
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

This manuscript describes a fine mapping study of SNPs found to be associated with PCa risk in 

previous GWAS studies. This study describes multiple significant findings comprised mainly of greatly 

narrowing down the number of SNPs potentially involved as causal variants. The strengths of the 

study include large size, very detailed and sophisticated statistical analysis, multiple novel findings, 

and excellent and experienced investigators.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The manuscript presents the results of finemapping of 88 SNPs associated with prostate cancer. The 

research is thorough and very interesting. However, I have a number of queries. The manuscript 

would be strengthened if it were to give more general insight into the finemapping of GWAS loci and I 

have several queries relating to that.  

 

(i) 64 loci have previously been finemapped by the same group on a smaller dataset. But no 

comparison is made between the results of the two studies. Does the current work support the 

findings of the previous paper, to the extent that the variants identified by the earlier work remain in 

the new credible sets of variants? It might be expected that increasing the sample size has increased 

power to detect explanatory variants within each region. So has there been an overall increase in the 

number of signals per region and is the number of signals in each region (in the two studies) 

correlated (do those regions that contained the most signals still contain the most)? This kind of 

insight would be of relevance for finemapping of regions associated with other traits.  

 

(ii) Where there are multiple signals in a region how many of these are 'responsible' for the initial 

GWAS-association? In other words, did the initial association just pick up the strongest of the variants 

or a combination of several of them?  

 

(iii) Similarly, is there any evidence that the more significant loci (which will be better powered for 

finemapping) contain more signals? This would indicate either that multiple signals are easier to 

distinguish when there is more power (so that many of the single-variant regions are sinply 

underpowered) or that the regions that have the biggest effect on risk are also (for some reason) 

more likely to have multiple signals.  

 

(iv) "Our aim was to refine all regions reported prior to the recent meta-analysis". But the recent 

meta-analysis, which identified a further 23 loci is from 2014. Why were these not included here?  

 

(v) 53 of the regions were densely genotyped on the OncoArray in the majority of samples and thus 

would be expected to be far better imputed and be better powered to detect variants in the 

finemapping. Is there evidence of such a difference in the results between these 53 and the 35 that 

were more sparsely genotyped?  

 

(vi) "For 65 regions JAM successfully inferred credible sets of associated variants from the meta-

analysis summary statistics... Due to complex correlation structure, at the remaining 16 regions, we 

instead used individual level imputed genotype data from the OncoArray sub-cohort"  

 

Firstly it's not clear why these 16 regions failed. The authors say that the success of the method 

depends on factors such as the correlation structure between variants in each region and that none of 



the individual variants has a large effect. But what was the problem here? The authors say "we 

concluded the most likely explanation was divergence of the logistic/linear approximation" but it's not 

clear how they came to this conclusion. The failure of the method for about a fifth of the regions 

investigated is a particular concern, given that the JAM method is relatively new (2016). Secondly, 

how does the "individual level genotype data" approach applied to these 16 regions compare with 

using JAM? If you apply this to the regions that 'worked' for JAM do you get similar results (the same 

number of signals, overlapping credible sets, etc)?  

 

(vii) "At least one variant within our credible set intersected a significantly associated eQTL variant 

among the credible set". This is an interesting result and the authors make a convincing case for this 

being higher than you would expect by chance. They sensibly use eQTLs for prostate cancer but it 

would be interesting to see how the results compare if they use eQTLS for other tissue types - i.e. is 

the enrichment for eQTLs in their credible sets apparent in multiple tissue types or just prostate 

cancer?  

 

(viii) The previous prostate cancer finemapping paper stated "we estimate that these loci now explain 

∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS 

tag SNPs" but the new analysis states that "inclusion of lead SNPs representing all of the 107 

independent signals contributes 27.4%". Given that this study includes more regions why has the 

proportion decreased?  

 

(ix) "Those regions with large credible sets would benefit from additional finemapping". Was there any 

obvious reason why some regions resulted in such large credible sets, such as particularly high levels 

of LD or low power to distinguish signals?  

 

(x) In the "meta-analysis and imputation" section it is stated that non-genotyped SNPs were imputed 

500kb either side of the reported GWAs index SNP. This seems rather a small distance given that LD 

can extend a long way in some regions. Indeed, in the preceding section on the selection of SNPs for 

dense genotyping the authors report that they selected their dense genotyping regions as being within 

500kb _or_ the maximum distance within which any variant had r^2>0.3 with the index SNP 

(whichever was greater). The latter seems far more sensible as it allows regions with longer-range LD 

to have bigger windows for finemapping. Why was this criteria not used for finemapping regions and in 

how many regions would it have extended the region finemapped?  

 

(xi) In the application of JAM, estimated LD between all variants must be supplied. The authors say 

they estimated this from their imputed data on 20,000 cases and controls. But since these data are 

derived from the reference panel used for imputation, why not use the  imputation panel itself to 

estimate LD? This will avoid bias caused by variation in imputation quality between variants. Given 

that (I think) the 1000 Genomes data was used here, why not use something like the UK10K data, 

which would be even more informative?  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors present the largest fine-mapping study of prostate cancer loci in 82,591 cases and 61,213 

controls of European ancestry, typed with the OncoArray or GWAS arrays, after high density 

imputation to the 1000 Genomes Project reference panel. They utilise a novel Bayesian fine -mapping 

algorithm that simultaneously dissects association signals within loci and constructs credible sets of 

variants driving the associations. Most loci contained a single association signal, although the 

maximum observed was five signals. Some loci were fine-mapped to relatively few variants. Multiple 

annotations were enriched for variants in the credible sets, including promoter and enhancer 



elements. Improved fine-mapping after annotation pointed to specific causal genes and mechanisms in 

some loci.  

 

The study has been performed well, and implements a powerful and novel approach to fine -mapping. 

The manuscript is well written, and the methods and results are generally clearly described.  

