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1. Model simulation details

We performed numerical simulations by integrating the equations of motion with an Euler method for Nt = 217 − 222 steps
with integration time step ∆t = 10−2. The phase diagram was investigated performing NJ ×Np simulations, NJ = 22 with
J ∈ [0, 8] and Np0 = 32, p0 ∈ [2.9, 4.1]. The robustness of our results against finite size effects was evaluated by considering
different systems sizes, namely N = 100, 256, 400, 900, 1600, 3200, 4900.

The phase diagram has been investigated considering a tissue composed of N = 400 cells. The nature of the flocking
transition has been addressed studying the finite size effects on a system composed for N = 100, 400, 1600, 3200. To study
the morphology of dynamical heterogeneities, we performed simulations of N = 4900 cells close to the solid/liquid transition.
Both dynamical and structural properties of the system have been computed by sampling steady state trajectories. The steady
state condition has been checked looking at the time evolution of the instantaneous Vicsek order parameter ϕ(t) and cellular
shape index q(t) at time t. The system is considered to be at steady state when ϕ(t) and q(t) fluctuate around well-defined
values. Dynamical observables and static properties have been computed by averaging over steady state trajectories in the
time window [0, T ], where t = 0 denotes the beginning of the steady state regime as defined above and t = T the end of the
simulation. For example, the mean-square displacement MSD(t) is explicitly calculated as

MSD(t) = 1
N(T − t)

∫ T−t

0
dt0

N∑
i=1

[r′i(t+ t0)− r′i(t0)]2, [1]

and the Vicsek order parameter as

ϕ = 1
NT

∫ T

0
dt0

∣∣∣∣∣
N∑
i=1

vi(t0)
|vi(t0)|

∣∣∣∣∣ . [2]

In the above expressions, the time integral is numerically evaluated as a Riemann sum based on a partition of step ∆t.

2. Mean square displacement in the solid phases

In the solid we model each cell i caged by its neighbors as a point particle tethered to a spring of elastic constant k. Considering
first the isotropic solid, the dynamics of the fluctuations δri = ri − r0

i of a caged particle around its mean position, r0
i , is

goiverned by the equations

δṙi = v0ni − µkδri , [3]
θ̇i = ηi .

The mean square displacement can be calculated analytically [57], with the result

MSD(t) = v2
0

2µkDr
1− e−µkt − µk

Dr

(
1− e−Drt

)
1− ( µk

Dr
)2

, [4]

and the long-time limit

lim
t→∞

MSD(t) = v2
0

µk(µk +Dr)
. [5]

We now want to examine the mean-square displacement deep into the solid flocking state, in the limit large J � Dr. We
model again an individual cell as a particle tethered to a spring of force constant k due to caging from the neighbors, but
also moving at the mean velocity v̄ = v̄(cos φ̄, sin φ̄) of the flock. We orient the x axis along the direction of mean migration,
corresponding to φ̄ = 0, and let vi = v̄ + δvi, with δvi = (ẋi, ẏi), and ẋi ' δv and ẏi ' v̄φi. Letting ei ' (1, θi), the equations
of motion for the fluctuations are

ẋi = v0 − µkxi , [6]
ẏi = v0θi − µkyi , [7]

θ̇i = −J
(
θi −

ẏi
v̄

)
+ ηi . [8]

Fluctuations transverse and logitudinal to the direction of mean motion are decoupled. Eliminating the angular dynamics in
favor of yi, Eqs. Eq. (7) and Eq. (8) can be recast in the form of a second order differential equation for yi. At long times this
reduces to

ẏi = − Jµkyi

µk + J
(
1− v

v0

) + v0ηi

µk + J
(
1− v

v0

) . [9]
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The transverse part of the mean-square displacement can then be immediately obtained as

〈[yi(t)]2〉 = v2
0Dr

Jµk
[
µk + J

(
1− v

v0

)] (1− e
− Jµk

µk+J(1− v
v0

) t
)
, [10]

with long-time limit

lim
t→∞
〈[yi(t)]2〉 = v2

0Dr

Jµk
[
µk + J

(
1− v

v0

)] . [11]

Deep in the flocking state we can approximate v̄ ∼ v0 and identify Teff = v2
0Dr/Jµ

2k.

