Supplement: Conservation of specificity in two low-specificity proteins

³ Lucas C. Wheeler,^{1,2} Jeremy A. Anderson^{1,2}, Anneliese J. Morrison^{1,2}, Caitlyn E. Wong^{1,2}, Michael J. Harms^{1,2,*}

⁴ 1.Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR,

5 USA

6 2. Institute of Molecular Biology, University of Oregon, Eugene, OR, USA

7 * harms@uoregon.edu

8

Fig S1. Randomer phage enrichment is dependent on Ca^{2+} and protein. 9 Bar graphs show the plaque forming units (PFU) for phage solutions after the third 10 round of enrichment for screens using hA5 (A) or hA6 (B). For each round of pan-11 ning, we incubated phage with biotinylated protein, pulled down bound phage via 12 a streptavidin plate, and finally eluted the phage from the protein with an elution 13 buffer. To verify that binding occurred in a Ca^{2+} -dependent manner, we compared 14 Ca^+ -loading/EDTA-elution to EDTA-loading/EDTA-elution. We also performed 15 a Ca^{2+} -loading/EDTA-elution experiment using biotin alone. Insets show sequence 16 logos (WebLogo) generated from 20 plaque sequences from each $Ca^{2+}/EDTA$ pan-17 ning experiment. The most frequent residue at each position was used to generate 18 the A5cons and A6cons peptides. 19

As a constrained of the presence of saturating As $_{23}$ As $_{24}$ (1).

Fig S3. Representative ITC data traces for each ancestor and ortholog. ITC traces show baseline-corrected titration of various peptides onto S100 proteins in the presence of 2 mM Ca^{2+} . All experiments were done with $\approx 100 \ \mu M$ protein in 25 mM TES, 100 mM NaCl, 1 mM TCEP at pH 7.4, 25 °C.

Fig S4. Far UV CD spectra are diagnostic for the S100A5 and S100A6 31 clades. CD spectra are mapped onto a diagram of the S100A5-S100A6 clade. Curves 32 are spectra of apo (gray) and Ca^{2+} -bound (orange/purple) proteins. The S100A5 33 proteins (purple) are characterized by a deep alpha-helical signal at 222nm that 34 substantially increases in response to binding of Ca^{2+} . S100A6 proteins (orange) 35 show comparatively minimal response and maintain a deeper peak at 208nm. These 36 patterns hold for the ancestors at the base of each clade. The spectra of ancA5/A6 37 and the ancA5/A6 altAll version (both shown in green) resemble that of an extant 38 S100A6, indicating that the large Ca^{2+} -driven conformational change seen in the 39 extant S100A5s is a derived feature of this lineage. 40

⁴¹ Table S1. Accession numbers of S100 proteins used to build the multiple sequence

42 alignment.

