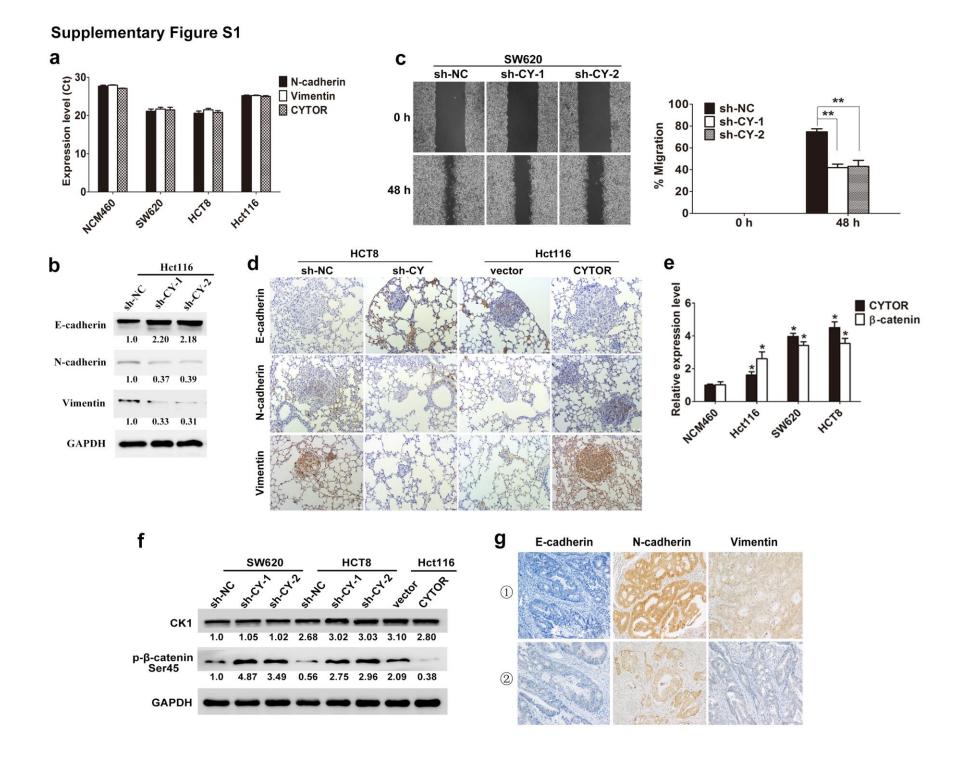
YMTHE, Volume 26


Supplemental Information

A Positive Feed-Forward Loop between

LncRNA-CYTOR and Wnt/β-Catenin Signaling

Promotes Metastasis of Colon Cancer

Ben Yue, Chenchen Liu, Huimin Sun, Mengru Liu, Chenlong Song, Ran Cui, Shenglong Qiu, and Ming Zhong

Supplementary Fig S1. (a) The endogenous levels of CYTOR and mesenchymal markers N-cadherin and Vimentin were comparable in human colon mucosal epithelial cell line NCM460 and colon cancer cell lines. (b) Knockdown of CYTOR resulted in a significant upregulation of E-cadherin, accompanied by a prominent downregulation of N-cadherin and Vimentin in Hct116 cells. (c) Knockdown of CYTOR significantly decreased cells' migratory ability in SW620 cell line. (d) N-cadherin and Vimentin were reduced, and E-cadherin was upregulated in the lung metastatic tumor tissues with CYTOR knockdown. N-cadherin and Vimentin were upregulated, and E-cadherin was reduced in the lung metastatic tumor tissues with CYTOR overexpression. (e) β -catenin levels are relatively higher with concurrent elevated CYTOR in colon cancer cell lines. (f) Increased phosphorylation levels of β -catenin at Ser45 was observed in cells transfected with CYTOR shRNA, whereas overexpression of CYTOR significantly decreased phospho- β -catenin^{Ser45} expression. CK1 levels showed no obvious changes in the subgroups of every cell line. (g) ① CYTOR^{high}/ β -catenin^{nuc} group, ②CYTOR^{low}/ β -catenin^{cyto} tumor tissues. **P*<0.05, ***P*<0.01.

Variable	n=100	Expression	P value	
		High (n=50)	Low (n=50)	
Age (years)				0.829
<65	31	16	15	
≥65	69	34	35	
Gender				0.841
Male	47	24	23	
Female	53	26	27	
Location				0.216
Right	38	16	22	
Others	62	34	28	
pT stage				0.033*
T1	3	1	2	
T2	11	2	9	
Т3	40	18	22	
T4	46	29	17	
pN stage				< 0.001*
NO	32	7	25	
N1	40	23	17	
N2	28	20	8	
pM stage				0.006*
MO	92	42	50	
M1	8	8	0	
TNM stage				< 0.001*
I / II	32	7	25	
III/IV	68	43	25	
Differentiation				0.111
Well	47	21	26	
Moderate	40	19	21	
Poor	13	10	3	
Vessel invasion				0.317
No	90	43	47	
Yes	10	7	3	

Supplementary Table S1. Association between clinicopathologic features and CYTOR expression

p<0.05 indicates a significant association among the variables.

