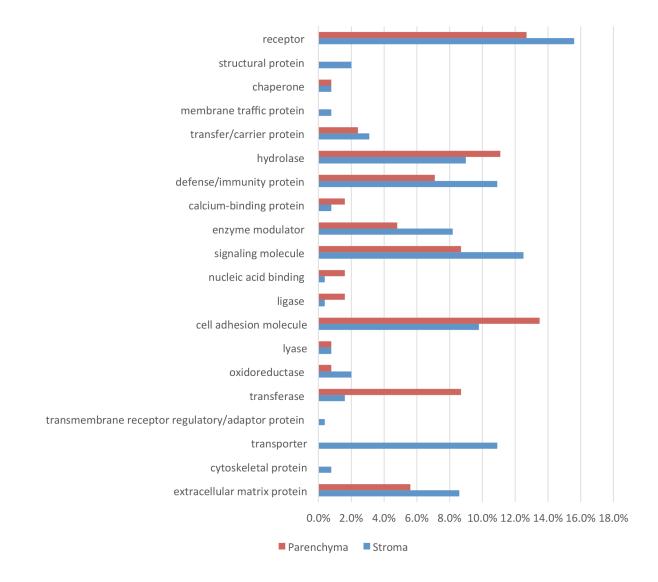
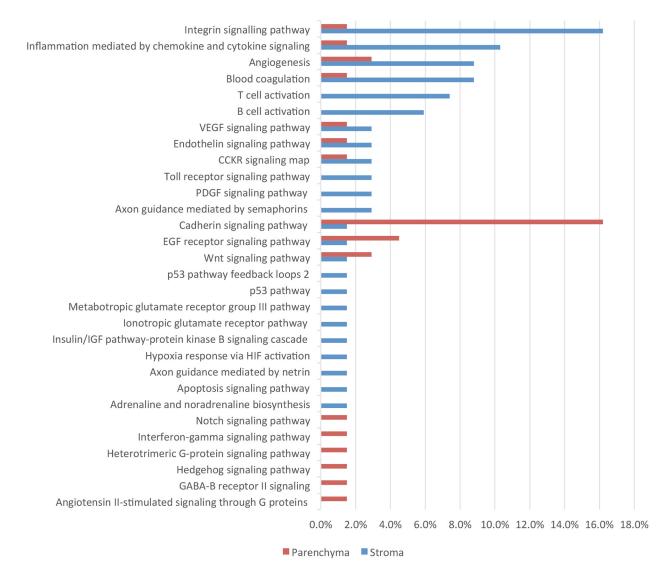
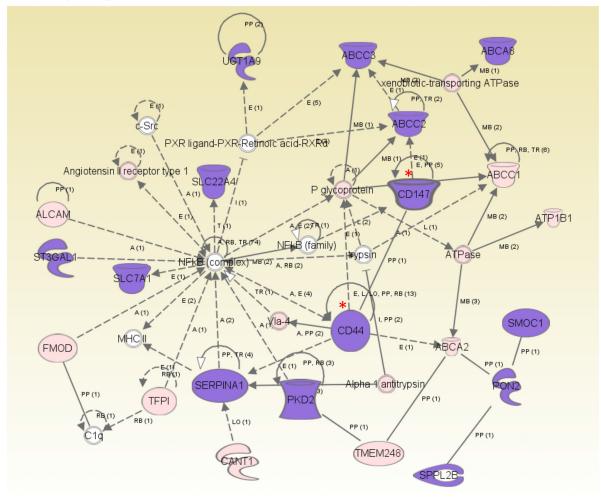

Direct molecular dissection of tumor parenchyma from tumor stroma in tumor xenograft using mass spectrometry-based glycoproteomics


SUPPLEMENTARY MATERIALS

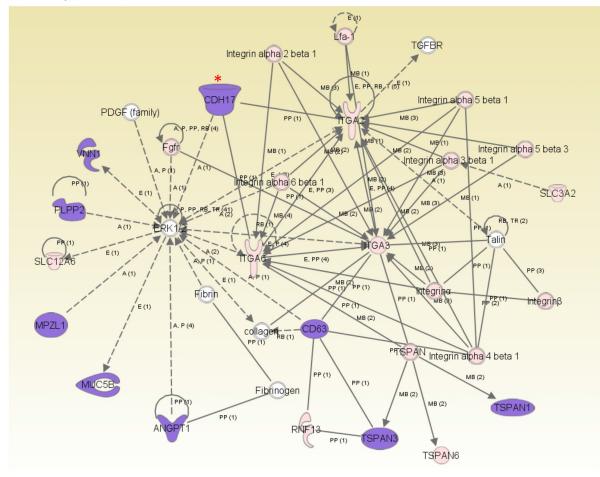

Supplementary Figure 1: Glycoproteomic workflow. (A) Tissue homogenization. (B) Tryptic digestion. (C) Oxidation and hydrazide-beads conjugation. (D) non-glycopeptide removal. (E) PNGase F based glycan removal. (F) N-glycopeptides collection. (G) LC-MS analysis. (H) Protein identification.

Supplementary Figure 2: Distribution of N-glycoproteins proteins identified by at least one protein and species specific N-glycopeptide.



Supplementary Figure 3: Protein class analysis using the PANTHER software.

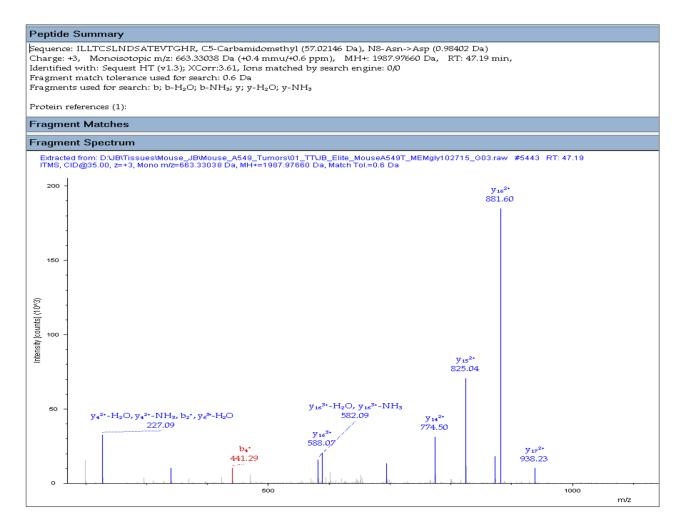
Supplementary Figure 4: Pathway analysis using the PANTHER software.


Network Analysis: Malignant Tumor Invasion

^{© 2000-2017} QIAGEN. All rights reserved.

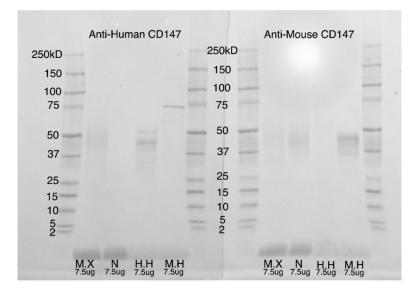

Supplementary Figure 5: IPA[®] analysis reveals malignant tumor invasion as one of top N-glycosylated protein networks activated in tumor parenchyma. Molecules selected for orthogonal cross-validation (i.e., CD147 and CD44) are marked with red asterisk.

Network Analysis: Tumor Metastasis



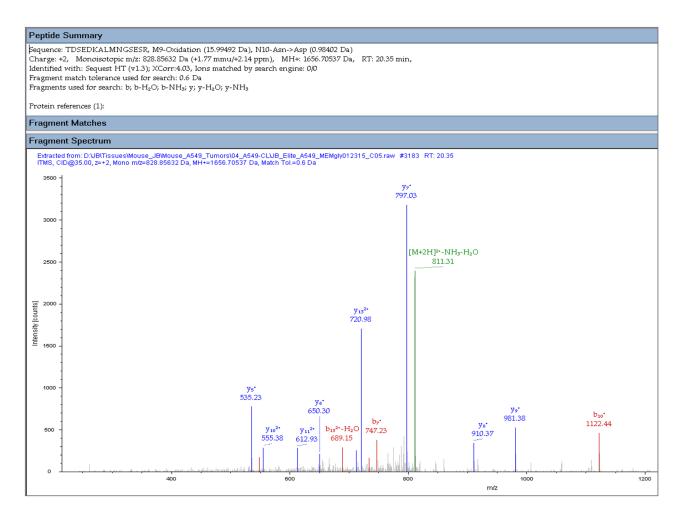
^{© 2000-2017} QIAGEN. All rights reserved.