paralog	accession	species
A1	F1R758	Ďanio rerio
A1	A5WW32	Danio rerio
A1	H2TQM5	Takifugu rubripes
A1	H2ST19	Takifuqu rubripes
A1	H2L492	Oryzias latipes
A1	H2M1B8	Oruzias latipes
A1	G3NKS0	Gasterosteus aculeatus
A1	G3PEI0	Gasterosteus aculeatus
A2	P29034	Homo sapiens
A2	F6Q7Q8	Ornithorhunchus anatinus
A2	P10462	Bos taurus
A2	G3W672	Sarcophilus harrisii
A2	JH205580 1	Pelodiscus sinensis
A3	P33764	Homo saniens
A3	P62818	Mus musculus
A3	A4FUH7	Bos taurus
A3	G3W5T7	Sarconhilus harrisii
A3	F6SL13	Monodelphis domestica
A3	F6Q7S6	Ornithorhunchus anatinus
A3	JH205580 1	Pelodiscus sinensis
A4	P35466	Bos saurus
A4	predicted*	Crocodulus norosus
A4	P26447	Homo saniens
A4	H0Z1G5	Taenionuaia auttata
A4	P07091	Mus musculus
A4	F6SKU1	Monodelnhis domestica
A4	F6Q7T6	Ornithorhunchus anatinus
A4	XP 015743713 1	Puthon hivittatus
A4	JH205580.1	Pelodiscus sinensis
A4	G3W5H2	Sarconhilus harrisii
A4	H9H0S2	Meleaaris aallonavo
A5	P33763	Homo saniens
A5	P63084	Mus musculus
A5	E1B8S0	Ros taurus
A5	G3W581	Sarconhilus harrisii
A5	XP 019412310 1	Crocodulus norosus
A5	JH205580 1	Pelodiscus sinensis
A6	P06703	Homo saniens
A6	P14069	Mus musculus
A6	F6SKB4	Monodelnhis domesitica
A6	F6B394	Ornithorhunchus anatinus
A6	G3W4S8	Sarconhilus harrisii
A6	H9H0S3	Meleaaris aallonavo
A6	XP 019412316.1	Crocodulus porosus
ĂĞ	Q98953	Gallus gallus
ĀĞ	EOB07085.1	Anas platurhunchos
$\tilde{A6}$	XP 015284753.1	Gekko japonicus
$\tilde{A6}$	$XP^{-007429160.1}$	Puthon bivittatus
$\tilde{A6}$	JH205580.1	Pelodiscus sinensis

* Unannotated BLAST hit from the Crocodylus porosus genome (GB2012 version). Table S2.

Binding of 12-mer phage display peptides does not depend on 45

solubilizing flanks. List of phage display consensus peptides used in the study. 46 The sequences of flank variants of A5cons and A6cons are shown. Flanks are 47 indicated by lower-case letters. The third column shows dissociation constants for 48 peptides binding to hA5 with 95% credibility regions from Bayesian fits of one ITC 49 dataset per variant. Flank variants bind with similar K_D . 50

Peptide Name	Amino Acid Sequence	$K_D(\mu M)$
A5cons (variant 1)	rshsSSFQDWLLSRLPgggsae	$4.9 \leq 6.1 \leq 7.8$
A5cons (variant 2)	SSFQDWLLSRLP-ggsae	$1.1 \leq 2.8 \leq 7.9$
A5cons (variant 3)	rshsSSFQDWLLSRLP	$7.2 \le 9.6 \le 13.1$
A6cons (variant 1)	${\tt rshsGFDWRWGMEALTgggsae}$	$0.3 \le 0.9 \le 2.4$
A6cons (variant 2)	GFDWRWGMEALT-ggsae	$1.5 \le 2.5 \le 4.0$
	Peptide Name A5cons (variant 1) A5cons (variant 2) A5cons (variant 3) A6cons (variant 1) A6cons (variant 2)	Peptide NameAmino Acid SequenceA5cons (variant 1)rshsSSFQDWLLSRLPgggsaeA5cons (variant 2)SSFQDWLLSRLP-ggsaeA5cons (variant 3)rshsSSFQDWLLSRLPA6cons (variant 1)rshsGFDWRWGMEALTgggsaeA6cons (variant 2)GFDWRWGMEALT-ggsae

52

Table S3. Thermodynamic parameters for binding of the peptide rshs-54 GFDWRWAMEALTggsae (A6cons) to S100A5 and S100A6 proteins. Species 55 abbreviations are "alli" (alligator), "gal" (chicken), "sar" (tasmanian devil), "m" (mouse), 56 and "h" (human). Fit parameters, with standard deviation from fits, for to the data 57 shown schematically in Fig 4A. Parameters are for a single-site binding model. "NA" 58 indicates that there was no detectable binding. We floated the fraction competent 59 parameter to capture uncertainty in peptide and protein concentration, particularly 60 given the low extinction coefficients of S100A5 and S100A6. If an experiment was 61 done at both 10 and 25 $^{\circ}C$, the parameters correspond to the 10 $^{\circ}C$ experiment. 62

