D) Representative flow cytometry profiles of the indicated molecules on CD40L<sup>high</sup> and CD40L<sup>low</sup> CD4<sup>+</sup> iPS-T cells. Indicated surface molecules (red) and isotype-matched controls (gray) are shown.

### CD40L<sup>high</sup> CD4<sup>+</sup> iPS-T cells derived from SA32.5-iPSCs, related to Figure 2-4

(A) Representative flow cytometry profiles of the indicated molecules on the indicated iPS-T cells from SA32.5-iPSCs on day 13 after PHA-P stimulation. The number of CD40L-positive cells is shown in the upper right corner of each panel. Mock iPS-T cells or CD4<sup>+</sup> iPS-T cells were stimulated with PHA-P, cultured for 12 days in the presence of IL-7 and IL-15, and then cultured for 24 h in the presence of IL-2 and IL-15. (B, C) Expressions of CD40L, CD4, and TCR-Vβ9 on each subpopulation are shown. CD40L high and low populations were separated from Mock iPS-T cells or CD4<sup>+</sup> iPS-T cells by flow cytometry sorting and expanded by PHA-P stimulation. (D, E) Surface CD40L expression on different subpopulations stimulated with plate-bound control IgG or anti-CD3 mAb (10  $\mu$ g/mL). The original CD4<sup>+</sup> Th clone (SA32.5) served as a control. Relative fluorescence intensity (RFI) is shown in the upper right corner of each panel. (B-E) CD40L (red) and isotype-matched controls (gray) are shown. (F) Representative cytometry profiles of the indicated molecules on DCs. Vehicle- or flow b3a2-peptide-pulsed DCs were cultured for 24 h with the indicated population at a DC/CD4<sup>+</sup> iPS-T cell ratio of 5:1. OK432 (10 µg/mL)-matured DCs and medium-control

DCs served as controls. The indicated surface molecules (red) and isotype-matched controls (gray) are shown. **(G)** IL-10 production by DCs or B cells co-cultured with the indicated population. IL-10 in the culture supernatant was measured by ELISA. The indicated population  $(2 \times 10^4)$  was co-cultured for 24 h with autologous DCs or B cells  $(5 \times 10^4)$  that had been prepulsed with b3a2 peptide (10  $\mu$ M). Data shown are the means  $\pm$  SD of triplicate cultures and are representative of two independent experiments. **(H)** Representative flow cytometry profiles of the indicated molecules on K562 and THP-1.

### Figure S8

Mechanism of the WT1-specific CTL priming via DC maturation by iPS-T cells, related to Figure 5

Mechanism of the WT1-specific CTL priming. b3a2, b3a2 peptide; pWT1, WT1 peptide. (left panel) When iPS-T cells recognize b3a2 peptide presented by DCs, the activated iPS-T cells up-regulate CD40L. (center panel) CD40 ligation by CD40L induces DC maturation. (right panel) Up-regulation of costimulatory molecules and enhanced cytokine production by DCs promote activation of WT1 peptide-specific CTLs.