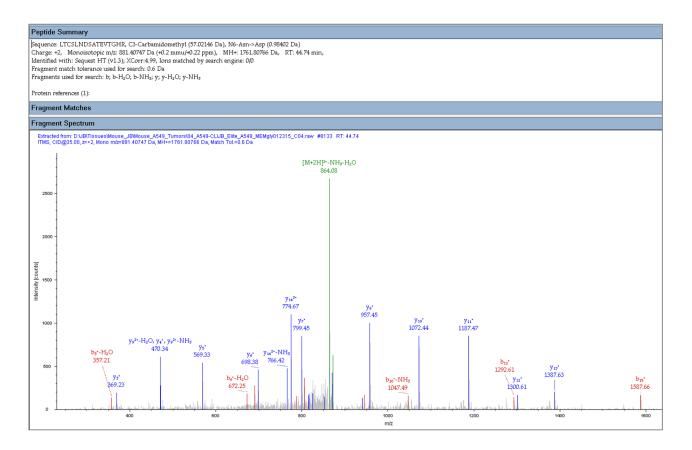
Supplementary Figure 6: IPA[®] analysis reveals tumor metastasis as one of top N-glycosylated protein networks activated in tumor parenchyma. Molecule selected for orthogonal cross-validation (i.e., CDH17) is marked with red asterisk.


Supplementary Figure 7: MS² spectrum depicting unambiguous identification of the human-parenchymal CD147 ortholog in tumor tissue by detection of protein- and species-specific N-glycopeptide.

Supplementary Figure 8: MS² spectrum depicting unambiguous identification of the human-parenchymal CD147 ortholog in tumor tissue by detection of protein- and species-specific N-glycopeptide.

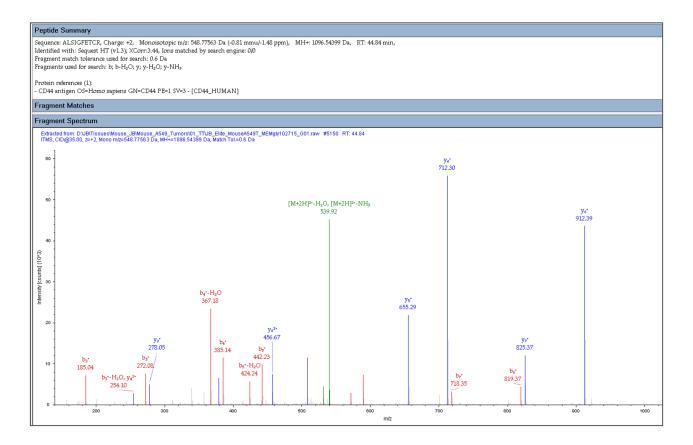
P18572	BA	ASI_MOUSE - Basigin Mus musculus (Mouse)	
E-value: 0.0			
Score: 1377			
ldent.: 65.0%			
Positives : 80.5%			
Query Length: 385			
Match Length: 389			
35613 BASI_HUMAN	1	MAAALFVLLGFALLGTHGASGAAGFVQAPLSQQRWVGGSVELHCEAVGSPVPEIQWWFEG	60
8572 BASI MOUSE	1	MAAAL + L F LL GA AAGF++APLSQ+RW GGSV LHCEAVGSP+PEIQWWFEG MAAALLLALAFTLLSGOGACAAAGFLKAPLSOERWAGGSVVLHCEAVGSPIPEIOWWFEG	60
_		~ ~ ~ ~	
35613 BASI_HUMAN	61	QGPNDTCSQLWDGARLDRVHIHATYHQHAASTISIDTLVEEDTGTYECRASNDPDRNHLT PND+CSQLWDGARLDRVHIHA Y QHAAS++S+D L EDTGTYECRAS+DPDRNHLT	120
18572 BASI_MOUSE	61	NAPNDSCSQLWDGARLDRVHIHAAYRQHAASSLSVDGLTAEDTGTYECRASSDPDRNHLT	120
35613 BASI HUMAN	121	RAPRVKWVRAQAVVLVLEPGTVFTTVEDLGSKILLTCSLNDSATEVTGHRWLKGGVVLKE	180
55615 BASI_HUMAN	121	R PRVKWVRAQAVVLVLEPGIVFIIVEDLGSA <u>ILLITCSLNDSAIEVIGR</u> WLKGGVVLKE R PRVKWVRAQA V+VLEPGI+ T+V+++ SK LTCSLN S ++ GHRW++GG VL+E	100
8572 BASI_MOUSE	121	RPPRVKWVRAQASVVVLEPGTIQTSVQEVNSKTQLTCSL N SSGVDIVGHRWMRGGKVLQE	180
35613 BASI HUMAN	181	DALPGOKTEFKVDSDDQWGEYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAML	240
-		D LP T++ VD+DD+ GEYSC+FLPEP+G + I + GPPR+K K SEH +EGE A L	
18572 BASI_MOUSE	181	DTLPDLHTKYIVDADDRSGEYSCIFLPEPVGRSEINVEGPPRIKVGKKSEHSSEGELAKL	240
35613 BASI_HUMAN	241	VCKSE-SVPPVTDWAWYK <u>ITDS-EDKALMNGSESR</u> FFVSSSQGRSELHIENLNMEADP	296
0570 D. CT. MONOT	0.41	VCKS+ S PP+TDW W+K +D+ E++A+ N +E+ ++ V S+ +S+L I NL++ DP	200
8572 BASI_MOUSE	241	VCKSDASYPPITDWFWFKTSDTGEEEAIT <mark>N</mark> STEANGKYVVVSTPEKSQLTISNLDVNVD <u>P</u>	300
5613 BASI_HUMAN	297	GQYRC N GTSSKGSDQAIITLRVRSHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLD	356
8572 BASI MOUSE	301	G Y CN T+++G+ + I+LRVRS +AALWPFLGIVAEVLVLVTIIFIYEKRRKP+ LD GTYVCNATNAOGTTRETISLRVRSRMAALWPFLGIVAEVLVLVTIIFIYEKRRKPDOTLD	360
SOLL DADI_HOUDE		<u>~</u>	
5613 BASI_HUMAN	357	DDDAGSAPLKSSGQHQNDKGKNVRQRNSS	385
8572 BASI MOUSE	361	+DD G+APLK SG H NDK KNVRQRN++ EDDPGAAPLKGSGTHMNDKDKNVRORNAT	389


Supplementary Figure 9: BLAST analysis confirming protein and species specificity of identified N-glycopeptides from CD147 orthologs. Underlined in red are human-specific peptides identified in tumor parenchyma. Underlined in green are human-specific peptides identified in 2D-grown A549 cells. Underlined in blue is mouse-specific N-glycopeptide identified in normal mouse lungs. NxST motif is highlighted in red.

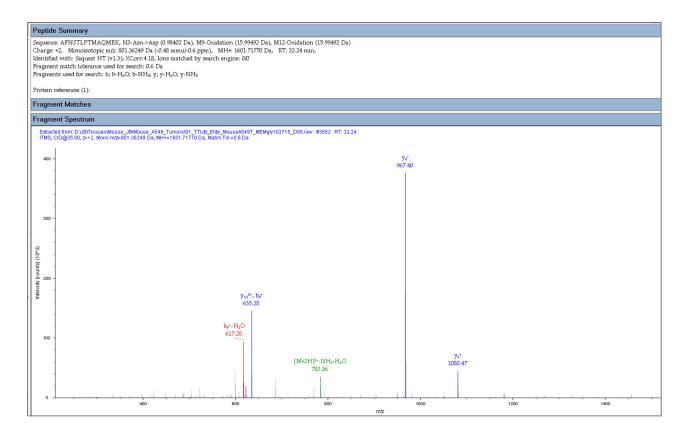

Supplementary Figure 10: WB analysis of tumor tissue homogenate. Using anti-human CD147 antibody the WB analysis verified expression of human-derived CD147 in tumor homogenate (MX) and human hart (HH) homogenate (i.e., positive control). The WB analysis using the same antibody was negative in normal (N) mouse lungs and mouse hart (MH) used as negative control.

Supplementary Figure 11: MS² spectrum depicting unambiguous identification of the mouse CD147 ortholog in normal lungs by detection of protein- and species-specific N-glycopeptide.

Supplementary Figure 12: MS² spectrum depicting unambiguous identification of the human CD147 ortholog in 2D-grown A549 cells by detection of protein- and species-specific N-glycopeptide.


Supplementary Figure 13: MS² spectrum depicting unambiguous identification of the human CD147 ortholog in 2D-grown A549 cells by detection of protein- and species-specific N-glycopeptide.