3. Finite-size effects and nature of the flocking transition

Fig. S1. Flocking transition. (a) Order parameter ϕ as a function of J in the solid phase (p0 = 3.0) by increasing N = 100, 400, 1600, 3200. From ϕ we evaluate the
fluctuations χϕ (inset) that develops a peak at the transition. (a) Order parameter ϕ as a function of J in the liquid phase (p0 = 3.7) by increasingN = 100, 400, 1600, 3200
and susceptibility χϕ (inset). (c) The susceptibility χϕ evaluated at the transition point as a function of the linear size

√
N of the system.

To investigate the nature of the flocking transition, we have performed NJ = 40 numerical simulations from J = 0 to J = 3.9
at interval ∆J = 0.1 at p0 = 3.0, where the system is a jamming solid. In the liquid phase, we choose p0 = 3.7 and NJ = 48.
In particular, we performed 40 simulations with ∆J = 0.1 and 8 simulations, close to the transition point Jc, with ∆J = 0.05.
The system sizes are N = 100, 400, 1600, 3200.

The typical behavior of the order parameter ϕ is shown in Fig. S1(a) and S1(b), for the solid and liquid, respectively.
ϕ increases continuously from ϕmin to ϕmax following a sigmoidal curve. The extreme values ϕmin are extremely size
dependent and tends to zero by increasing the size N . The transition point Jc has been evaluated looking at the susceptibility
χϕ = N〈(ϕ− 〈ϕ〉)2〉. As one can appreciate in the inset of the same panels, χϕ develops a peak at Jc. In the solid, the peak
occurs at Jsolidc = Dr. In the liquid, the transition takes place at J liquidc > Jsolidc . Moreover, the plateau values ϕliquid,solidmax do
not depend on the system size. In the liquid we obtain systematically ϕliquidmax < ϕsolidmax with ϕsolidmax → 1 and ϕliquidmax ∼ 0.8. In
Fig. S1(c) we show the values of χϕ at the transition as a function of the linear size of the system L =

√
N . The behavior of

the peak is well reproduced by a power law χϕ(L) ∼ Lb with b ∼ 1 for both data sets, solid and liquid phases.

4. Neighbors mean-square separation

The estimate of the transition curve Jflock(p0) presented in the main text is based on the numerical computation of the
cage lifetime τcage associated with the neighbors mean-square separation MSSnn(t), evaluated for J = 0. The neighbors
mean-square separation is defined as:

MSSnn(t) = 1
2N 〈

∑
i

∑
j(i)

[ri(t+ t0)− rj(t+ t0)]2〉 , [12]

where the sum is performed over all cells i and over the two cells j(i) that, at time t = t0, are the third and the fourth nearest
neighbors of cell i, respectively. This choice is motivated by the following observation. Each cell i is on average in contact with
six neighbors that constitute its "cage". Let dcage be the average distance between cell i and its neighbors. At a given time, the
first three nearest neighbors are typically closer to cell i than dcage and thus their distance to cell i will tend to increase, at least
for short times. On the contrary, higher order neighbors on average will move toward cell i. The third and the fourth nearest
neighbors are those for which these systematic effects are expected to be less important. For example, in the solid phase, with
our definition we find MSSnn(t) ≈ const, for all t. A different definition, based for example on the first and the second nearest
neighbors, would, on the contrary, show an increase at short times, followed by damped oscillation about an asymptotic value.