		Overall survival			Disease-free survival			
Variable	Univariate		Multivariate		Univariate		Multivariate	
	HR (95% CI)	<i>P</i> value	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	<i>P</i> value
Age	1.09 (0.54, 2.21)	0.810			1.01 (0.51, 1.99)	0.982		
Gender	1.12 (0.59, 2.14)	0.732			1.09 (0.58, 2.05)	0.788		
Location	0.97 (0.77, 1.23)	0.800			1.02 (0.81, 1.28)	0.878		
T stage	1.73 (1.06, 2.82)	0.028*			1.89 (1.16, 3.08)	0.011*		
N stage	3.69 (2.23, 6.11)	<0.001*	2.93 (1.71, 5.04)	<0.001*	3.57 (2.20, 5.79)	<0.001*	2.73 (1.61, 4.64)	< 0.001*
M stage	10.60 (4.31, 26.01)	<0.001*	5.34 (2.07, 13.77)	0.001*	7.62 (3.33, 17.42)	<0.001*	3.47 (1.44, 8.33)	0.005*
TNM stage	6.24 (3.07, 12.67)	<0.001*			4.65 (2.51, 8.64)	<0.001*		
Differentiation	1.28 (0.81, 2.03)	0.286			1.40 (0.90, 2.17)	0.131		
Vessel invasion	2.93 (1.28, 6.71)	0.011*			3.52 (1.61, 7.72)	0.002*	2.45 (1.10, 5.47)	0.029*
CYTOR	3.89 (1.88, 8.05)	< 0.001*	2.32 (1.08, 4.98)	0.031*	3.86 (1.88, 7.94)	<0.001*	2.22 (1.04, 4.73)	0.039*

Supplementary Table S2. Univariate and multivariate analysis of overall survival and disease-free survival after surgery

*P < 0.05 indicated that 95% CI of HR was not including. HR, hazard ratio; 95% CI, 95% confidence interval

Supplementary Table S3	3. The correlation between ex	pression levels of CYTOR and	β -catenin in 100 cases of colon cancer tissues
------------------------	-------------------------------	------------------------------	---

Expression of CYTOR			
High	Low	<i>p</i> -value	
		0.006*	
46	34		
4	16		
		0.008*	
36	17		
10	17		
	High 46 4 36	High Low 46 34 4 16 36 17	

p<0.05 indicates a significant association among the variables.

Supplementary Table S4. Detailed sequence (5'-3') information

OVTOD	F	
CYTOR	Forward	TGGGAATGGAGGGAAATAAA
	Reverse	CCAGGAACTGTGCTGTGAAG
E-cadherin	Forward	GCCCC ATCAG GCCTC CGTTT
	Reverse	ACCTT GCCTT CTTTG TCTTT GTTGG A
GAPDH	Forward	GGAGCGAGATCCCTCCAAAAT
	Reverse	GGCTGTTGTCATACTTCTCAGG
	Forward	TGGACCATCACTCGGCTTA
N-cadherin	Reverse	ACACTGGCAAACCTTCACG
	Forward	CGAAACTTCTCAGCATCACG
Vimentin	Reverse	GCAGAAAGGCACTTGAAAGC
	Forward	TCATGCACCTTTGCGTGAGC
β-catenin	Reverse	GGCGCTGGGTATCCTGATGT
	Forward	TTCGGGTAGTGGAAAACCAG
c-myc	Reverse	CAGCAGCTCGAATTTCTTCC
	Forward	GTGCTGCGAAGTGGAAACC
cyclin D1	Reverse	ATCCAGGTGGCGACGATCT
	sense	TGTCTGCATCCCTCGAATAACTTTCAAGAGAAGTTATTCGAGGGATGCAGACTTTTTTC
sh-CYTOR-1	anti-sense	TCGAGAAAAAAGTCTGCATCCCTCGAATAACTTCTCTTGAAAGTTATTCGAGGGATGCAGACA
sh-CYTOR-2	sense	TGACTCTGAGGCCTCTGCATTTCAAGAGAATGCAGAGGCCTCAGAGTCTTTTTTC
	anti-sense	TCGAGAAAAAAGACTCTGAGGCCTCTGCATTCTCTTGAAATGCAGAGGCCTCAGAGTCA
	Forward	CGCAAATGGGCGGTAGGCGTG
LV-CYTOR	Reverse	CATAGCGTAAAAGGAGCAACA

Supplementary Table S5. Detailed sequence of Primers used for ChIP-PCR

	Forward	TTCTAGTGGGGCTGCCACA
TBE1	Reverse	AGCCTGCTGGTTTTCCAGAA
	Forward	AGGCTCCAAGGGCACCATTG
TBE2	Reverse	GCCTCCCACAGCTTCAAGCA
	Forward	AATGATCCAGAAGGCTCCTA
Neg	Reverse	GCCAGCCTTTACCTTCTTTA