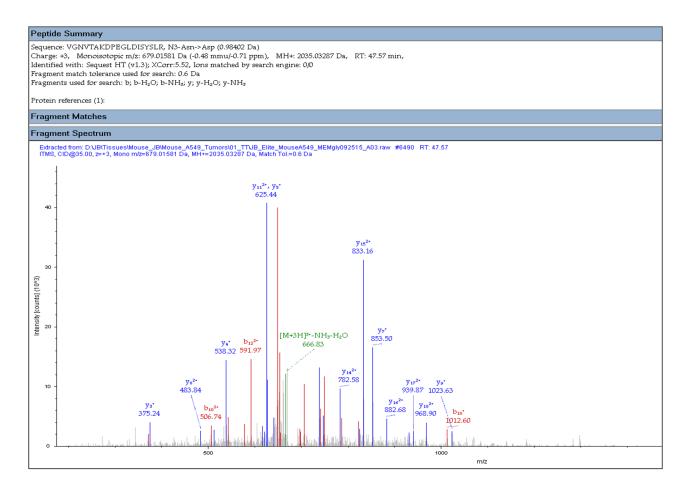
G3QVG0 G	3QVG0_GOR	GO - Basigin (Ok blood group) Gorilla gorilla gorilla (Western lowland gorilla))
E-value: 0.0			
Score: 1965			
ldent.: 96.6%			
Positives : 98.2%			
Query Length: 385			
Match Length: 386			
0			
5613 BASI_HUMAN	1	MAAALFVLLGFALLGTHGASGAAGFVQAPLSQQRWVGGSVELHCEAVGSPVPEIQWWFEG	60
QVG0 G3QVG0 GORGO	1	MAAALFVLLGFALLGTHGASGAAGFVQAPLSQQRWVGGSVELHCEAVGSPVPEIQWWFEG MAAALFVLLGFALLGTHGASGAAGFVQAPLSOORWVGGSVELHCEAVGSPVPEIOWWFEG	60
2190 932190 GOVGO	1	MAADI VIDGIADGIIGAGGAAGI VQAFIDQQAWVGGGVEDIIGEAVGGFVFEIQWWEG	00
5613 BASI_HUMAN	61	QGPNDTCSQLWDGARLDRVHIHATYHQHAASTISIDTLVEEDTGTYECRASNDPDRNHLT	120
01120 2201120 20020	C1	QGPNDTCSQLWDGARLDRVHIHATYHQHAASTISIDTL EEDTGTYECRASNDPDRNHLT	100
QVG0 G3QVG0_GORGO	61	QGPNDTCSQLWDGARLDRVHIHATYHQHAASTISIDTLTEEDTGTYECRASNDPDRNHLT	120
5613 BASI_HUMAN	121	RAPRVKWVRAQAVVLVLEPGTVFTTVEDLGSKILLTCSLMDSATEVTGHRWLKGGVVLKE	180
		RAPRVKWVRAQAVVLVLEPGTV TTVE+LGSKILLTCSLNDSATEVTGHRWLKGGVVLKE	
QVG0 G3QVG0_GORGO	121	RAPRVKWVRAQAVVLVLEPGTVLTTVEELGSKILLTCSLNDSATEVTGHRWLKGGVVLKE	180
5613 BASI HUMAN	181	DALPGQKTEFKVDSDDQWGEYSCVFLPEPMGTANIQL-HGPPRVKAVKSSEHINEGETAM	239
-		DALPGQKTEF+VDSDDQWGEYSCVFLPEPMGTANI+L HGPPRVKAVK SEHINEGETA+	
QVG0 G3QVG0_GORGO	181	DALPGQKTEFEVDSDDQWGEYSCVFLPEPMGTANIKLHHGPPRVKAVKLSEHINEGETAV	240
5613 BASI HUMAN	240	LVCKSESVPPVTDWAWYKITDSEDKALMNGSESRFFVSSSQGRSELHIENLNMEADPGQY	299
ooro phor_honan	210	L CKSESVPPVTDWAWYKITDS DKAL NGSESRFFVSSSQGRSEL+IENLNMEADPGQY	200
QVG0 G3QVG0_GORGO	241	LACKSESVPPVTDWAWYKITDSGDKALTNGSESRFFVSSSQGRSELYIENLNMEADPGQY	300
5613 BASI HUMAN	300	RCNGTSSKGSDOAIITLRVRSHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDD	359
	300	RCNGTSSKGSDQA1ITLRVRSHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDD RCNGTSSKGSDQA+ITLRVRSHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDD	339
			0.00
QVG0 G3QVG0_GORGO	301	RCNGTSSKGSDQAVITLRVRSHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDD	360
_ QVG0 G3QVG0_GORGO			
-	301 360	RCNGTSSKGSDQAVITLRVRSHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDD AGSAPLKSSGQHQNDKGKNVRQRNSS AGSAPLKSSGQHQNDKGKNVRQRNSS	360


Supplementary Figure 14: BLAST analysis depicting comparison of human's and gorilla's CD147 orthologs. Highlighted in red are predicted N-glycosylated sites showing protein and species-specific AA sequence differences of MS-identifiable N-glycopeptides.

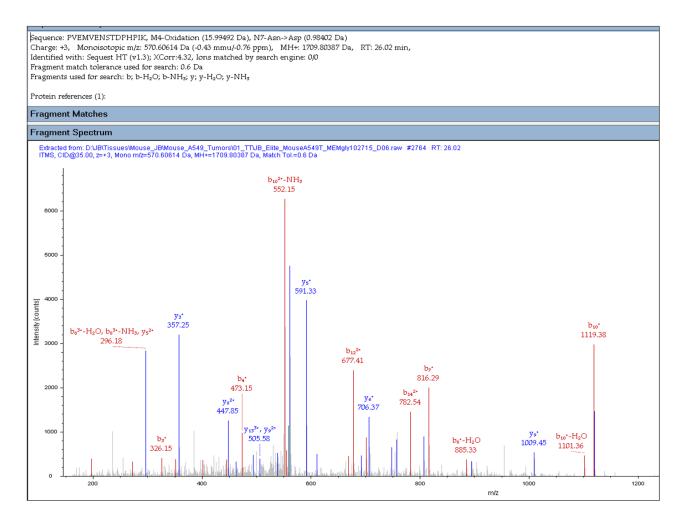
G2HDX7	G2HD	DX7_PANTR - Basigin Pan troglodytes (Chimpanzee)	
E-value: 1.5e-168			
Score: 1247			
Ident.: 96.3%			
Positives : 98.4%			
Query Length: 385			
Match Length: 269			
35613 BASI HUMAN	140	GTVFTTVEDLGSKILLTCSLNDSATEVTGHRWLKGGVVLKEDALPGQKTEFKVDSDDQWG	199
_		GTVFTTVEDLGSKILLTC +NDSATEVTGHRWLKGGVVL+EDALPGQKTEFKVDSDDQWG	
2HDX7 G2HDX7_PANTR	24	GTVFTTVEDLGSKILLTCYMNDSATEVTGHRWLKGGVVLEEDALPGQKTEFKVDSDDQWG	83
35613 BASI HUMAN	200	EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAMLVCKSESVPPVTDWAWYKIT	259
_		EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETA+LVCKSESVPPVTDWAWYKIT	
- 2HDX7 G2HDX7_PANTR	84	EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETA+LVCKSESVPPVTDWAWYKIT EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT	143
_	84 260	~	143 319
- 2HDX7 G2HDX7_PANTR		EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT	
- 2HDX7 G2HDX7_PANTR		EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT DSEDKALM <mark>N</mark> GSESRFFVSSSQGRSELHIENLNMEADPGQYRC <mark>N</mark> GTSSKGSDQAIITLRVR	
_ 2HDX7 G2HDX7_PANTR 35613 BASI_HUMAN 2HDX7 G2HDX7_PANTR	260	EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT DSEDKALMNGSESRFFVSSSQGRSELHIENLNMEADPGQYRCNGTSSKGSDQAIITLRVR DS DKALMNGSESRFFVSS QGRSELHIENLNMEADPGQYRCNG SS+GSDQA+ITLRVR	319
- 2HDX7 G2HDX7_PANTR 35613 BASI_HUMAN	260 144	EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT DSEDKALMNGSESRFFVSSSQGRSELHIENLNMEADPGQYRCNGTSSKGSDQAIITLRVR DS DKALMNGSESRFFVSS QGRSELHIENLNMEADPGQYRCNG SS+GSDQA+ITLRVR DSGDKALMNGSESRFFVSSLQGRSELHIENLNMEADPGQYRCNGNSSEGSDQAVITLRVR	319 203
_ 2HDX7 G2HDX7_PANTR 35613 BASI_HUMAN 2HDX7 G2HDX7_PANTR	260 144	EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT DSEDKALMNGSESRFFVSSSQGRSELHIENLNMEADPGQYRCNGTSSKGSDQAIITLRVR DS DKALMNGSESRFFVSS QGRSELHIENLNMEADPGQYRCNG SS+GSDQA+ITLRVR DSGDKALMNGSESRFFVSSLQGRSELHIENLNMEADPGQYRCNGNSSEGSDQAVITLRVR SHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDDAGSAPLKSSGQHQNDKGKNV	319 203
_ 2HDX7 G2HDX7_PANTR 35613 BASI_HUMAN 2HDX7 G2HDX7_PANTR 35613 BASI_HUMAN 2HDX7 G2HDX7_PANTR	260 144 320	EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT DSEDKALMNGSESRFFVSSSQGRSELHIENLNMEADPGQYRCNGTSSKGSDQAIITLRVR DS DKALMNGSESRFFVSS QGRSELHIENLNMEADPGQYRCNG SS+GSDQA+ITLRVR DSGDKALMNGSESRFFVSSLQGRSELHIENLNMEADPGQYRCNGNSSEGSDQAVITLRVR SHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDDAGSAPLKSSGQHQNDKGKNV SHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDDAGSAPLKSSGQHQNDKGKNV	319 203 379
_ 2HDX7 G2HDX7_PANTR 35613 BASI_HUMAN 2HDX7 G2HDX7_PANTR 35613 BASI_HUMAN	260 144 320 204	EYSCVFLPEPMGTANIQLHGPPRVKAVKSSEHINEGETAVLVCKSESVPPVTDWAWYKIT DSEDKALMNGSESRFFVSSSQGRSELHIENLNMEADPGQYRCNGTSSKGSDQAIITLRVR DS DKALMNGSESRFFVSS QGRSELHIENLNMEADPGQYRCNG SS+GSDQA+ITLRVR DSGDKALMNGSESRFFVSSLQGRSELHIENLNMEADPGQYRCNGNSSEGSDQAVITLRVR SHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDDAGSAPLKSSGQHQNDKGKNV SHLAALWPFLGIVAEVLVLVTIIFIYEKRRKPEDVLDDDDAGSAPLKSSGQHQNDKGKNV	319 203 379 263

Supplementary Figure 15: BLAST analysis depicting comparison of human's and chimpanzee's CD147 orthologs. Highlighted in red are predicted N-glycosylated sites showing protein and species-specific AA sequence differences of MS-identifiable N-glycopeptides.