Our definition has the advantage of providing an indicator that is relatively insensitive to the intra-cage dynamics, allowing
us to identify unambiguously the moment when two cells, initially in contact, start moving apart from each other, "breaking
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Fig. S2. Spatial correlations C(x‖, 0) (red triangles) and C(0, x⊥) (blue circles) along axes longitudinal (x‖) and perpendicular (x⊥) to the direction of mean motion of a
given sample for J = 0 (a) and J = 2 (b), averaged over 102 samples.

the cage". Operatively, the cage timelife τcage is estimated as the time needed to double the neighbors mean-square separation
with respect to its value at t = 0,

MSSnn(τcage) ≡ 2MSSnn(0) . [13]

5. Correlation function of cell displacements

To quantify the dynamical heterogeneities and highlight their anisotropic structure in the flocking state, we have evaluated
the spatial correlation of cell displacements C(x‖, x⊥) along directions longitudinal (x‖) and transverse (x⊥) to that of mean
motion.

We first calculate a coarse-grained map ∆r(x, y) of cell displacements during a time interval τα = 102 on a lattice (x, y) of
linear size δ` =

√
A0. For a given realization we calculate the spatial correlation,

c(x, y) =
∑

x′,y′ ∆r(x+ x′, y + y′) ·∆r(x′, y′)∑
x′,y′ |∆r(x′, y′)|2

. [14]

C(x‖, x⊥) is obtained by averaging c over 102 independent realizations. The average is performed after rotating the axes by
the angle θ identifying the average direction of migration in each sample:,

C(x‖, x⊥) =
〈
c(x‖ cos θ − x⊥ sin θ, x⊥ cos θ + x‖ sin θ)

〉
. [15]

As one can appreciate in Fig. (S2), in absence of alignment (J = 0, panel (a)), the correlation is isotropic, but becomes strongly
anisotropic in the flocking state (J = 2, panel (b)).

6. Dynamic and Static Structure of flocking state

In order to investigate the structural and dynamical properties of the flocking state, we have looked at the configurations and
trajectories along the mean velocity.

The positional order has been investigated through the pair distribution function g(r), where the vector r is computed in a
moving frame orientated along the instantaneous flocking direction

g(r) =

〈
1
N

∑
i,j 6=i

δ(r− rj + rj)

〉
. [16]

To estimate the asymmetry of the trajectories in the flocking state, we have computed the mean square displacement along
the mean motion directions x‖ and x⊥. Since we are computing a dynamical observable, in this case the mean motions direction
are defined over a time scale Tflock. The time scale Tflcok has been chosen in a way such that the flocking direction remain
constant, i. e., d

dt
x‖(t) = d

dt
x⊥(t) ∼ 0, for t ∈ [t0 + Tflock, t0 + Tflock], being t0 an arbitrary initial time. In Fig. (S3) we show

g(r) in the liquid phase (p0 = 3.7) for J = 0 (lower panel) and in the flocking state with J = 3.0 (upper panel). As one can see,
the system in the flocking state is an anistotropic fluid more dense along the flocking direction (blue curve).

Indicating with xi‖(t) and xi⊥(t) the coordinates of the cell i with respect the two orthogonal axes, we compute the mean
square displacement MSD(t)‖ and MSD(t)⊥ as follows

MSD‖(t) = 1
N
〈
∑
i

[x‖(t+ t0)− x‖(t0)]2〉 [17]

MSD⊥(t) = 1
N
〈
∑
i

[x⊥(t+ t0)− x⊥(t0)]2〉

we then define the anisotropy parameter

∆ ≡
MSD⊥(Tflock)−MSD‖(Tflock)
MSD⊥(Tflock) +MSD‖(Tflock) . [18]
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Fig. S3. Pair distribution function in the mean velocity frame.
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Fig. S4. Mean squared displacement in the mean velocity frame.

As one can appreciate in the upper panel of Fig. (S5) where the heat map ∆(p0, J), the anisotropy parameter can be used as
an order parameter for the flocking transition since it is zero when the system is in the solid and liquid phase. We have also
included the transitions curve of the solid-to-liquid transition (red curve) and flocking transition (white dashed curve).