 

Major comments:  

 

1. The approach a first selecting tags, fine-mapping tags, and then folding bag in variants that are in 

LD with the selected tags seems sub-optimal. I assume that this is done because it becomes difficult 

to distinguish between variants in strong LD and the MCMC algorithm gets “stuck” at one variant, 

rather than visiting the space of variants in very strong LD? Could the authors take the regions in 

which JAM indicated a single association signal, and compare the JAM credible  set with that which 

would be obtained from using approximate Bayes’ factors (as described by Wakefield, AJHG 2007) 

with the meta-analysis results?  

2. The authors claim that stepwise conditional analysis approaches are sub-optimal for identifying 

distinct association signals and subsequent fine-mapping. However, for the loci where JAM has 

concluded that there is a single association signal, would running a simple approximate conditional 

analysis in GCTA (using the same LD reference), conditioning on the lead SNP, also lead to the 

conclusion that there is a single causal variant (i.e. the residual association is not significant).   

3. Are the results obtained from JAM consistent with other fine-mapping approaches that make use of 

summary data and LD references (such as FINEMAP), and what are the relative advantages of JAM?  

4. How sensitive are the results of JAM to the choice of samples for the LD reference? Do the results 

remain the same if a different random selection of cases/controls is used?  

5. Little reference is made to the allele frequency distribution of credible set variants. Are most 

variants (or most of the posterior probability) ascribed to common variants? Does this give any 

additional insight into genetic architecture?  

 

Minor comments (specific line numbers provided):  

 

331. Using the phrase “in a large European ancestry population” makes it sound like it is a single 

study in one population, rather than a meta-analysis – worth considering re-phrasing.  

336. Wasn’t clear how the 53+25 regions correspond to the 86 distinct regions described in line 330.  

342. Would be useful to have an additional sentence with some detail about the meta -analysis (rather 

than the reader having to look forward to the methods).  

376. Important to specify the LD reference used here (in addition to the methods).  

401. Presumably a posterior probability is generated by JAM for each variant – it wasn’t entirely clear 

where this posterior was being used, rather than the presence/absence of a variant in the credible 

set.  

469. Not clear what is meant by “global level”?  

484. Presumably, the enrichment procedure doesn’t take account of the posterior probability – is there 

any way this could be incorporated?  

711. Trans-ethnic fine-mapping – how would the variable LD structure between ethnicities be taken 

account of in JAM?  

855. If you compare the post QC set of variants with all variants with MAF>0.5% in 1000 Genomes 

Europeans – what proportion have been “successfully imputed” and carried forward for fine -mapping 

analysis?  



3 of 18 

Reviewers' comments: 
 
Reviewer #1  
 
(Remarks to the Author): 
This manuscript describes a fine mapping study of SNPs found 
to be associated with PCa risk in previous GWAS studies. This 
study describes multiple significant findings comprised mainly of 
greatly narrowing down the number of SNPs potentially 
involved as causal variants. The strengths of the study include 
large size, very detailed and sophisticated statistical analysis, 
multiple novel findings, and excellent and experienced 
investigators. 
 
We thank the reviewer for their validation of our endeavours. 
 
Reviewer #2  
 
(Remarks to the Author): 
The manuscript presents the results of finemapping of 88 SNPs 
associated with prostate cancer. The research is thorough and 
very interesting. However, I have a number of queries. The 
manuscript would be strengthened if it were to give more 
general insight into the finemapping of GWAS loci and I have 
several queries relating to that. 
 
(i) 64 loci have previously been finemapped by the same group 
on a smaller dataset. But no comparison is made between the 
results of the two studies. Does the current work support the 
findings of the previous paper, to the extent that the variants 
identified by the earlier work remain in the new credible sets of 
variants? It might be expected that increasing the sample size 
has increased power to detect explanatory variants within each 
region. So has there been an overall increase in the number of 
signals per region and is the number of signals in each region 
(in the two studies) correlated (do those regions that contained 
the most signals still contain the most)? This kind of insight 
would be of relevance for finemapping of regions associated 
with other traits. 
 
The reviewer raises a valid point that the substantially increased 
sample size, and therefore power in this study could enable a 
detection of previously unidentified additional signals. Indeed, in this 
study we did observe evidence for the presence of an extra novel 
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signal in three regions previously known to contain multiple 
independent signals, and found evidence for multiple signals in three 
regions for the first time. It is also noteworthy that the vast majority 
of regions which contained multiple independent associations had 
been reported to be associated with PrCa in early GWAS with smaller 
sample sets, indicating that regions with weaker evidence for 
association or that confer lower effects upon risk are less likely to 
contain additional signals. We did however, also refute the presence 
of previously suggested multiple signals at a handful of regions, and 
therefore did not observe a drastic increase in the total number of 
signals identified with our larger cohort.  
 
Alongside our substantially increased sample size, we have also 
implemented an enhanced Bayesian analysis methodology for this 
study that is far less sensitive to subjective measures such as the P-
value threshold chosen for secondary signals and what level of LD is 
used to define the final list of candidate variants represented by the 
selected marker(s) than the stepwise selection techniques used in 
previous fine-mapping reports. We therefore consider the results of 
this study to represent the most reliable and informative PrCa 
susceptibility data available at present with current resources. We 
have however substantially expanded our general comparison 
between the results of this study and previous PrCa fine-mapping 
papers in the discussion section on page 18, in an attempt to provide 
the other researchers with the observations of trends that the 
reviewer highlights as of interest. 
 
(ii) Where there are multiple signals in a region how many of 
these are 'responsible' for the initial GWAS-association? In 
other words, did the initial association just pick up the strongest 
of the variants or a combination of several of them? 
 
We do not see a uniform relationship between the LD between the 
original GWAS tag hits and the novel variants selected in the credible 
set for the regions with multiple signals. Within certain regions the 
original GWAS hit(s) are strongly correlated with only one of the 
independent signals detected through fine-mapping, whilst for others 
they are in moderate LD with variants appearing to represent each of 
the independent signals. We have added a description of this 
observation to the discussion on page 18. 
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(iii) Similarly, is there any evidence that the more significant loci 
(which will be better powered for finemapping) contain more 
signals? This would indicate either that multiple signals are 
easier to distinguish when there is more power (so that many of 
the single-variant regions are simply underpowered) or that the 
regions that have the biggest effect on risk are also (for some 
reason) more likely to have multiple signals. 
 