Supplementary Figure 16: MS² spectrum depicting unambiguous identification of the human-derived CD44 ortholog in tumor parenchyma by detection of protein- and species-specific N-glycopeptide.



Supplementary Figure 17: MS² spectrum depicting unambiguous identification of the human-derived CD44 ortholog in tumor parenchyma by detection of protein- and species-specific N-glycopeptide.

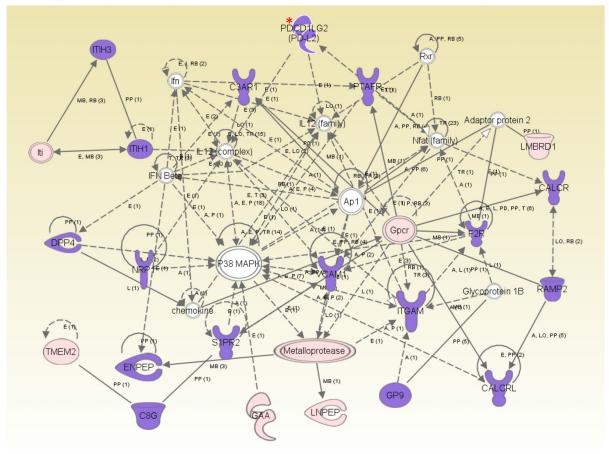

D	1	C	0	7	0	
	+	5	9	1	2	

E-value: 0.0 Score: 2582 Ident.: 67.2% Positives : 75.0%			
Query Length: 742 Match Length: 778			
_			
	-		
P16070 CD44_HUMAN	1	MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNS MDKFWWH AWGLCL+ LSLA QIDLN+TCR+AGVFHVEKNGRYSISRTEAADLC+AFNS	58
P15379 CD44_MOUSE	1	MDREWWH AWGLELF ISLA QIDLWTICKTAGVINVERNGRISISRIEAADLETAINS MDREWWHTAWGLELLQLSLAHQQIDLNVICRYAGVFHVERNGRYSISRIEAADLEQAFNS	60
P16070 CD44_HUMAN	59	TLPTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYIL-TSNTSQYDTY	117
P15379 CD44_MOUSE	61	TLPTM QM+ ALS GFETCRYGFIEG+VVIPRIHPN+ICAAN+TGVYIL TSNTS YDTY TLPTMDQMKLALSKGFETCRYGFIEGNVVIPRIHPNAICAANHTGVYILVTSNTSHYDTY	120
P16070 CD44_HUMAN	118	CFNASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDD	177
P15379 CD44_MOUSE	121	CFNASAPPEEDCTSVTDLPN+FDGP+TITIVNRDGTRY +KGEYRT+ EDI SN DDD CFNASAPPEEDCTSVTDLPNSFDGPVTITIVNRDGTRYSKKGEYRTHQEDIDASNIIDDD	180
P16070 CD44_HUMAN	178	VSSGSSSERSSTSGGYIFYTF-STVHPIPDEDSPWITDSTDRIPATTLMS	226
P15379 CD44_MOUSE	181	VSSGS+ E+S T GYI +T+ T P D+D + ST A+T+ S VSSGSTIEKS-TPEGYILHTYLPTEQPTGDQDDSFFIRSTLATIASTVHSKSHAAAQKQN	239
P16070 CD44_HUMAN	227	ETATKRQETWDWFSWLFLPSESKNHLHTT	261
P15379 CD44_MOUSE	240	TSAT ET KRQE +WFSWLF PSESK+HLHTT NWIWSWFGNSQSTTQTQEPTTSATTALMTTPETPPKRQEAQNWFSWLFQPSESKSHLHTT	299
P16070 CD44_HUMAN	262	TQMAGTSSNTISAGWEPNEENEDERDRHLSFSGSGIDDDEDFISSTISTTPRAFDHTKQN	321
P15379 CD44 MOUSE		T+M GT SNT GWEPNEENEDE D + SFSGSGIDDDEDFISSTI+TTPR T+ N TKMPGTESNTNPTGWEPNEENEDETDTYPSFSGSGIDDDEDFISSTIATTPRVSARTEDN	359

Supplementary Figure 18: BLAST analysis confirming protein and species specificity of identified N-glycopeptides from human-derived CD44. Underlined in red are protein and species-specific peptides identified solely in tumor parenchyma.

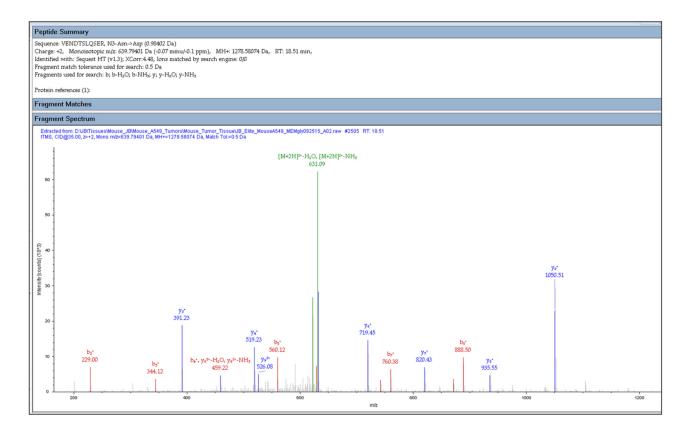
Supplementary Figure 19: MS² spectrum depicting unambiguous identification of the human-derived CDH17 ortholog in tumor parenchyma by detection of protein- and species-specific N-glycopeptide.

Supplementary Figure 20: MS² spectrum depicting unambiguous identification of the human-derived CDH17 ortholog in tumor parenchyma by detection of protein- and species-specific N-glycopeptide.


Q9R100

E-value: 0.0 Score: 3443 Ident.: 79.1% Positives : 88.2% Query Length: 832 Match Length: 827