| Antigen        | Clone            | Isotype                |
|----------------|------------------|------------------------|
| CD1a           | HI149 mouse IgG1 |                        |
| CD3            | октз             | mouse IgG2a            |
| CD3            | UCHT1            | mouse IgG1             |
| CD4            | OKT-4            | mouse IgG2b            |
| CD4            | RPA-T4           | mouse IgG1             |
| CD5            | UCHT2            | mouse IgG1             |
| CD7            | CD7-6B7          | mouse IgG2a            |
| CD8 α          | SK1              | mouse IgG1             |
| CD8 $\beta$    | 2ST8.5H7         | mouse IgG2a            |
| CD11c          | MJ4-27G12        | mouse IgG2b            |
| CD14           | M5E2             | mouse IgG2a            |
| CD19           | HIB19            | mouse IgG1             |
| CD34           | 581              | mouse IgG1             |
| CD40           | HB14             | mouse IgG1             |
| CD45           | HI30             | mouse IgG1             |
| CD56           | HCD56            | mouse IgG1             |
| CD80           | 2D10             | mouse IgG1             |
| CD83           | HB15a            | mouse IgG2b            |
| CD86           | IT2.2            | mouse IgG2b            |
| CD94           | REA113           | recombinant human IgG1 |
| CD117 (c-Kit)  | 104D2D1          | mouse IgG1             |
| CD123          | 6H6              | mouse IgG1             |
| CD127          | HIL-7R-M21       | mouse IgG1             |
| CD154 (CD40L)  | 24-31            | mouse IgG1             |
| CD161          | HP-3G10          | mouse IgG1             |
| CD197 (CCR7)   | G043H7           | mouse IgG2a            |
| CD226 (DNAM-1) | 11A8             | mouse IgG1             |
| CD279 (PD-1)   | EH12.2H7         | mouse IgG1             |
| CD294 (CRTh2)  | BM16             | rat IgG2a              |
| CD303 (BDCA2)  | AC144            | mouse IgG1             |
| CD314 (NKG2D)  | 1D11             | mouse IgG1             |
| CD335 (NKp46)  | 9E2              | mouse IgG1             |
| CD336 (NKp44)  | P44-8            | mouse IgG1             |
| CD337 (NKp44)  | P30-15           | mouse IgG1             |
| FcεR1          | AER-37           | mouse IgG2b            |
| HLA-DR         | L243             | mouse IgG2a            |
| TCR−αβ         | IP26             | mouse IgG1             |
| TCR-γδ         | B1.1             | mouse IgG1             |
| TCRBV9S1       | FIN9             | mouse IgG2a            |
| TRBV22S1       | IMMU546          | mouse IgG1             |

| Isotype control | Clone      |
|-----------------|------------|
| mouse IgG1      | MOPC-21    |
| mouse IgG1      | P3.6.2.8.1 |
| mouse IgG2a     | G155-178   |
| mouse IgG2b     | eBMG2b     |

Pearson's correlation of gene expression between iPS-T cell samples and other cell types

| Sample | Pearson correlation |
|--------|---------------------|
| iPS-Ts | $0.962 \cdot 0.974$ |
| NK     | $0.875 \cdot 0.881$ |
| ILC1   | 0.884-0.891         |
| ILC2   | 0.876 - 0.882       |
| ILC3   | 0.868-0.871         |
| α/β-Τ  | 0.845 - 0.853       |
| γ/δ-Τ  | 0.876-0.882         |

| AHR     | AREG   | ASB2     | BCL11B | CACNA1F | CCL5    | CCL7   | CCR3    | CCR4    | CCR5    |
|---------|--------|----------|--------|---------|---------|--------|---------|---------|---------|
| CCR6    | CCR7   | CD226    | CD3E   | CEBPA   | CEBPB   | CHD7   | CSF1    | CSF2    | CXCR3   |
| CXCR6   | EOMES  | ETS1     | ETS2   | FASLG   | FOSL1   | FOXP3  | GATA2   | GATA3   | GATA4   |
| GFI1    | GZMA   | GZMB     | GZMH   | GZMK    | GZMM    | HAVCR2 | HES1    | HNF1A   | HOPX    |
| HOXA10  | HOXA3  | ICOS     | ID2    | ID3     | IFNG    | IFNGR1 | IGSF6   | IKZF1   | IKZF2   |
| IKZF3   | IL10   | IL12A    | IL12B  | IL12RB1 | IL12RB2 | IL13   | IL13RA1 | IL15RA  | IL17A   |
| IL17B   | IL17C  | IL17D    | IL17F  | IL17RB  | IL17RE  | IL18   | IL18R1  | IL18RAP | IL1R1   |
| IL1R2   | IL1RAP | IL1RL1   | IL2    | IL21    | IL22    | IL23R  | IL2RA   | IL2RB   | IL2RG   |
| IL4     | IL4R   | IL5      | IL7R   | IL9     | IRF1    | IRF4   | IRF8    | ITGAE   | ITGB7   |
| JAK1    | KIF2C  | KIT      | KLRB1  | KLRK1   | LEF1    | LRRC32 | MAF     | MYB     | NCAM1   |
| NCR1    | NCR2   | NCR3     | NFATC1 | NFATC2  | NFIL3   | NR4A1  | NR4A3   | PERP    | PKD2    |
| POU2F2  | PPARG  | PRF1     | PTGDR2 | RBPJ    | REL     | RELB   | RORA    | RORC    | RUNX1   |
| RUNX3   | SATB1  | SOCS1    | SOCS5  | SOX13   | STAT1   | STAT4  | STAT5B  | STAT6   | TAL1    |
| TBX21   | TCF12  | TCF7     | TGIF1  | THY1    | TIGIT   | TLR4   | TLR6    | TNF     | TNFRSF9 |
| TNFSF11 | TOX    | TP53INP1 | UTS2   | ZBTB16  | ZBTB7B  |        |         |         |         |