Whilst the number of loci containing multiple signals is fewer than 
those with a single signal, we do observe a general trend that regions 
in which the P-value of the original GWAS hits are more strongly 
significant in the marginal meta-analysis are also more likely to 
contain multiple signals than those in which the association is 
weaker. This same trend is also observed with the odds ratios of the 
original GWAS hits; higher odds ratios of the GWAS tag SNP are 
associated with a greater likelihood of the region containing multiple 
signals. There are however still a number of specific regions in which 
the association with prostate cancer is extremely strong or the odds 
ratio of the original GWAS hit towards the upper end of the 
distribution observed, yet the evidence points towards only a single 
signal. We have added an additional sentence explaining this 
observation to the ‘Multivariate fine-mapping from univariate 
summary statistics’ sub-section of the results on page 11 and have 
added an additional supplementary figure (Supplementary Figure 2). 
 
(iv) "Our aim was to refine all regions reported prior to the 
recent meta-analysis". But the recent meta-analysis, which 
identified a further 23 loci is from 2014. Why were these not 
included here? 
 
The meta-analysis this sentence is intended to refer to is the large 
European ancestry meta-analysis of 140,306 individuals that is 
currently under review (Schumacher et al., Nature Genetics, 
submitted), and not the multi-ethnic meta-analysis of 87,040 
individuals (Al Olama et al., Nature Genetics, 2014) the reviewer 
mentions  and the reference currently directs towards. The 23 newly 
reported loci from the 2014 multi-ethnic meta-analysis were indeed 
fine-mapped during this study, however were less densely genotyped 
on OncoArray due to their discovery occurring at a late stage in the 
design of the OncoArray genotyping chip; as described in the 
methods section (“The 23 risk loci reported in a recent multi-ethnic 
meta-analysis study 13 were not densely genotyped as these loci were 
reported after the OncoArray design, however these regions were 
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also fine-mapped in this study.”). We thank the reviewer for drawing 
our attention the erroneous assignment of this reference to the 
previous meta-analysis and have updated this reference to relate to 
the appropriate study (Schumacher et al., Nature Genetics, 
submitted).  
 
(v) 53 of the regions were densely genotyped on the OncoArray 
in the majority of samples and thus would be expected to be far 
better imputed and be better powered to detect variants in the 
finemapping. Is there evidence of such a difference in the 
results between these 53 and the 35 that were more sparsely 
genotyped? 
 
The reviewer is correct that the regions less densely genotyped on 
OncoArray may be less well powered to successfully identify 
candidate variants during fine-mapping. In our updated analysis, four 
out of the five regions in which JAM was unable to resolve candidate 
causal variants occurred in these regions. These regions generally 
demonstrate weaker P-values and odds ratios for the top hit in the 
marginal meta-analysis than the majority of other regions. This may 
reflect their genotyping coverage of the OncoArray, or it may reflect 
an underlying weak causal variant within these regions. It is also 
worth noting that we do not observe any obvious trend for larger or 
smaller credible set sizes in the more sparsely genotyped regions, 
indicating that lower effect size may be the more likely explanation. 
We have added a sentence to the discussion section on page 18 of 
the manuscript to explain that these two phenomena are likely to be 
the primary contributors to our inability to fine-map these 5 regions.  
 
(vi) "For 65 regions JAM successfully inferred credible sets of 
associated variants from the meta-analysis summary statistics... 
Due to complex correlation structure, at the remaining 16 
regions, we instead used individual level imputed genotype data 
from the OncoArray sub-cohort" 
 
Firstly it's not clear why these 16 regions failed. The authors 
say that the success of the method depends on factors such as 
the correlation structure between variants in each region and 
that none of the individual variants has a large effect. But what 
was the problem here? The authors say "we concluded the 
most likely explanation was divergence of the logistic/linear 
approximation" but it's not clear how they came to this 
conclusion. The failure of the method for about a fifth of the 
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regions investigated is a particular concern, given that the JAM 
method is relatively new (2016). Secondly, how does the 
"individual level genotype data" approach applied to these 16 
regions compare with using JAM? If you apply this to the 
regions that 'worked' for JAM do you get similar results (the 
same number of signals, overlapping credible sets, etc)? 
 
Our inclusion of results from the R2BGLiMS analysis of individual 
level data was an attempt to provide the scientific community with 
candidate causal variants for the regions in which our primary 
analysis, JAM, had been unsuccessful in refining the initial 
association. These secondary results were however lower confidence 
as we had attempted to make clear within the manuscript, due to the 
substantially smaller sample set with genotype level data available 
for this analysis and the more computationally intense variant 
selection procedure that limited the number of iterations that we 
were able to model in comparison to our JAM analysis. Whilst there 
are a number of legitimate reasons why fine-mapping would be more 
prone to failure in some regions than others (in particular underlying 
LD structures, weaker effect sizes or lower minor allele frequencies of 
the causal variant), as the reviewer notes, we had been unable to 
refine the association approximately one fifth of regions in the 
primary analysis and were therefore required to adopt this hybrid 
approach. 
 
In an attempt to alleviate this limitation, we have devised a 
modification to the JAM algorithm. Previously we were applying JAM, 
a linear model, directly to PrCa log-odds ratios under the assumption 
that the difference in effect scales (logistic vs linear) would have a 
negligible impact on inference. In our updated JAM algorithm, the 
univariate odds ratios are initially mapped to approximate linear 
effects via their z-scores. With this modification, we attempt to infer 
the effects that would have been obtained if linear regressions of 
PrCa were performed in the original meta-analysis; thereby providing 
JAM with effects on the same scale as assumed by its underlying 
model. This adjustment, which is used in other linear model based 
summary statistics frameworks, has enabled us to analyse all regions 
using JAM. This consequently improves our confidence in the results 
at regions where adoption of R2BGLiMS had been required 
previously, and allows a simplified and streamlined analysis 
procedure to be presented to the reader throughout the manuscript. 
Using the modified version of JAM, we were able to successfully 
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refine 75 out of 80 regions fine-mapped. For the small number of 
remaining regions where JAM was still unable to fit a model we 
describe the possible reasons behind this in the discussion on page 
17-18. 
 