7. Computation of the cell shape

To investigate the coupling between cell morphology and flocking transition we start with computing the shape tensor Si of the
cell i that is

Si = 1
Nv

Nv∑
µ=1

(ri − rµi )⊗ (ri − rµi ) [19]

where the greek symbol µ runs from 1 to the number of vertices Nv of the cell i, and rµi is the coordinate of the µ−th vertex.
We have indicated with ⊗ the standard dyadic product. In two dimensions, Si is a 2 × 2 matrix of eigenvalues λ1,2 and
normalized eigenvectors λ̂1,2. For convenience, we order the eigenvalues in a way that λ1 ≥ λ2. When λ1 = λ2, the cell is a
regular polygons and it is elongated along λ̂1 whereas λ1 6= λ2.
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Fig. S5. Anisotropy Parameter. The anisotropy parameter can be used as an order parameter for the flocking transition (upper panel). For J = 3.00 (lower panel), ∆ is zero in
the liquid and becomes different from zero in the flocking state.
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Fig. S6. Dynamical arrest and flocking transition. (a) The overlap Q(t) for J = 2.0 shows a clear two step decay typical of glassy dynamics. From Q(t) we can extract a
correlation time τq (inset) that increases as a power law as a function of p0 − pC0 . (b) The non-Gaussian parameter α2(t) develops a clear peak indicating the presence of
angular dynamical heterogeneity in the flocking state.

8. Overlap and non-Gaussian parameter

To estimate the effect of alignment on structural rearrangements we have also looked at the behavior of the overlap parameter,
Q(t). The overlap gives a measure of the similarity between two configurations of the system taken at two different times, in
our case at t and 0 (34, 35). To compute Q(t), we discretize space in a lattice of linear size δ ∼ 0.66 and define ni(t, t0) = 1 if
the site i s occupied by the same particle at time t0 and t > t0, and ni(t, t0) = 0 otherwise. The overlap is defined as

Q(t) = N−1
s 〈
∑
i

ni(t, t0)〉 . [20]

Here Ns is number of lattice sites. In order to exclude fast vibrations on short time scales, we choose the parameter δ through
the condition δ =

√
MSD(ts−d), where ts−d is the crossover time from subdiffusive to diffusive regime. As one can appreciate

looking at Fig. S6(a), where Q(t) for J = 2.0 is shown, the overlap undergoes a two-step decay typical of glassy systems
indicating a crossover between fast and slow processes. Remarkably, the crossover takes place around the flocking transition
indicating that the emergence of collective migration changes the structural properties. This is also highlight in the main text
through the study of dynamical heterogeneities. In the inset of the same figure, we plot τQ ≡

∫∞
t∗

dtQ(t), where t∗ is chosen in
a way to extract only the slow β decay of Q(t). Interestingly, τQ can be fitted to a power law as a function of p0 − pC0 , which is
compatible with mode-coupling theory (34).
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Fig. S7. Mean-squared angular displacementMSDθ . (a)MSDθ of the polarization angle θ for J = 2.0 and p0 ∈ [3.0, 3.5], i. e., in the flocking regime. MSDθ becomes
subdiffusive on short time scales. Also shown are two typical angular trajectories: for large p0 (red curve) θ(t) performs a random walk while for small p0 (blue curve) the
dynamics of θ(t) is characterized by jumps local and vibrations. (b) χ4(t) approaching the liquid-solid transition (p0 − pc0/p

c
0 ∼ 10−3) for J = 0 (green squares) and

J = 2 (red circles) in a system of N = 4900 cells.

The time scale τQ is also compatible with the time scale of the peak in the non-Gaussian parameter of the angular
displacements α2(t) ≡ 1

3
〈∆θ4〉
〈∆θ2〉2 − 1, where ∆θa ≡

∑
i
N−1 [θi(t+ t0)− θi(t0)]a. The behavior of α2(t) is shown in Fig. S6(b).

Also, since the time scale of angular relaxation is an order of magnitude smaller than that of structural relaxation, the
displacements due to the flocking excitations give the dominant contribution to the displacements.