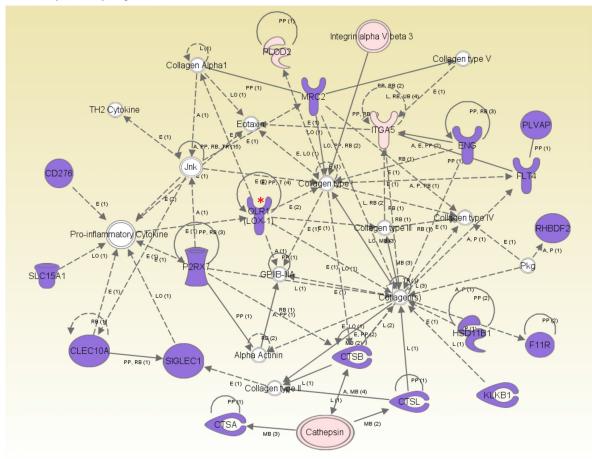
12864 CAD17_HUMAN	2	ILQAHLHSLCLLMLYLATGYGQEGKFSGPLKPMTFSIYEGQEPSQIIFQFKANPPAVTFE	61
9R100 CAD17_MOUSE	1	++ A LH LCLL LYL GYG+EGKFSGPLKPMTFSI+EGQEPSQ+IFQFK NPPAVTFE MVSAQLHFLCLLTLYLTCGYGEEGKFSGPLKPMTFSIFEGQEPSQVIFQFKTNPPAVTFE	60
12864 CAD17_HUMAN	62	LIGETDNIFVIER <u>EGLLYYNR</u> ALDRETRSTHNLQVAALDANGIIVEGPVPITIKVKDIND LIGETD IF IE++GLLY+ RALDRETR+ H+LO+AALD++G IV+GPVPITI+VKDIND	121
9R100 CAD17_MOUSE	61	LIGEID IF IEFFGLLIF KALDKEIKF HELGTAALDFIG IVFGPVFIIIFVKDIND LIGETDGIFKIEKDGLLYHTRALDRETRAVHHLQLAALDSHGAIVDGPVPIIIEVKDIND	120
12864 CAD17_HUMAN	122	NRPTFLQSKYEGSVRQNSRPGKPFLYVNATDLDDDATPNGQLYYQIVIQLPMINNVMYFQ NRPTFLOSKYEGSVRQNSRPGKPF+YVNATDLDDDATPNGQL+YQIVIQLP IN+VMYFQ	181
9R100 CAD17_MOUSE	121	NRPTFLQSKYEGSVRQNSRPGKPFMYVNATDLDDPATPNGQLFYQIVIQLPQINDVMYFQ	180
12864 CAD17_HUMAN	182	INNKTGAISLTREGSQELNPAKNPSYNLVISVKDMGGQSENSFSDTTSVDIIVTENIWKA I++KTGAISLT EGSOEL+P KNPSYNLV+SVKDMGGOSENSFSDTT VDI + ENIWKA	241
9R100 CAD17_MOUSE	181	IDSKTGAISLTPEGSQELDPVKNPSYNLVVSVKDMGGQSENSFSDTTYVDISIRENIWKA	240
12864 CAD17_HUMAN	242	PKPVEMVENSTDPHPIKITQVRWNDPGAQYSLVDKEKLPRFPFSIDQEGDIYVTQPLDRE P+PVE+ ENSTDPHPIKITQV+WNDPGAQYSLV+KEKL FPFSIDQEG+IYVTQ LDRE	301
R100 CAD17_MOUSE	241	PEPVEIRENSTDPHPIKITQVQWNDPGAQYSLVNKEKLSPFPFSIDQEGNIYVTQALDRE	300
12864 CAD17_HUMAN	302	EKDAYVFYAVAKDEYGKPLSYPLEIHVKVKDINDNPPTCPSPVTVFEVQENERLGNSIGT EK+++VF+A AKDE GKPL+YPLEI+VKV DINDNPPTC SPVTVFEVQENE LGNSIG	361
9R100 CAD17_MOUSE	301	EKNSHVFFATAKDENGKPLAYPLEIYVKVIDINDNPPTCLSPVTVFEVQENEPLGNSIGI	360
L2864 CAD17_HUMAN	362	LTAHDRDEENTANSFLNYRIVEQTPKLPMDGLFLIQTYAGMLQLAKQSLKKQDTPQYNLT AHD DE N NS L Y++V+QTPK+P DGLFLI Y G +QL+KQSLKKQD+PQYNL+	421
R100 CAD17_MOUSE	361	FEAHDMDEANNINSILKYKLVDQTPKVPSDGLFLIGEYEGKVQLSKQSLKKQDSPQYNLS	420
12864 CAD17_HUMAN	422	IEVSDKDFKTLCFVQINVIDINDQIPIFEKSDYGNLTLAEDTNIGSTILTIQATDADEPF IEVSD DFKTLC++Q+NVIDINDQIPIFE S+YG+ TL+EDT IGSTIL IQATDADEPF	481
9R100 CAD17_MOUSE	421	IEVSDVDFKTLCYIQVNVIDINDQIPIFETSNYGSKTLSEDTAIGSTILIIQATDADEPF	480
12864 CAD17_HUMAN	482	TGSSKILYHIIKGDSEGRLGVDTDPHTNTGYVIIKKPLDFETAAVSNIVFKAENPEPLVF TGSSKILY I++GD+EGRL V TDP TN GYV IKKPLDFET VS+IVF+AENPEPLV	541
9R100 CAD17_MOUSE	481	TGSSKILYKIVQGDTEGRLEVVTDPTTNAGYVKIKKPLDFETQPVSSIVFQAENPEPLVK	540
12864 CAD17_HUMAN	542	GVK <u>YNASSFAK</u> FTLIVTDVNEAPQFSQHVFQAKVSEDVAIGTK <u>VGNVTAKDPEGLDISYS</u> G++YNASSFA F LIVTDVNE P F Q +FQA VSED A+G++VGNVTA+DPEGL +SYS	601
9R100 CAD17_MOUSE	541	GIEYNASSFASFELIVTDVNEVPVFPQRIFQANVSEDAAVGSRVGNVTARDPEGLTVSYS	600
12864 CAD17_HUMAN	602	LRGDTRGWLKIDHVTGEIFSVAPLDREAGSPYRVQVVATEVGGSSLSSVSEFHLILMDVN L+G+ RGWLKID VTGEIFS APLDRE S YRVQVVATEVGGSSLSS ++FHL+L DVN	661
9R100 CAD17 MOUSE	601	LKGNMRGWLKIDSVTGEIFSAAPLDRETESVYRVQVVATEVGGSSLSSTADFHLVLTDVN	660


Supplementary Figure 21: BLAST analysis confirming protein and species specificity of identified N-glycopeptides from parenchymal human-derived CDH17. Underlined in red are protein and species-specific peptides identified in tumor parenchyma.

Network Analysis: Leukocytes Immune Response

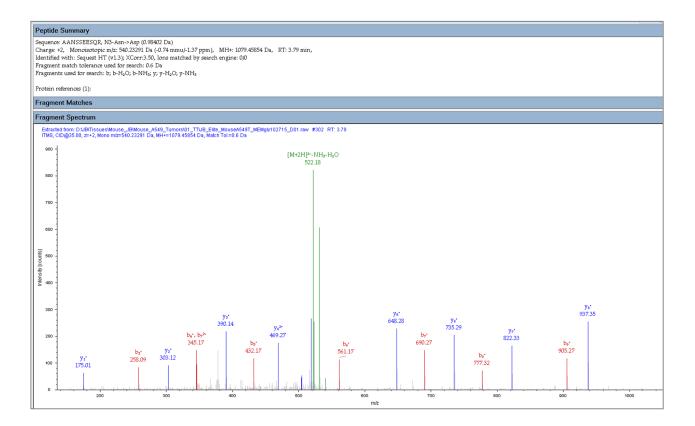
^{© 2000-2017} QIAGEN. All rights reserved.

Supplementary Figure 22: IPA[®] analysis reveals leukocyte immune response as one of top N-glycosylated protein networks activated in tumor stroma. Molecule selected for orthogonal cross-validation (i.e., PD-L2) is marked with red asterisk.



Supplementary Figure 23: MS² spectrum depicting unambiguous identification of the mouse-derived PD-L2 ortholog in tumor stroma by detection of protein- and species-specific N-glycopeptide.