(vii) "At least one variant within our credible set intersected a 
significantly associated eQTL variant among the credible set". 
This is an interesting result and the authors make a convincing 
case for this being higher than you would expect by chance. 
They sensibly use eQTLs for prostate cancer but it would be 
interesting to see how the results compare if they use eQTLS 
for other tissue types - i.e. is the enrichment for eQTLs in their 
credible sets apparent in multiple tissue types or just prostate 
cancer? 
 
Establishing whether these eQTL variants operate specifically (or 
predominantly) in prostate tissue or ubiquitously across tissue types 
would be an interesting scientific question. We do however believe 
that it would not be feasible to examine this aspect within the scope 
of our manuscript, as it is a substantial undertaking to perform the 
eQTL analysis and hence we have conducted it for just the single 
most relevant tissue type for our study.  
 
We believe that presenting the outcome of additional analyses would 
also substantially increase the length and reduce the conciseness of 
our presented results and deviate from the primary focus of our 
paper. We do however within this paper provide full information 
regarding all eQTL variants within the credible set and their 
associated genes in supplementary table 2a, which would enable 
interested parties to compare variants of interest to expression 
results for other tissue types from the databases or primary data of 
their choosing.  
 
We are currently also supporting two separate studies (papers in 
preparation) that use GTEX data from a range of tissue types to 
perform transcriptome-wide association study (TWAS) analyses using 
the same initial meta-analysis data. These upcoming studies should 
broadly address the question of interest to the reviewer in a more 
appropriate and specific context.  
 
(viii) The previous prostate cancer finemapping paper stated 
"we estimate that these loci now explain ∼38.9% of the familial 
relative risk of PrCa, an 8.9% improvement over the previously 
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reported GWAS tag SNPs" but the new analysis states that 
"inclusion of lead SNPs representing all of the 107 independent 
signals contributes 27.4%". Given that this study includes more 
regions why has the proportion decreased? 
 
This reduction in the absolute values that we report in this study for 
the proportion of familial relative risk (FRR) explained result from 
three aspects of an improved methodology that we have 
implemented in this paper. Firstly, we have revised upwards the 
estimate of the FRR of PrCa that was used in previous studies from 
2.0 to 2.5 in line with the most recent estimates, which in turn has 
led to a substantial decrease in the proportion that is explained by 
the known GWAS variants in comparison to previous studies that 
used the lower FRR estimate. Secondly, we have implemented an 
enhanced methodology for calculating the FRR that accounts for 
potential bias resulting from uncertainty in the conditional risk 
estimates for each variant, due to risk estimation in the same sample 
as discovery and uncertainty in the specification of the familial 
relative risk. The latter factor in particular results in more 
conservative estimates, due to mitigation of the “winner’s curse” 
effect. Thirdly, we also use conditional effect estimates for variants in 
regions with multiple independent associations for this calculation, 
whereas unadjusted effect estimates were employed in previous 
studies. 
 
The primary goal of the calculation of the proportion of FRR 
explained within our paper is to demonstrate the relative 
improvement achieved through fine-mapping towards the likely 
causal variants, as opposed to the absolute estimates themselves. To 
avoid reader confusion in comparison to previous publications, we 
have however added additional explanation of the enhancements in 
the methodology we have applied to the discussion on page 20. We 
also refer to the companion meta-analysis paper in which this 
methodology will be applied for the first time, and which forms the 
new baseline estimate for the proportion of FRR explained by the 
original GWAS tag hits. 
 
(ix) "Those regions with large credible sets would benefit from 
additional finemapping". Was there any obvious reason why 
some regions resulted in such large credible sets, such as 
particularly high levels of LD or low power to distinguish 
signals? 
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The primary reason that some regions returned a larger credible set 
appears to relate to linkage disequilibrium patterns, specifically large 
numbers of correlated variants around the signal identified. For 
regions with a credible set >50 variants (22 regions, 2,761 variants in 
the credible set represented by 172 tags), the mean number of 
variants per tag selected in the analysis is 16.1, whereas for regions 
with a credible set ≤50 variants (53 regions, 939 variants represented 
by 171 tags) the mean number of variants per tag is just 5.5. We have 
added a sentence to the discussion on page 19 to summarise this 
observation.  
 
(x) In the "meta-analysis and imputation" section it is stated that 
non-genotyped SNPs were imputed 500kb either side of the 
reported GWAs index SNP. This seems rather a small distance 
given that LD can extend a long way in some regions. Indeed, 
in the preceding section on the selection of SNPs for dense 
genotyping the authors report that they selected their dense 
genotyping regions as being within 500kb _or_ the maximum 
distance within which any variant had r^2>0.3 with the index 
SNP (whichever was greater). The latter seems far more 
sensible as it allows regions with longer-range LD to have 
bigger windows for finemapping. Why was this criteria not used 
for finemapping regions and in how many regions would it have 
extended the region finemapped? 
 
The additional r2 >0.3 criteria with the original GWAS index SNP was 
applied for the imputation step as well as for the selection of SNPs 
for dense genotyping as a safety measure against regions in which LD 
might extend for long distances. We did not in practice however 
observe long distance LD beyond the nominal 500kb flank for any 
region. For simplicity we therefore generally refer to the region 
boundaries in relation to the standard +/-500kb flank and had 
omitted to mention the extra LD criteria at this section of the 
methods. We have now added this extra information to the ‘Meta-
analysis and Imputation’ section of the methods on page 22 to 
demonstrate clearly to the reader that LD with the original GWAS hits 
does not extend beyond any region boundaries analysed in this 
study.  
 
(xi) In the application of JAM, estimated LD between all variants 
must be supplied. The authors say they estimated this from 
their imputed data on 20,000 cases and controls. But since 
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these data are derived from the reference panel used for 
imputation, why not use the imputation panel itself to estimate 
LD? This will avoid bias caused by variation in imputation 
quality between variants. Given that (I think) the 1000 Genomes 
data was used here, why not use something like the UK10K 
data, which would be even more informative? 
 