9. Videos

We have included representative movies illustrating the monolayer dynamics in four different phases for N = 400 cells.
• M1.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics when the monolayer is in a

solid phase. Simulation parameters are p0 = 3.0 and J = 0.0. A small cluster of cells that are nearest neighbors at the
beginning of the movie is represented in color. In the absence of local rearrangements and directed migration, the cluster
remains cohesive and its center of mass does not show any net displacement.

• M2.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics when the monolayer is in a
liquid phase. Simulation parameters are p0 = 3.7 and J = 0.0. A small cluster of cells that are nearest neighbors at the
beginning of the movie is represented in color. The presence of local rearrangements can be clearly appreciated, while the
center of mass of the cluster of tagged cells does not show any net displacement.

• M3.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics when the monolayer is in a
flocking liquid phase. Simulation parameters are p0 = 3.7 and J = 3.0. A small cluster of cells that are nearest neighbors
at the beginning of the movie is represented in color. The presence of local rearrangements, superimposed to a collective
directed migration pattern, can be clearly appreciated.

• M4.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics when the monolayer is in a
solid phase. Simulation parameters are p0 = 3.0 and J = 3.0. A small cluster of cells that are nearest neighbors at the
beginning of the movie are represented in color. In the absence of local rearrangements, the collective directed migration
pattern can be clearly appreciated.

We have also included representative movies illustrating the monolayer dynamics, as observed in the center of mass reference
frame, in four different phases for N = 400 cells. This representation allows to capture the anisotropic nature of the positional
fluctuations of the cell when the monolayer is in a flocking state.

• M1w.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics, when the monolayer is in
a solid phase. Simulation parameters are p0 = 3.0 and J = 0.0. A 50 simulation steps-long trajectory is shown for each
cell center (time is color-coded from red to green). The black arrow in center is proportional to the instantaneous velocity
of the center of mass.

• M2w.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics, when the monolayer is in
a liquid phase. Simulation parameters are p0 = 3.7 and J = 0.0. A 50 simulation steps-long trajectory is shown for each
cell center (time is color-coded from red to green). The black arrow in center is proportional to the instantaneous velocity
of the center of mass.

• M3w.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics, when the monolayer is in a
flocking liquid phase. Simulation parameters are p0 = 3.7 and J = 3.0. A 50 simulation steps-long trajectory is shown for
each cell center (time is color-coded from red to green). The black arrow in center is proportional to the instantaneous
velocity of the center of mass. The marked anistropy in the cell positional fluctuations can be clearly appreciated.

• M4w.avi - Representative portion (1000 simulation steps) of a simulation of the cell dynamics, when the monolayer is in a
flocking solid phase. Simulation parameters are p0 = 3.0 and J = 3.0. A 50 simulation steps-long trajectory is shown for
each cell center (time is color-coded from red to green). The black arrow in center is proportional to the instantaneous
velocity of the center of mass. The marked anistropy in the cell positional fluctuations can be clearly appreciated.

6 of 7 F. Giavazzi, M. Paoluzzi, M. Macchi, D. Bi, G. Scita, M. L. Manning, R. Cerbino and M. C. Marchetti



 0

 0.35

 0.7

 3.5  3.75  4

Deff

p0
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as a function of the shape index p0 for J = 2.0. Dself is a dynamical order parameter

for the onset of rigidity. When Dself < 10−3 the system is considered to be in solid state.

F. Giavazzi, M. Paoluzzi, M. Macchi, D. Bi, G. Scita, M. L. Manning, R. Cerbino and M. C. Marchetti 7 of 7


	Model simulation details
	Mean square displacement in the solid phases
	Finite-size effects and nature of the flocking transition
	Neighbors mean-square separation
	Correlation function of cell displacements
	Dynamic and Static Structure of flocking state
	Computation of the cell shape
	Overlap and non-Gaussian parameter
	Videos