| Category     | Term                                               | Count | %           | P-Value     | Genes                                     | List<br>Total | Pop Hits | Pop Total F | old Enrichment | Bonferroni  |
|--------------|----------------------------------------------------|-------|-------------|-------------|-------------------------------------------|---------------|----------|-------------|----------------|-------------|
| KEGG_PATHWAY | hsa04650:Natural killer cell mediated cytotoxicity | 6     | 2.205882353 | 1.23e-05    | PRF1, KLRK1, FASLG, GZMB,<br>NFATC2, NCR1 | 14            | 133      | 5085        | 16.38560687    | 2.72E-04    |
| KEGG_PATHWAY | hsa04630:Jak-STAT signaling pathway                | 5     | 1.838235294 | 4.79E-04    | IL12RB2, IL2RB, STAT4, IL12RB1,<br>JAK1   | 14            | 155      | 5085        | 11.71658986    | 0.01048484  |
| KEGG_PATHWAY | hsa05330:Allograft rejection                       | 3     | 1.102941176 | 0.003619614 | PRF1, FASLG, GZMB                         | 14            | 36       | 5085        | 30.26785714    | 0.076676827 |
| KEGG_PATHWAY | hsa05332:Graft-versus-host disease                 | 3     | 1.102941176 | 0.004238978 | PRF1, FASLG, GZMB                         | 14            | 39       | 5085        | 27.93956044    | 0.089221673 |
| KEGG_PATHWAY | hsa04940:Type I diabetes mellitus                  | 3     | 1.102941176 | 0.004904194 | PRF1, FASLG, GZMB                         | 14            | 42       | 5085        | 25.94387755    | 0.102513944 |
| KEGG_PATHWAY | hsa05320:Autoimmune thyroid disease                | 3     | 1.102941176 | 0.007168701 | PRF1, FASLG, GZMB                         | 14            | 51       | 5085        | 21.36554622    | 0.146388778 |
| KEGG_PATHWAY | hsa04060:Cytokine-cytokine receptor interaction    | 4     | 1.470588235 | 0.026326675 | IL12RB2, IL2RB, IL12RB1, FASLG            | 14            | 262      | 5085        | 5.54525627     | 0.443977985 |

| Cell samples |              | Pearson correlation |
|--------------|--------------|---------------------|
| CD4 b3a2     | Mock vehicle | 0.934               |
|              | CD4 vehicle  | 0.945               |
|              | Mock b3a2    | 0.946               |
| Mock vehicle | CD4 vehicle  | 0.956               |
|              | Mock b3a2    | 0.953               |
| CD4 vehicle  | Mock b3a2    | 0.948               |

Pearson correlation of gene expressions.