To clarify, we estimated LD using individual level data from the 
entire OncoArray sub-cohort of almost 90,000 samples. Whilst 
some variants are indeed imputed according to the 1000 
Genomes reference panel, it should be kept in mind that a large 
proportion were also directly genotyped. Ideally, fine-mapping 
methods should estimate correlations from the actual samples 
analysed. Since we were in the unusual situation of having 
access to individual genotypes for a large cohort of study 
participants including a high proportion of directly genotyped 
variants, we therefore preferred to use this data for LD 
estimation, rather than an external dataset such as the UK10K. 
In addition, at the time of imputation and analysis in the main 
meta-analysis, the UK10K data was not readily available to our 
consortium.  
 
Reviewer #3  
 
(Remarks to the Author): 
The authors present the largest fine-mapping study of prostate 
cancer loci in 82,591 cases and 61,213 controls of European 
ancestry, typed with the OncoArray or GWAS arrays, after high 
density imputation to the 1000 Genomes Project reference 
panel. They utilise a novel Bayesian fine-mapping algorithm 
that simultaneously dissects association signals within loci and 
constructs credible sets of variants driving the associations. 
Most loci contained a single association signal, although the 
maximum observed was five signals. Some loci were fine-
mapped to relatively few variants. Multiple annotations were 
enriched for variants in the credible sets, including promoter 
and enhancer elements. Improved fine-mapping after 
annotation pointed to specific causal genes and mechanisms in 
some loci. 
 
The study has been performed well, and implements a powerful 
and novel approach to fine-mapping. The manuscript is well 
written, and the methods and results are generally clearly 
described.  
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Major comments: 
 
1. The approach a first selecting tags, fine-mapping tags, and 
then folding bag in variants that are in LD with the selected tags 
seems sub-optimal. I assume that this is done because it 
becomes difficult to distinguish between variants in strong LD 
and the MCMC algorithm gets “stuck” at one variant, rather than 
visiting the space of variants in very strong LD? Could the 
authors take the regions in which JAM indicated a single 
association signal, and compare the JAM credible set with that 
which would be obtained from using approximate Bayes’ factors 
(as described by Wakefield, AJHG 2007) with the meta-analysis 
results? 
 
The reviewer is correct as to why we pruned variants in very high LD 
before running JAM. The reviewer also makes an interesting 
suggestion for checking the robustness of our results where a single 
signal is inferred. In regions with a single signal, credible sets from 
Wakefield’s approximate Bayes Factors, which ignores LD, should be 
nearly the same as those inferred by JAM, provided the degree of 
prior sparsity is equivalent. However, there is a difference in the prior 
set-up (we use a more sophisticated Beta-Binomial prior setup), so 
we could never exactly match the priors, and Wakefield’s method of 
course provides approximate Bayes Factors, whereas JAM provides 
formal Bayes Factors. Therefore, any differences in credible sets 
would be difficult to interpret without a detailed simulation study. 
This would certainly be interesting but we feel that a methodological 
comparison of this nature would be beyond the scope of this paper. 
 
2. The authors claim that stepwise conditional analysis 
approaches are sub-optimal for identifying distinct association 
signals and subsequent fine-mapping. However, for the loci 
where JAM has concluded that there is a single association 
signal, would running a simple approximate conditional analysis 
in GCTA (using the same LD reference), conditioning on the 
lead SNP, also lead to the conclusion that there is a single 
causal variant (i.e. the residual association is not significant).  
 
Whether GCTA includes a secondary variant where JAM has not 
would depend on the chosen P-value threshold for additional SNP 
inclusion, and how this compares to the significance levels used with 
JAM's Bayesian model selection. There is no exact mapping between 
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Bayesian and frequentist significance thresholds, therefore it would 
be difficult to confirm whether any differences were due to a genuine 
additional signal. A detailed simulation exercise would be required to 
study and confidently interpret any differences between these 
approaches. We view this as a methodological comparison beyond 
the scope of this paper and, to our knowledge, such a comparison 
does not yet exist in the literature to refer to. 
 
3. Are the results obtained from JAM consistent with other fine-
mapping approaches that make use of summary data and LD 
references (such as FINEMAP), and what are the relative 
advantages of JAM? 
  
Whilst the relative performance of contemporary fine-mapping 
approaches is important, a comparison between our preferred 
algorithm, JAM, and other methodologies has been conducted as 
part of the original JAM publication. We therefore believe that to 
attempt further comparison of different methods is beyond the 
scope of this study. Furthermore, the inclusion of this detail would 
detract from the primary and distinctive goal of this publication (the 
provision of rich fine-mapping data for PrCa to the scientific 
community to facilitate downstream research and clinical 
application), towards a greater focus on the comparison of fine-
mapping programs, an aspect that is regularly embarked upon 
elsewhere. Summary data from the Onco-Array meta-analysis will 
however be available for the community to access on dbGAP, which 
would allow an interested researcher to re-analyse our data using 
any desired tools and conduct this comparison if desired.  
 
It is also worth noting that in this study we are applying the fine-
mapping algorithm to actual study data in which the number and 
identity of the true causal variants is not known a priori. A conclusive 
comparison of fine-mapping methods would require a detailed 
simulation study in which the “truth” is known, in order to 
confidently interpret the relative accuracy of conflicting results from 
different models. There would therefore not be any readily available, 
definitively informative metrics upon which to unequivocally judge 
the relative success of different algorithms using the same data; 
beyond simple evaluation of whether an algorithm had detected any 
variants previously presumed to be causal within a highly refined set 
of candidates. We have been able to achieve this measure with JAM 
by detecting within our credible set all of the few variants previously 
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regarded as likely to be causal (at MSMB, RFX6 and HOXB13; as 
described within our results ‘Multivariate fine-mapping from 
univariate summary statistics’ and ‘Fine-mapping Resolution’ sections 
on pages 10 and 14), in addition to discernment of other highly 
plausible biological candidates in regions lacking previously identified 
strong candidates. 
 