63

64

	protein	$K_A (M^{-1})$	$\Delta H^{\circ} \; (kcal/mol)$	$fx \ comp.$	$num\ reps$	$T(^{\circ}C)$
	ancA5/A6	$8.30e5 \pm 1.9e5$	-12.20 ± 1.2	0.70 ± 0.02	2	25
	altAll	$1.10e5 \pm 5.2e4$	-8.70 ± 0.6	0.90 ± 0.07	2	25
	ancA5	$7.70e5 \pm 2.1e5$	-3.30 ± 0.8	0.80 ± 0.07	2	25
	alliA5	$4.40e5 \pm 6.8e4$	-10.60 ± 0.7	0.70 ± 0.01	2	25
	sarA5	$2.50e5 \pm 1.6e5$	-5.90 ± 2.5	0.90 ± 0.13	2	25
	mA5	$2.10e5 \pm 5.4e4$	-11.70 ± 2.7	1.10 ± 0.05	2	25
65	hA5	$4.10e5 \pm 9.8e4$	-8.50 ± 1.5	1.00 ± 0.02	2	25
	ancA6	$2.80e5 \pm 1.9e5$	-6.40 ± 2.7	1.10 ± 0.14	2	25
	alliA6	$9.50e4 \pm 4.7e4$	-10.40 ± 3.7	0.60 ± 0.09	2	25
	gA6	$4.20e5\pm2.0e5$	-8.10 ± 2.0	0.70 ± 0.06	2	25
	sarA6	$1.40e5 \pm 6.7e4$	-6.20 ± 1.9	0.80 ± 0.10	2	25
	mA6	$2.60e5 \pm 1.2e5$	-6.40 ± 1.5	0.60 ± 0.05	2	25
	hA6	$2.00e5 \pm 4.8e4$	9.60 ± 1.4	0.80 ± 0.02	2	25
66	hA4	$2.80e6 \pm 6.5e6$	-1.80 ± 0.5	0.60 ± 0.04	2	25

68	Table S4. Thermodynamic parameters for binding of the peptide rshsSS-
69	FQDWLLSRLPgggsae (A5cons) to S100A5 and S100A6 proteins. Species
70	abbreviations are "alli" (alligator), "gal" (chicken), "sar" (tasmanian devil), "m" (mouse),
71	and "h" (human). Fit parameters, with standard deviation from fits, for to the data
72	shown schematically in Fig 4A. Parameters are for a single-site binding model. "NA"
73	indicates that there was no detectable binding. We floated the fraction competent
74	parameter to capture uncertainty in peptide and protein concentration, particularly
75	given the low extinction coefficients of S100A5 and S100A6. If an experiment was
76	done at both 10 and 25 $^{\circ}C$, the parameters correspond to the 10 $^{\circ}C$ experiment.

77						
	protein	$K_A (M^{-1})$	$\Delta H^{\circ} \; (kcal/mol)$	$fx \ comp.$	$num\ reps$	T (° C)
	ancA5/A6	$9.30e4 \pm 3.0e4$	-5.20 ± 1.6	1.40 ± 0.07	2	25
	altAll	$4.70e4 \pm 2.2e4$	-3.90 ± 1.3	1.30 ± 0.19	2	25
	ancA5	$1.30e5\pm3.6e4$	-6.90 ± 1.3	0.90 ± 0.05	2	10, 25
	alliA5	$2.30e4 \pm 3.8e3$	13.80 ± 2.4	1.10 ± 0.07	2	10, 25
	sarA5	$2.10e5 \pm 1.5e5$	-4.80 ± 1.9	0.70 ± 0.1	2	25
	mA5	$4.70e4 \pm 1.9e4$	-6.90 ± 2.1	0.60 ± 0.08	2	25
78	hA5	$3.60e5 \pm 2.1e5$	-5.70 ± 1.7	0.80 ± 0.06	2	25
	ancA6	NA	NA	NA	2	10, 25
	alliA6	NA	NA	NA	2	25
	gA6	NA	NA	NA	2	25
	sarA6	NA	NA	NA	2	10, 25
	mA6	NA	NA	NA	2	25
	hA6	NA	NA	NA	2	25
79	hA4	$1.70e4 \pm 5.1e3$	-4.10 ± 0.8	0.90 ± 0.3	2	25