Q9BQ51	PD1L2_HUM	AN - Programmed cell death 1 ligand 2 Homo sapiens (Human)	
E-value: 2.2e-117 Score: 895 Ident.: 69.6% Positives : 80.6% Query Length: 247		ation of the mouse Programmed cell death 1 ligand 2 (Pdcd1lg2) only in tumor stroma	
Match Length: 273	(i.e. higl	nlighted in blue) by 36 PSMs from species and protein specific glyco-peptide	
WUL5 PD1L2_MOUSE	1	$\tt MLLLLPILNLSLQLHPVAALFTVTAPKEVYTVDVGSSVSLECDFDRRECTELEGIRASLQ$	60
		M+ LL +L+L LQLH +AALFTVT PKE+Y ++ GS+V+LEC+FD L I ASLQ	
DOLT DOLTO MODEL			60
BQ51 PD1L2_HUMAN	1	MIFLLLMLSLELQLHQIAALFTVTVPKELYIIEHGSNVTLECNFDTGSHVNLGAITASLQ	60
BQ51 PD1L2_HUMAN	1 61	KV <u>ENDTSLQSER</u> ATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK	60 120
WUL5 PD1L2_MOUSE	61	KV <u>ENDTSLQSER</u> ATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK	120
_		KV <u>ENDTSLQSER</u> ATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK	
WUL5 PD1L2_MOUSE	61	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL	120
WUL5 PD1L2_MOUSE BEQ51 PD1L2_HUMAN WUL5 PD1L2_MOUSE	61 61 121	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL ASY +I+T IL+VP T EV+LTCQA GYPLAEVSW NVSVPANTSH RTPEGLYQVTSVL	120 120 180
WUL5 PD1L2_MOUSE BQ51 PD1L2_HUMAN	61	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL	120 120 180
WUL5 PD1L2_MOUSE BEQ51 PD1L2_HUMAN WUL5 PD1L2_MOUSE	61 61 121	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL ASY +I+T IL+VP T EV+LTCQA GYPLAEVSW NVSVPANTSH RTPEGLYQVTSVL ASYRKINTHILKVPETDEVELTCQATGYPLAEVSWPNVSVPANTSHSRTPEGLYQVTSVL RLKPQPSRNFSCMFWNAHMKELTSAIIDPLSRMEPKVPRTWPLHVFIPACTIALIFLAIV	120 120 180 180
WUL5 PD1L2_MOUSE PBQ51 PD1L2_HUMAN WUL5 PD1L2_MOUSE PBQ51 PD1L2_HUMAN WUL5 PD1L2_HUMAN WUL5 PD1L2_MOUSE	61 61 121 121 181	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL ASY +I+T IL+VP T EV+LTCQA GYPLAEVSW NVSVPANTSH RTPEGLYQVTSVL ASYRKINTHILKVPETDEVELTCQATGYPLAEVSWPNVSVPANTSHSRTPEGLYQVTSVL RLKPQPSRNFSCMFWNAHMKELTSAIIDPLSRMEPKVPRTWPLHVFIPACTIALIFLAIV RLKP P RNFSC+FWN H++ELT A ID S+MEP+ TW LH+FIP C IA IF+A V	120 120 180 180 240
WUL5 PD1L2_MOUSE DBQ51 PD1L2_HUMAN WUL5 PD1L2_MOUSE DBQ51 PD1L2_HUMAN	61 61 121 121	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL ASY +I+T IL+VP T EV+LTCQA GYPLAEVSW NVSVPANTSH RTPEGLYQVTSVL ASYRKINTHILKVPETDEVELTCQATGYPLAEVSWPNVSVPANTSHSRTPEGLYQVTSVL RLKPQPSRNFSCMFWNAHMKELTSAIIDPLSRMEPKVPRTWPLHVFIPACTIALIFLAIV	120 120
WUL5 PD1L2_MOUSE PBQ51 PD1L2_HUMAN WUL5 PD1L2_MOUSE PBQ51 PD1L2_HUMAN WUL5 PD1L2_HUMAN WUL5 PD1L2_MOUSE	61 61 121 121 181	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL ASY +I+T IL+VP T EV+LTCQA GYPLAEVSW NVSVPANTSH RTPEGLYQVTSVL ASYRKINTHILKVPETDEVELTCQATGYPLAEVSWPNVSVPANTSHSRTPEGLYQVTSVL RLKPQPSRNFSCMFWNAHMKELTSAIIDPLSRMEPKVPRTWPLHVFIPACTIALIFLAIV RLKP P RNFSC+FWN H++ELT A ID S+MEP+ TW LH+FIP C IA IF+A V	120 120 180 180 240
WUL5 PD1L2_MOUSE PBQ51 PD1L2_HUMAN WUL5 PD1L2_MOUSE PBQ51 PD1L2_HUMAN WUL5 PD1L2_MOUSE PD1L2_MOUSE	61 61 121 121 181 181	KVENDTSLQSERATLLEEQLPLGKALFHIPSVQVRDSGQYRCLVICGAAWDYKYLTVKVK KVENDTS ERATLLEEQLPLGKA FHIP VQVRD GQY+C++I G AWDYKYLT+KVK KVENDTSPHRERATLLEEQLPLGKASFHIPQVQVRDEGQYQCIIIYGVAWDYKYLTLKVK ASYMRIDTRILEVPGTGEVQLTCQARGYPLAEVSWQNVSVPANTSHIRTPEGLYQVTSVL ASY +I+T IL+VP T EV+LTCQA GYPLAEVSW NVSVPANTSH RTPEGLYQVTSVL ASYRKINTHILKVPETDEVELTCQATGYPLAEVSWPNVSVPANTSHSRTPEGLYQVTSVL RLKPQPSRNFSCMFWNAHMKELTSAIIDPLSRMEPKVPRTWPLHVFIPACTIALIFLAIV RLKP P RNFSC+FWN H++ELT A ID S+MEP+ TW LH+FIP C IA IF+A V RLKPPPGRNFSCVFWNTHVRELTLASIDLQSQMEPRTHPTWLLHIFIPFCIIAFIFIATV	120 120 180 180 240 240

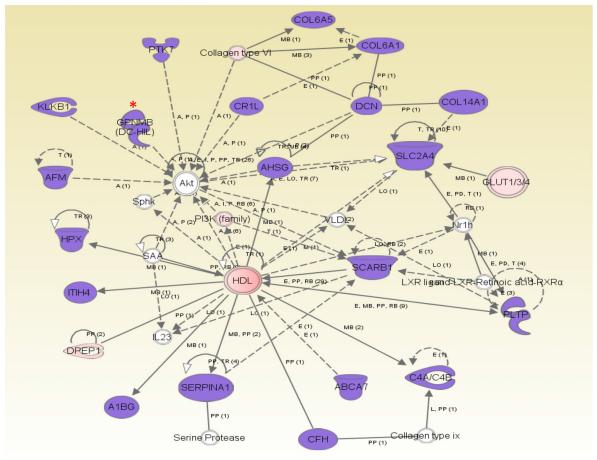

Supplementary Figure 24: BLAST analysis confirming protein and species specificity of identified N-glycopeptides from stromal mouse-derived PD-L2, Pdcd1lg2 gene product. Underlined in blue is protein and species-specific peptides identified solely in tumor stroma.

Network Analysis: Leukocyte Migration

^{© 2000-2017} QIAGEN. All rights reserved.

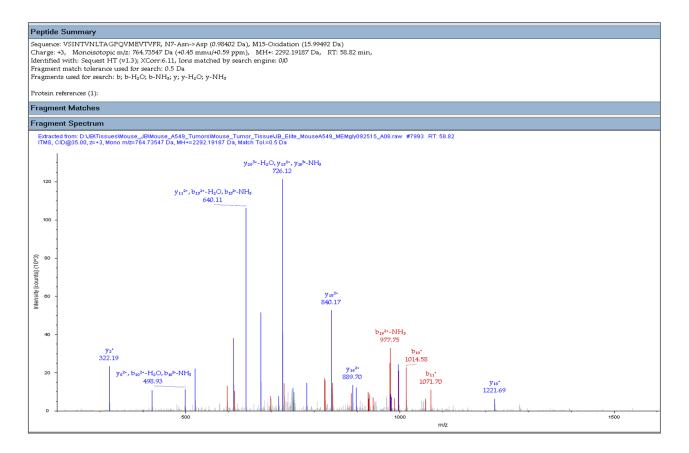
Supplementary Figure 25: IPA[®] analysis reveals leukocyte migration as one of top N-glycosylated protein networks activated in tumor stroma. Molecule selected for orthogonal cross-validation (i.e., LOX-1) is marked with red asterisk.

Supplementary Figure 26: MS² spectrum depicting unambiguous identification of the mouse-derived LOX-1 ortholog in tumor stroma by detection of protein- and species-specific N-glycopeptide.

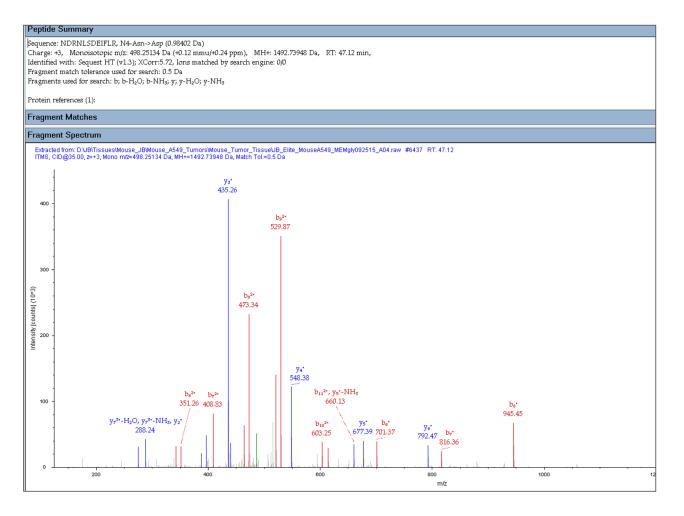

P78380

Score: 707 Ident.: 44.9% Positives : 54.6% Query Length: 363 Match Length: 273

Q9EQ09 OLR1_MOUSE	1	MTFDD-KMKPANDEPDQKSCGKKPKGLHLLSSPWWFPAAMTLVILCLVLSVTLIVQWTQL MTFDD K++ D+PD+KS GKK KGL L SPWW AA TL +LCL L VT++V QL	59
P78380 OLR1_HUMAN	1	MTFDDLKIQTVKDQPDEKSNGKKAKGLQFLYSPWWCLAAATLGVLCLGLVVTIMVLGMQL	60
Q9EQ09 OLR1_MOUSE	60	RQVSDLLKQYQANLTQQDRILEGQMLAQQKAENTSQESKKELKGKIDTLTQKLNEKSKEQ QVSDLL Q QANLT Q KK+L+G+I	119
P78380 OLR1_HUMAN	61	SQVSDLLTQEQANLTHQKKKLEGQIS	86
Q9EQ09 OLR1_MOUSE	120	EELLQKNQNLQEALQRAANSSEESQRELKGKIDTITRKLDEKSKEQEELLQMIQNLQEAL A Q+A +S+ES+ ELK I+T+ RKL+EKSKEQ EL NLQE L	179
P78380 OLR1_HUMAN	87	ARQQAEEASQESENELKEMIETLARKLNEKSKEQMELHHQNLNLQETL	134
Q9EQ09 OLR1_MOUSE	180	QRAANSSEESQRELKGKIDTLTLKLNEKSKEQEELLQKNQNLQEALQRAANFSGPCPQDW +R AN S PCPQDW	239
P78380 OLR1_HUMAN	135	KRVANCSAPCPQDW	148
Q9EQ09 OLR1_MOUSE	240	LWHKENCYLF-HGPFSWEKNRQTCQSLGGQLLQINGADDLTFILQAISHTTSPFWIGLHR +WH ENCYLF G F+WEK+++ C SL +LL+IN DL FI QAIS+++ PFW+GL R	298
P78380 OLR1_HUMAN	149	IWHGENCYLFSSGSFNWEKSQEKCLSLDAKLLKINSTADLDFIQQAISYSSFPFWMGLSR	208
Q9EQ09 OLR1_MOUSE	299	KKPGQPWLWENGTPLNFQFFKTRGVSLQLYSSGNCAYLQDGAVFAENCILIAFSICQKKT + P PWLWE+G+PL F+ RG Q Y SG CAY+Q GAV+AENCIL AFSICQKK	358
P78380 OLR1_HUMAN	209	RNPSYPWLWEDGSPLMPHLFRVRGAVSQTYPSGTCAYIQRGAVYAENCILAAFSICQKKA	268