As regards the relative advantages of JAM versus other 
methodologies, we detail the reasoning behind our choice over 
alternative frameworks: 
 
JAM over GCTA 
It is well established that Bayesian search procedures perform much 
better than stepwise selection in high dimensional settings, therefore 
owing to the very large set of variants to analyse we did not use 
GCTA. We also point again to the original JAM paper in which 
extensive simulations demonstrated superiority in the rankings of 
variants compared to GCTA. 
 
JAM over FINEMAP 
Firstly, FINEMAP does not use a formal Bayesian search (it uses an 
approximate approach which, by design, excludes some variant 
combinations from the search). By contrast, JAM provides formal 
Bayes Factors from a full and formal Reversible Jump MCMC model 
search procedure. Secondly, FINEMAP assumes that at least one 
signal exists in each region (it places 0 prior weight on the null 
model). Due to the number of regions being fine-mapped, we wanted 
to allow for the possibility that some of these regions could be false 
positives; JAM can provide evidence for no signal. 
 
JAM over Other Non-stochastic Bayesian approaches 
Other Bayesian methods such as CAVIAR and CAVIARBF exhaustively 
assess all possible causal configurations. With dense genotype data, a 
prior assumption on the number of signals within each given region is 
necessary, otherwise computational requirements become 
prohibitive. We viewed such assumptions as too restrictive to apply 
to our dataset given the vastly improved power of our meta-GWAS 
(>144,000 individuals) in comparison to pre-existing knowledge 
derived from smaller studies. We therefore favoured JAM, since its 
stochastic search does not require a priori restrictions on the 
expected number of signals within any given region. 
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4. How sensitive are the results of JAM to the choice of 
samples for the LD reference? Do the results remain the same 
if a different random selection of cases/controls is used? 
 
As we used a relatively large and unbiased sample panel for the LD 
reference (20,000 cases and 20,000 controls randomly selected from 
the OncoArray sub-cohort), results are not materially affected by the 
precise samples chosen. To investigate this matter, for 4 pilot regions 
we ran JAM 10 times using different panels of randomly selected 
cases and controls, finding >90% concordance of variants selected in 
the credible set across all 10 runs and variants with high posterior 
probabilities selected consistently throughout. We considered 
however that attempting to include details of these additional checks 
within the manuscript could lead to confusion as to the methodology 
we had used when generating the data we present, and therefore 
prefer to keep this information as an internal validation measure; 
although we would be prepared to include it at the discretion of the 
editor. 
 
5. Little reference is made to the allele frequency distribution of 
credible set variants. Are most variants (or most of the posterior 
probability) ascribed to common variants? Does this give any 
additional insight into genetic architecture? 
 
Only a small proportion of variants within the credible set are low 
frequency (of the 3,700 variants in the JAM credible set, only 48 have 
MAF <5% and 2 MAF <1%). This suggests that common variants 
primarily represent the likely causal variants at the majority of these 
GWAS loci. We do however still observe a number of specific 
instances in which the most likely candidate variants identified are 
low MAF (e.g. coding variants within the HOXB13, FAM111A, and 
ANO7 genes). We have added additional description regarding the 
allele frequency distribution of the credible set to the ‘Multivariate 
fine-mapping from univariate summary statistics’ section of the 
results on page 10 and added an additional supplementary figure 
(Supplementary Figure 1). 
 
Minor comments (specific line numbers provided): 
 
331. Using the phrase “in a large European ancestry 
population” makes it sound like it is a single study in one 
population, rather than a meta-analysis – worth considering re-
phrasing. 
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We have altered the phraseology to read “in a large European 
ancestry meta-analysis cohort” to prevent confusion. 
 
336. Wasn’t clear how the 53+25 regions correspond to the 86 
distinct regions described in line 330. 
 
To simplify, we have altered the phraseology of this sentence to read 
“At the time of the design of the OncoArray we specifically selected 
46,500 SNPs for fine-mapping of known PrCa or multiple cancer 
(prostate and breast or ovarian cancer) risk regions.”. 
 
342. Would be useful to have an additional sentence with some 
detail about the meta-analysis (rather than the reader having to 
look forward to the methods). 
 
We have moved the brief summary of the composition of the meta-
analysis that was previously in the following paragraph to this section 
of the results on page 8 for greater clarity. 
 
376. Important to specify the LD reference used here (in 
addition to the methods). 
 
We have added the LD reference panel used to this section of the 
results on page 9. 
 
401. Presumably a posterior probability is generated by JAM for 
each variant – it wasn’t entirely clear where this posterior was 
being used, rather than the presence/absence of a variant in 
the credible set. 
 
JAM does generate posterior probabilities and Bayes Factors for each 
variant analysed as the reviewer notes, as well as for each 
combination of variants. The posterior probabilities provide useful 
information when attempting to prioritise variants within each region 
specific credible set for downstream investigations. We have formally 
integrated the SNP-specific posterior probabilities with the 
annotation features in a quantile regression framework. We provide 
the individual posterior probabilities, full annotations and quantile 
regression results of all variants selected in the credible set in 
Supplementary Table 2a, and describe the statistical results for three 
example regions within the “Fine-mapping Resolution” sub-section of 
our results to provide an example of how these attributes can be 
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used and interpreted. Furthermore, posterior probabilities of specific 
combinations of variants were used to pick the most representative 
set of tags when calculating the contribution to familial relative risk 
from multi-signal regions, as described in the ‘Estimating the 
contribution to FRR of PrCa from these GWAS loci’ section of the 
results and the ‘Proportion of familial risk explained’ section of the 
methods. 
 
469. Not clear what is meant by “global level”? 
 
This sentence relates to the overall results of the quantile regression 
analysis across all regions, rather than those within individual 
regions. In this section we are attempting to describe how the 
quantile regression analysis can help to highlight the specific 
functional annotations most regularly observed among variants with 
the highest statistical probability of association with PrCa. These 
selected annotations would therefore indicate potential shared 
functional mechanisms that underlie PrCa risk across a number of the 
susceptibility loci we have fine-mapped. We have re-phrased this to 
read “across all 75 regions” to make this meaning more clear. 
 
