Supplementary Information

MicroRNA-7450 regulates non-thermal plasma-induced chicken Sertoli cell apoptosis via adenosine monophosphate-activated protein kinase activation

Jiao Jiao Zhang¹, Xian Zhong Wang², Huynh Luong Do¹, Nisansala Chandimali¹, Tae Yoon Kang¹, Nameun Kim¹, Mrinmoy Ghosh¹, Sang Baek Lee³, Young Sun Mok³, Seong Bong Kim⁴, Taeho Kwon^{5, *}, Dong Kee Jeong^{1, 5, *}

¹ Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
² Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology,

Southwest University, Chongqing 400715, P. R. China

³Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea

⁴ Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Jeollabuk-Do
 54004, Republic of Korea

⁵ Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea

*Correspondence and requests for materials should be addressed to D.K.J. (E-mail: ngejeong@gmail.com) and T.K. (E-mail: taehokwonk@gmail.com)

Supplementary Figure S1. Growth status of SCs exposed to 11.7 kV for different durations. Scale

bar: 300 µm.

27.6 kV

Supplementary Figure S2. Growth status of SCs exposed to different potentials for 120 s. Scale bar:

300 µm.

Supplementary Figure S3. Growth status of SCs transfected with miR-7450 agomir and antagomir,

and miR-7450 agomir-transfected group treated with 22.0 kV of plasma for 120 s. Scale bar: 300 µm.

Supplementary Figure S4. RT-PCR analysis of a non-target gene (*POU1F1*) and an unrelated target gene (*PDE10A*) of miR-7450 in SCs transfected with miR-7450 agomir and antagomir, and miR-7450 agomir-transfected group treated with 22.0 kV of plasma for 120 s. Data are represented as the mean \pm SD (n=3 per group). *, p < 0.05; **, p < 0.01, according to one-way ANOVA and LSD test.

Supplementary Figure S5. Western blot analysis of the protein levels of NRF2, KEAP1, PRDX4, ATP5A, p-AMPKα, AMPKα, p-mTOR, and mTOR in SCs exposed to 22.0 kV of plasma for 120 s. Uncropped immunoblot scans for Fig. 3A. The grouping of gels/blots cropped from different gels. All blots were visualized with 5 min exposure time.

Supplementary Figure S6. Western blot analysis of the protein levels of ATP5A, p-AMPK α , AMPK α , p-mTOR, and mTOR in SCs trasfected with miR-7450 agomir and antagomir, and miR-7450 agomir-transfected group treated with 22.0 kV of plasma for 120 s.

Uncropped immunoblot scans for Fig. 3F. The grouping of gels/blots cropped from different gels. All blots were visualized with 5 min exposure time.

Supplementary Figure S7. One independent replicate on chicken SC protein expression. (**A**) Western blot analysis of protein bands in SCs exposed to 22.0 kV of plasma for 120 s. (**B**) Western blot analysis of protein bands in SCs trasfected with miR-7450 agomir and antagomir, and miR-7450 agomir-transfected group treated with 22.0 kV of plasma for 120 s.

Gene	Sequence number	Sequence	Product	Annealing	Sequence (5'to3')
		position	length (bp)	Temperature (°C)	
β -actin	NM_205518.1	625-818	194	57	F: GTGCGTGACATCAAGGAGAAGC
					R: CCACAGGACTCCATACCCAAGA
NOX4	NM_001101829.1	28-157	130	57	F: CGAGGATCTCAGAAGGTTGC
					R: GAGCATTCACCAGATGAGCA
NRF2	NM_205117.1	484-619	136	57	F: AAAACGCTGAACCACCAATC
					R: GCTGGAGAAGCCTCATTGTC
KEAP1	KU321503.1	1227-1485	259	57	F: GTATCACAGCAGCGTGGAGA
					R: GGCGTAGATGCAGTTGTTGA
SOD	NM_205064.1	106-278	173	55	F: ATTACCGGCTTGTCTGATGG
					R: CCTCCCTTTGCAGTCACATT
CAT	NM_001031215.2	1067-1276	210	55	F: CTCATTCCAGTGGGCAAGAT
					R: GTAGGGGCAATTCACAGGAA
GPx	NM_001277853.2	353-474	122	55	F: ATGTTCGAGAAGTGCGAGGT
					R: ATGATGTACTGCGGGTTGGT
PRDX4	XM_001233999.3	595-733	139	56	F: TGCACTTAGGGGGCCTTTTCA
					R: TTCTCCATGCTTGTCCGTGT
ATP5A1	NM_204286.1	1207-1364	158	57	F: GGTATCCGTCCAGCCATCAA
					R: GCATCCAAATCAGACCCAAACT
АМРКа	NM_001039605.1	726-943	218	57	F: GGAGGCGTGTTTTACATCCC
					R: AACTTCTCACAGACCTCCCG
mTOR	XM_417614.5	119-309	191	57	F: TGAAGGGGTCAAGGCAATCC
					R: GGCGAGCAGTGGTTGTGGAT
POU1F1	NM_204319.1	560-754	195	57	F: ATGTTGGCGAAGCACTGGC
					R: GCTTCCTCTTCCGCTCATTCA
PDE10A	XM_004935551.2	3258-3412	155	57	F: CCACATCAACGATGGAACAG
					R: ATACAGGGCAAGGTCTGTGG
U6	NR_003027.2	66-85	20	60	F: CGCAAGGATGACACGCAAAT
miR-7450	MI0024118	1-20	20	60	F: TCTGTTCTTAAGGAGGCTGA

Supplementary Table S1. Primer sequences for the RT-PCR