Supplementary Figure 27: BLAST analysis confirming protein and species specificity of identified N-glycopeptides from stromal mouse-derived LOX-1, Olr1 gene product. Underlined in blue is protein and species-specific peptides identified solely in tumor stroma.

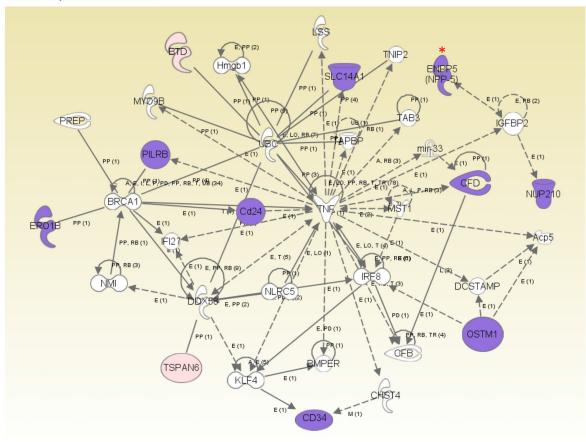
Network Analysis: Humoral Immune Response



^{© 2000-2017} QIAGEN. All rights reserved.

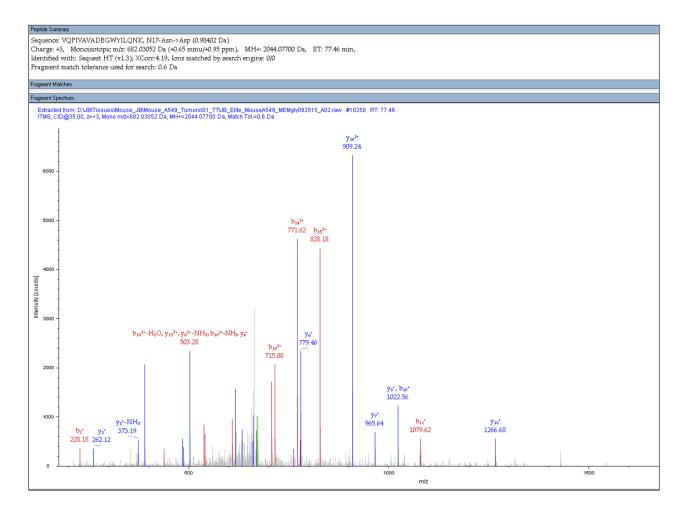
Supplementary Figure 28: IPA[®] analysis reveals humoral immune response as one of top N-glycosylated protein networks activated in tumor stroma. Molecule selected for orthogonal cross-validation (i.e., DC-HIL) is marked with red asterisk.

Supplementary Figure 29: MS² spectrum depicting unambiguous identification of the mouse-derived DC-HIL ortholog (i.e., Gpnmb gene product) in tumor stroma by detection of protein- and species-specific N-glycopeptide.



Supplementary Figure 30: MS² spectrum depicting unambiguous identification of the mouse-derived DC-HIL ortholog (i.e., Gpnmb gene product) in tumor stroma by detection of protein- and species-specific N-glycopeptide.

	GLPLQAAKRFRDVLGHEQYPDHMREHNQLRGWSSDENEWDEHLYP LPL AAKRF DVLG+E+ +MREHNQL GWSSDEN+W+E LYP	60
	RLPLDAAKRFHDVLGNERPSAYMREHNQLNGWSSDENDWNEKLYP	60
	GRVQAVLTSDSPALVGSNITFVVNLVFPRCQKEDANGNIVYEKNC GRVQAVLTSDSPALVGSNITF VNL+FPRCOKEDANGNIVYEKNC	120
	GRVQAVLTSDSPALVGSNITFAVNLIFPRCQKEDANGNIVYEKNC	120
	TAGADDGDWEDGTSRSQHLRFPDRRPFPRPHGWKKWSFVYVFHTL TA ++D D E+6T +S H FPD +PFP GW++W+F+YVFHTL	180
	TAWSEDSDGENGTGQSHHNVFPDGKPFPHHPGWRRWNFIYVFHTL	180
	<u>INTVNLTAGEQVMEVTVFR</u> RYGRAYIPISKVKDVYVITDQIPVFV +NT N+T GPQ+MEVTV+RR+GRAY+PI++VKDVYV+TDQIPVFV	240
PVFV	VNTANVTLGPQLMEVTVYRRHGRAYVPIAQVKDVYVVTDQIPVFV	24(
	LRDLPIVFDVLIHDPSHFLNDSAISYKWNFGDNTGLFVSNNHTLN L+DLPI+FDVLIHDPSHFLN S I+YKW+FGDNTGLFVS NHT+N	300
IHTVN	LKDLPIMFDVLIHDPSHFLNYSTINYKWSFGDNTGLFVSTNHTVN	300
	QTAVPGPCPPPSPSTPPPSTPPSPPPSPLPTL-STPSPSLMPTG + A PGPCPP PPPP P P PS TL S S + P G	359
GPAG	KAAAPGPCPPPPPPPRPSKPTPSLATTLKSYDSNTPGPAG	355
	INRYGYFRATITIVEGILEVSIMQIADVPMPTPQPANSLMDFTVT INRYG+F+ATITIVEGILEV+I+Q+ DV MP P P +SL+DF VT	419
FVVT	INRYGHFQATITIVEGILEVNIIQMTDVLMPVPWPESSLIDFVVT	41
	PTCQIAQNRVCSPVAVDGLCLLSVRRAFNGSGTYCVNFTLGDDAS PTC+I QN VCSPV VD +CLL+VRR FNGSGTYCVN TLGDD S	479
DDTS	PTCEITQNTVCSPVDVDEMCLLTVRRTFNGSGTYCVNLTLGDDTS	47
	DSPLRAVNGVLISIGCLAVLVTMVTILLYKKHKAYKPIGNCPRNT SPLR N LIS+GCLA+ VT++++L+YKKHK Y PI N P N	539
PGNV	ASPLRMANSALISVGCLAIFVTVISLLVYKKHKEYNPIENSPGNV	53
	PFFRGDQEKDPLLQDK FF G+QEKDPLL+++	57(
	VFFPGNQEKDPLLKNQ	56


Supplementary Figure 31: BLAST analysis confirming protein and species specificity of identified N-glycopeptides from stromal mouse-derived DC-HIL, Gpnmb gene product. Underlined in blue are protein and species-specific peptides identified solely in tumor stroma.

Network Analysis: Movement Disorder

^{© 2000-2017} QIAGEN. All rights reserved.

Supplementary Figure 32: IPA[®] analysis reveals humoral immune response as one of top N-glycosylated protein networks activated in tumor stroma. Molecule selected for orthogonal cross-validation (i.e., NPP-5) is marked with red asterisk.

Supplementary Figure 33: MS² spectrum depicting unambiguous identification of the mouse-derived NPP-5 ortholog (i.e., Enpp5 gene product) in tumor stroma by detection of protein- and species-specific N-glycopeptide.