484. Presumably, the enrichment procedure doesn’t take 
account of the posterior probability – is there any way this could 
be incorporated? 
 
For the assessment of enrichment of annotations among our 
candidate variants by Fisher’s exact test, which the reviewers’ 
question relates to, the posterior probability of variants is indeed not 
taken into account and the analysis only considers overlap between 
annotation features and inclusion of variants in the credible set. As 
the reviewer notes however, the relative posterior probabilities of 
the variants carrying these annotations may also provide additional 
pertinent information beyond the simple inclusion of a variant in the 
credible set. This fact formed the rationale behind conducting our 
conditional quantile regression analysis, which considers all 
annotation features and variant posterior probabilities in the same 
model and indicates annotations enriched within the upper 
distributions of variant posterior probabilities. We therefore do make 
use of this information in the more advanced quantile regression 
analysis, but also provide the reader with the results from a more 
widely familiar Fisher’s test applied to each annotation individually, 
in an attempt to demonstrate the enrichment of specific annotations 
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that we observe clearly and accessibly to readers of multiple 
backgrounds. We also provide all variant posterior probabilities, 
quantile regression adjustments and full annotations in 
supplementary table 2a, to enable more detailed exploration of our 
results for specific variants by interested parties. 
 
711. Trans-ethnic fine-mapping – how would the variable LD 
structure between ethnicities be taken account of in JAM? 
 
Unfortunately, as JAM requires a reference LD dataset, it would not 
be possible to simultaneously analyse data from multiple ancestral 
populations using this methodology at the present time. Our 
suggestion in this section is for a prospective researcher with GWAS 
data from a non-European population to compare JAM results from 
their sample set with our European fine-mapping credible set, with 
the aim that the different LD patterns between populations may help 
further reduce the credible set at these less well refined regions 
through prioritisation of the intersected credible set from both 
populations.  
 
855. If you compare the post QC set of variants with all variants 
with MAF>0.5% in 1000 Genomes Europeans – what proportion 
have been “successfully imputed” and carried forward for fine-
mapping analysis? 
 
In Total 647,849 variants were imputed, approximately half of which 
were rare and excluded due to MAF <0.005 (288,033 variants). Of the 
remaining 359,816 variants, a further 146,088 we excluded due to 
low QC indicators, generating the final set of 213,728 high confidence 
variants carried forward for the final analysis. 
 
 
 



Reviewers' comments:  

 

Reviewer #2 (Remarks to the Author):  

 

The authors have clearly asnwered a number of my concerns and I'm quite happy about these areas 

now.  

 

However, I asked the authors to provide results from their study on several specific areas that would 

be of interest to a wider audience than just those with an interest in Prostate Cancer. This more 

general insight into finemapping is important for a journal such as this and a missed opportunity given 

the size of their dataset compared to most GWAS. I am concerned they have misunderstood my 

intention. I hoped they would provide concrete results, but their response is often to include quite a 

vague comment in the Discussion section. So:  

 

(i) I would like to see a clearer comparison between the results of this finemapping study with the 

previous one which would give some insight into the stability of such results. While they give some 

details in their "response to reviewers" they barely comment on this in the manuscript saying only 

that they consider the current study to be "the most detailed fine-mapping study to date for variant 

prioritisation"  

 

But how different are the individual variants in each region now compared to previously, how many 

regions now include more signals and how many fewer? Have the number of explanatory signals in 

each region increased in some and decreased in others enough that the results from the current and 

previous study show little correlation in the number of independent signals in each region? Is it the 

regions with bigger signals, which might then be more easily mapped, that tend to be more robust 

from the last finemapping study to this? What I'm interested in getting at is how reliable the results of 

finemapping studies are. Presumably you can finemap stronger signals with a smaller sample size, but 

as the sample size increases do you detect ever smaller signals at each locus or do the higher 

penetrance loci simply stabilise?  

 

(ii) How often in the multi-signal loci is the original tag SNP in strong LD with one 'finemapped' SNP 

and how often in weaker LD with several. Saying "within certain regions... whilst for others..." is so 

vague as to be useless. This needs quantification.  

 

(iii) The authors note that "This indicates that regions with lower effect sizes and weaker evidence for 

association that require larger sample sizes for their detection are less likely to contain additional 

independent risk variants." But as I pointed out in my original review it could simply be that where the 

signal is weaker you have less power to detect multiple variants and so refine the original signal. this 

is, in part, why I'm intereste din knowing how stable the results are as thr sample size increases.  

 

(iv) Reviewer 3 asked about how many of the variants in 1000 Genomes Europeans with MAF>0.5% 

were imputed in this dataset. The authors didn't answer (they simply said how many variants they 

had, not how many 'common' ones they missed). I would like to see the answer to this.  

 

 

 

 



 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have done a great job in responding to comments. I have one final comment regarding 

the coverage of variation in the fine-mapping regions after imputation.  

 

In response to my minor comment, line 855 - the authors state that 213,728 high-quality variants 

(MAF>0.5%) were carried forward for analysis, out of ~360,000 imputed variants. This seems like 

quite a dramatic loss of variation, since most European low-frequency variants would be expected to 

be well imputed with the 1000 Genomes reference panel. Given that fine-mapping relies on having 

near complete variant coverage in a region, I think the authors should state somewhere in the text 

the proportion of variants across fine-mapping regions that are included in the analyses, and some 

discussion of the limitation of imputed data for fine-mapping.  



Dear Referees, 
 

We thank you for your helpful suggestions during review of 
our manuscript “Fine-mapping of Prostate Cancer Susceptibility Loci 
in a Large Meta-Analysis Identifies Candidate Causal Variants” 
(NCOMMS-17-09702).  

 
We are pleased that the actions we have taken previously to 

address these queries were satisfactory, and appreciate these 
additional clarifications in instances where we had previously 
misinterpreted the level of detail requested. We have incorporated 
every suggestion within the manuscript text and through the 
inclusion of additional supplementary material, and have 
endeavoured to describe clearly our response to each comment 
individually below. We are confident that the additional material 
provided in relation to these suggestions would further improve the 
final publication for a broad audience. 
 