Table S5. Thermodynamic parameters for binding of the peptide RRLL-81 FYKYVYKR (NCX1) to S100A5 and S100A6 proteins. Species abbrevi-82 ations are "alli" (alligator), "gal" (chicken), "sar" (tasmanian devil), "m" (mouse), 83 and "h" (human). Fit parameters, with standard deviation from fits, for to the data 84 shown schematically in Fig 4A. Parameters are for a single-site binding model. "NA" 85 indicates that there was no detectable binding. We floated the fraction competent 86 parameter to capture uncertainty in peptide and protein concentration, particularly 87 given the low extinction coefficients of S100A5 and S100A6. If an experiment was 88 done at both 10 and 25 °C, the parameters correspond to the 10 °C experiment. (*) 89 Data from ancA5 binding to NCX1 were difficult to fit. The binding curves for this 90 interaction had shallow curvature and did not appear to reach baseline saturation 91 even in with higher titrant/titrate molar ratio, leading to the high fraction competent. 92

0	0
Э	э
-	-

	protein	$K_A (M^{-1})$	$\Delta H^{\circ} \ (kcal/mol)$	$fx \ comp.$	$num\ reps$	$T(^{\circ}C)$
	ancA5/A6	$3.3e4 \pm 7.6e3$	-1.70 ± 0.3	0.60 ± 0.05	2	25
	altAll	$2.3e4 \pm 8.3e3$	-3.80 ± 1.2	0.60 ± 0.05	2	25
	$ancA5^*$	$1.98e5 \pm 1.7e5$	-0.68 ± 0.4	2.90 ± 0.20	2	10
	alliA5	$5.80e3 \pm 1.6e3$	-7.20 ± 2.0	0.90 ± 0.26	2	10, 25
	sarA5	$2.50e4 \pm 1.7e4$	-2.80 ± 1.3	0.70 ± 0.20	2	25
	mA5	$1.20e5 \pm 1.7e5$	-1.30 ± 0.5	0.80 ± 0.20	2	25
94	hA5	$5.50e4 \pm 1.3e4$	-3.60 ± 0.9	1.40 ± 0.10	2	25
	ancA6	NA	NA	NA	2	10, 25
	alliA6	$4.60e4 \pm 3.3e4$	-2.50 ± 0.2	0.70 ± 0.15	2	10, 25
	gA6	$1.10e5 \pm 1.7e4$	3.40 ± 0.6	1.70 ± 0.05	2	25
	sarA6	$1.30e4 \pm 5.8e3$	-4.30 ± 1.8	0.90 ± 0.30	2	25
	mA6	NA	NA	NA	2	25
	hA6	NA	NA	NA	2	25
95	hA4	NA	NA	NA	2	25

Table S6. Thermodynamic parameters for binding of the peptide SEGLM-96 NVLKKIYEDG (SIP) to S100A5 and S100A6 proteins. Species abbrevia-97 tions are "alli" (alligator), "gal" (chicken), "sar" (tasmanian devil), "m" (mouse), and 98 "h" (human). Fit parameters, with standard deviation from fits, for to the data 99 shown schematically in Fig 4A. Parameters are for a single-site binding model. "NA" 100 indicates that there was no detectable binding. We floated the fraction competent 101 parameter to capture uncertainty in peptide and protein concentration, particularly 102 given the low extinction coefficients of S100A5 and S100A6. If an experiment was 103 done at both 10 and 25 $^{\circ}C$, the parameters correspond to the 10 $^{\circ}C$ experiment. 104