Q9UJA9 ENPP	5_HUMAN - EC	tonucleotide pyrophosphatase/phosphodiesterase family member 5 $$ H	iomo sapiens (Human
E-value: 0.0			
Score: 2152			
Ident.: 81.8%			
Positives : 90.6%			
Query Length: 477			
Match Length: 477			
EQG7 ENPP5_MOUSE	1	MIPEFLLASCTLATLCHSAPFSLQPEEQKVLVVSFDGFRWDYLYKVPTPHFHYIMKNGVH	60
_		M +FLL S LA L S FSLQP++QKVL+VSFDGFRWDYLYKVPTPHFHYIMK GVH	
_			60
UJA9 ENPP5_HUMAN	1	M +FLL S LA L S FSLQP++QKVL+VSFDGFRWDYLYKVPTPHFHYIMK GVH MTSKFLLVSFILAALSLSTTFSLQPDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVH VNQVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPILNKSFSLEHMDIYDSKFWEEA	
UJA9 ENPP5_HUMAN EQG7 ENPP5_MOUSE	1 61	M +FIL S LA L S FSLQP++QKVL+VSFDGFRWDYLYKVPTPHFHYIMK GVH MTSKFLLVSFILAALSLSTTFSLQPDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVH VNQVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPILNKSFSLEHMDIYDSKFWEEA V QVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPI NKSFSL+HM+IYDSKFWEEA	60 120
UJA9 ENPP5_HUMAN EQG7 ENPP5_MOUSE	1 61	M +FLL S LA L S FSLQP++QKVL+VSFDGFRWDYLYKVPTPHFHYIMK GVH MTSKFLLVSFILAALSLSTTFSLQPDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVH VNQVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPILNKSFSLEHMDIYDSKFWEEA	60
UJA9 ENPP5_HUMAN EQG7 ENPP5_MOUSE UJA9 ENPP5_HUMAN	1 61 61	M +FIL S LA L S FSLQP++QKVL+VSFDGFRWDYLYKVPTPHFHYIMK GVH MTSKFLLVSFILAALSLSTTFSLQPDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVH VNQVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPILNKSFSLEHMDIYDSKFWEEA V QVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPI NKSFSL+HM+IYDSKFWEEA VKQVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPIRNKSFSLDHMNIYDSKFWEEA TPIWITNQRAGHASGAAMWPGADVKIHDSFPTYYLPYNESVSFEDRVAKIIEWFTAKDPI	60 120
EQG7 ENPP5_MOUSE UJA9 ENPP5_HUMAN EQG7 ENPP5_MOUSE UJA9 ENPP5_MOUSE UJA9 ENPP5_MOUSE UJA9 ENPP5 HUMAN	1 61 61 121	M +FIL S LA L S FSLQP++QKVL+VSFDGFRWDYLYKVPTPHFHYIMK GVH MTSKFLLVSFILAALSLSTTFSLQPDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVH VNQVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPILNKSFSLEHMDIYDSKFWEEA V QVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPI NKSFSL+HM+IYDSKFWEEA VKQVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPIRNKSFSLDHMNIYDSKFWEEA	60 120 120

Q900A9	ENPP5_HOMAN	61	VKQVTNVFITKTIPNHITLVTGLFAENHGIVANDMFDPIRNKSFSLDHMNIIDSKFWEEA	120
Q9EQG7	ENPP5_MOUSE	121	TPIWITNQRAGHASGAAMWPGADVKIHDSFPTYYLPYNESVSFEDRVAKIIEWFTAKDPI TPIWITNQRAGH SGAAMWPG DVKIH FPT+Y+PYNESVSFEDRVAKIIEWFT+K+PI	180
Q9UJA9	ENPP5_HUMAN	121	TPIWITNQRAGHTSGAAMWPGTDVKIHKRFPTHYMPYNESVSFEDRVAKIIEWFTSKEPI	180
Q9EQG7	ENPP5_MOUSE	181	NLGFLYWEEPDDTGHDVGPDSPIMGSVISDVDHKLGYLIKMLKRAKLWNNVNLIVTSDHG NLG LYWE+PDD GH +GPDSPIMG VISD+D KLGYLI+MLK+AKLWN +NII+TSDHG	240
Q9UJA9	ENPP5_HUMAN	181	NLG LIVE FOR ON OFFICIARY (IS) FILOTIC MARKARANA (MAI) TODAG NLGLLYWEDPDDMGHHLGPDSPLMGPVISDIDKKLGYLIQMLKKAKLWNTLNLIITSDHG	240
Q9EQG7	ENPP5_MOUSE	241	MTQCSKQRVIELDRYLDKEHYTLIDHSPVAAILPKEGKFDEVYDALAGAHPNLTVYKKEE MTQCS++R+IELD+YLDK+HYTLID SPVAAILPKEGKFDEVY+AL AHPNLTVYKKE+	300
Q9UJA9	ENPP5_HUMAN	241	MTQCSEERLIELDQYLDKDHYTLIDQSPVAAILPKEGKFDEVYFALTHAHPNLTVYKKED	300
Q9EQG7	ENPP5_MOUSE	301	IPERWHYKHNDRVQPIVAVADEGWYILQNKSDDFLLGNHGYDNALAEMHPIFLAHGPAFR +PERWHYK+N R+QPI+AVADEGW+ILQNKSDDFLLGNHGYDNALA+MHPIFLAHGPAFR	360
Q9UJA9	ENPP5_HUMAN	301	YPERWAIKYN RYGEITAVADEGWTILGNESDDELLGNEGIDMALAPHAPIELANGFAFR VPERWHYKYNSRIQPIIAVADEGWHILQNKSDDFLLGNHGYDNALADMHPIFLANGFAFR	360
Q9EQG7	ENPP5_MOUSE	361	KNFTKEAMNSTDLYSLLCHLLNLTALPHNGSFWNVQDLLSSATPKPIPYTQSTTLLLGSD	420
Q9UJA9	ENPP5_HUMAN	361	KNF+KEAMNSTDLY LLCHLLN+TA+PHNGSFWNVQDLL+SA P+ +PYTQST LL GS KNFSKEAMNSTDLYPLLCHLLNITAMPHNGSFWNVQDLLNSAMPRVVPYTQSTILLPGSV	420
Q9EQG7	ENPP5_MOUSE	421	KPGEDEQEESYPYYIGVSLGSIIAMVFFVVLIKHLIRSQVHTLQYRQVEVAQPLLQA	477
Q9UJA9	ENPP5_HUMAN	421	KP E +QE SYPY+IGVSLGSII +VFFV+ IKHLI SQ+ LQ E+AQPLLQA KPAEYDQEGSYPYFIGVSLGSIIVIVFFVIFIKHLIHSQIPALQDMHAEIAQPLLQA	477

Supplementary Figure 34: BLAST analysis confirming protein and species specificity of identified N-glycopeptides from stromal mouse-derived NPP-5, Enpp5 gene product. Underlined in blue are protein and species-specific peptides identified solely in tumor stroma.

Supplementary Table 1: (A) N-glycosylated human peptides identified in A549 murine tumor xenograft using TCSG. (B) N-glycosylated mouse peptides identified in A549 murine tumor xenograft using TCSG.

See Supplementary File 1

Supplementary Table 2: (A) N-glycosylated peptides identified in normal mouse lung tissue using TCSG. (B) N-glycosylated peptides identified in 2D-grown A549 human lung-adenocarcinoma cell line using TCSG.

See Supplementary File 2

Supplementary Table 3: (A) All human N-glycopeptides identified in tumor xenograft and 2D-grown A549 cells using TCSG. (B) All mouse N-glycopeptides identified in tumor xenograft and normal mouse lungs using TCSG.

See Supplementary File 3

Supplementary Table 4: (A) N-glycosylated mouse proteins identified in tumor xenograft using TCSG. (B) N-glycosylated human proteins identified in tumor xenograft using TCSG.

See Supplementary File 4

Supplementary Table 5: (A) All mouse N-glycoproteins identified in tumor xenograft and normal mouse lungs obtained from healthy mice using TCSG. (B) All human N-glycoproteins identified in tumor xenograft and 2D-grown A549 cells using TCSG.

See Supplementary File 5

Supplementary Table 6: (A) Mouse-stromal N-glycoproteins identified in tumor xenograft by at least a single speciesspecific N-glycosylated peptide. (B) Human-parenchymal N-glycoproteins identified in tumor xenograft by at least a single species-specific N-glycosylated peptide.

See Supplementary File 6

Supplementary Table 7: (A) N-glycoproteins identified in normal mouse lungs by at least a single species-specific N-glycosylated peptide. (B) N-glycoproteins identified in 2D-grown A549 human lung-denocarcinoma cell line by at least a single species-specific N-glycosylated peptide.

See Supplementary File 7

Supplementary Table 8: (A) Stroma-uniqe mouse proteins revealed by subtractive TCSG analysis. (B) Parenchymauniqe human proteins revealed by subtractive TCSG analysis.

See Supplementary File 8

Supplementary Table 9: (A) Stroma-specific protein panel uncovered by compartive subtractive TCSG analysis. (B) Parenchyma-specific protein panel uncovered by compartive subtractive TCSG analysis. (C) A549-specific protein panel uncovered by compartive subtractive TCSG analysis. (C) Normal lung-specific protein panel uncovered by compartive subtractive TCSG analysis.

See Supplementary File 9

Supplementary Table 10: Differently regulated orthologues detected in both tumor parenchyma and tumor stroma by at least one species-specific N-glycosylated peptide.

See Supplementary File 10

Supplementary Table 11: (A) Top parenchymal functional protein networks in terms of statistical significance and number of detected interacting protein species. (B) Top stromal functional protein networks in terms of statistical significance and number of detected interacting protein species.

See Supplementary File 11