105

105						
	protein	$K_A (M^{-1})$	$\Delta H^{\circ} \; (kcal/mol)$	$fx \ comp.$	$num \ reps$	$T (^{\circ}C)$
	ancA5/A6	$1.30e4 \pm 1.7e3$	-8.10 ± 0.9	1.50 ± 0.01	2	25
	altAll	$2.40e4 \pm 1.2e4$	-1.50 ± 0.5	1.30 ± 0.20	2	25
	ancA5	NA	NA	NA	2	25
	alliA5	NA	NA	NA	2	10, 25
	sarA5	NA	NA	NA	2	25
	mA5	NA	NA	NA	2	25
106	hA5	NA	NA	NA	2	25
	ancA6	$3.90e4 \pm 3.0e2$	3.80 ± 0.3	1.20 ± 0.02	2	10, 25
	alliA6	$3.00e4 \pm 9.3e3$	3.20 ± 0.7	1.40 ± 0.09	2	25
	gA6	$5.80e4 \pm 8.9e3$	4.00 ± 0.4	1.90 ± 0.04	2	25
	sarA6	$3.30e5 \pm 1.5e5$	0.90 ± 0.1	2.00 ± 0.02	2	25
	mA6	$3.90e5 \pm 2.8e5$	0.50 ± 0.3	1.80 ± 0.02	2	10, 25
	hA6	$3.80e4 \pm 5.7e3$	2.90 ± 0.3	1.50 ± 0.03	2	15, 25
107	hA4	NA	NA	NA	2	25
101						

Table S7. Thermodynamic parameters for binding of the A5cons and SIP peptides to hA5 ancestral reversion mutants. Table entries show 95% credibility region from the posterior distribution of each parameter. Parameters are for a single-site binding model. "NA" parameters indicate that there was no detectable binding. All experiments were done at 25 °C.

114				
protein	peptide	$K_A \; (\times 10^5 \; M^{-1})$	$\Delta H^{\circ} \; (kcal/mol)$	$fx \ comp.$
hA5	A5cons	$1.3 \le 3.6 \le 8.9$	$-9.5 \le -5.7 \le -3.0$	$0.71 \le 0.84 \le 0.97$
hA5	SIP	NA	NA	NA
hA5/E2a	A5cons	$1.2 \le 1.3 \le 1.4$	$-5.2 \le -5.1 \le -4.88$	$0.87 \le 0.90 \le 0.93$
hA5/E2a	SIP	NA	NA	NA
L44i	A5cons	$1.6 \le 1.7 \le 1.9$	$-5.2 \le -5.1 \le -4.88$	$0.87 \le 0.90 \le 0.93$
115L44i	SIP	NA	NA	NA
D54k	A5cons	$3.2 \le 3.5 \le 3.7$	$-5.1 \le -5.0 \le -4.9$	$1.15 \le 1.17 \le 1.19$
D54k	SIP	NA	NA	NA
M78a	A5cons	$1.0 \le 1.1 \le 1.2$	$-3.5 \le -3.3 \le -3.1$	$1.24 \le 1.28 \le 1.32$
M78a	SIP	NA	NA	NA
A83m	A5cons	$2.6 \le 2.8 \le 3.0$	$-5.5 \le -5.5 \le -5.3$	$1.52 \le 1.53 \le 1.55$
A83m	SIP	$0.4 \le 0.6 \le 1.0$	$-0.8 \leq -0.6 \leq -0.4$	$0.99 \le 1.22 \le 1.54$

References

- 117 [1] Bertini I, Gupta SD, Hu X, Karavelas T, Luchinat C, Parigi G, et al. Solution
- 118 Structure and Dynamics of S100A5 in the Apo and Ca2+-Bound States. JBIC
- Journal of Biological Inorganic Chemistry. 2009 Sep;14(7):1097–1107.