 We thank you for your time and look forward to your 
response. 
 
 
 
Reviewers' comments: 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have clearly asnwered a number of my concerns 
and I'm quite happy about these areas now. 
 
However, I asked the authors to provide results from their study 
on several specific areas that would be of interest to a wider 
audience than just those with an interest in Prostate Cancer. 
This more general insight into finemapping is important for a 
journal such as this and a missed opportunity given the size of 
their dataset compared to most GWAS. I am concerned they 
have misunderstood my intention. I hoped they would provide 
concrete results, but their response is often to include quite a 
vague comment in the Discussion section. So: 
 
(i) I would like to see a clearer comparison between the results 
of this finemapping study with the previous one which would 
give some insight into the stability of such results. While they 
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give some details in their "response to reviewers" they barely 
comment on this in the manuscript saying only that they 
consider the current study to be "the most detailed fine-mapping 
study to date for variant prioritisation" 
 
But how different are the individual variants in each region now 
compared to previously, how many regions now include more 
signals and how many fewer? Have the number of explanatory 
signals in each region increased in some and decreased in 
others enough that the results from the current and previous 
study show little correlation in the number of independent 
signals in each region? Is it the regions with bigger signals, 
which might then be more easily mapped, that tend to be more 
robust from the last finemapping study to this? What I'm 
interested in getting at is how reliable the results of finemapping 
studies are. Presumably you can finemap stronger signals with 
a smaller sample size, but as the sample size increases do you 
detect ever smaller signals at each locus or do the higher 
penetrance loci simply stabilise? 
 
We apologise for misinterpreting the level of detail desired to be 
presented in the previous query, and therefore our original response 
being more narrow in scope. Due to the number of regions we have 
interrogated in this study, we do not regard it as feasible to provide a 
region by region comparison of our latest results versus the iCOGS 
study within the text body of the manuscript. Instead we have 
endeavoured to make accessible a greater and more specific level of 
detail, through the inclusion of an additional supplementary table 
(Supplementary Table 6). This table would allow interested parties to 
compare the main results of the two studies at each individual region 
and discern general trends. We believe that all the information 
requested can be obtained from this new supplementary table. In 
addition we have substantially expanded the summary of the relative 
results from the two studies in our discussion, on pages 18-19, to 
attempt to describe the elements requested more explicitly.  
 
Separately from the amendments we have made to our manuscript 
described above, we would also be happy to be contacted directly 
should you desire any further information that falls outside the main 
remit of this publication to help inform your own work. In addition, 
we would like to draw your attention to a prospective upcoming 
review article on fine-mapping by Professor Daniel J. Schaid that we 
understand will compare methodologies and findings from many 
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GWAS studies and therefore may explore many of the phenomena 
that form the basis of this query.  
 
(ii) How often in the multi-signal loci is the original tag SNP in 
strong LD with one 'finemapped' SNP and how often in weaker 
LD with several. Saying "within certain regions... whilst for 
others..." is so vague as to be useless. This needs 
quantification. 
 
As with the previous query, we apologise for originally interpreting 
this query as requesting only a concise synopsis of the general trend, 
or lack thereof, that we observed regarding the correlation between 
original GWAS index SNPs and independently associated signals 
identified through fine-mapping. Due to varying precise relationships 
across different regions, the trends do not readily partition into 
absolute groupings that are amenable to succinct summary. An 
additional complication is that some regions contain a single original 
GWAS hit, whilst others contained more than one. In general 
however, we have observed examples where the original tag variant 
is in LD with only one of the novel lead variants, and others where 
the original tag(s) are in partial to strong LD with variants 
representing multiple signals.  
 
In order to incorporate the level of detail requested into the article, 
whilst also refraining from protracted and verbose description of 
each region individually within the text to retain clarity, we have now 
included an additional supplementary figure (Supplementary Figure 
6). This figure depicts the correlation between the original index 
SNP(s) and tags selected in the credible set in heat-map form for 
every region containing multiple independent signals. We believe this 
provides the precise quantification requested in the most viable 
format. We have also modified this section of our discussion on page 
18, to provide specific details of example regions for the different 
situations we observe. 
 
(iii) The authors note that "This indicates that regions with lower 
effect sizes and weaker evidence for association that require 
larger sample sizes for their detection are less likely to contain 
additional independent risk variants." But as I pointed out in my 
original review it could simply be that where the signal is 
weaker you have less power to detect multiple variants and so 
refine the original signal. this is, in part, why I'm intereste din 
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knowing how stable the results are as thr sample size 
increases. 
 
We thank you for the observation that we had omitted to state this 
alternative explanation in the text. We have modified the relevant 
section on page 19 of our discussion to add this counter viewpoint, 
alongside the additional detail regarding the stability of results 
between this study and the previous iCOGS fine-mapping project 
provided in response to comment (i). 
 
(iv) Reviewer 3 asked about how many of the variants in 1000 
Genomes Europeans with MAF>0.5% were imputed in this 
dataset. The authors didn't answer (they simply said how many 
variants they had, not how many 'common' ones they missed). I 
would like to see the answer to this. 
 
As this query overlaps with the single comment by Reviewer 3, we 
have responded to both suggestions together below for clarity and 
simplicity.  
 
 
 
 
Reviewer #3: 
 
The authors have done a great job in responding to comments. 
I have one final comment regarding the coverage of variation in 
the fine-mapping regions after imputation. 
 
In response to my minor comment, line 855 - the authors state 
that 213,728 high-quality variants (MAF>0.5%) were carried 
forward for analysis, out of ~360,000 imputed variants. This 
seems like quite a dramatic loss of variation, since most 
European low-frequency variants would be expected to be well 
imputed with the 1000 Genomes reference panel. Given that 
fine-mapping relies on having near complete variant coverage 
in a region, I think the authors should state somewhere in the 
text the proportion of variants across fine-mapping regions that 
are included in the analyses, and some discussion of the 
limitation of imputed data for fine-mapping. 
 
We apologise for misinterpreting the previous query as a question 
relating to what proportion of common variants in our dataset 
passed QC, rather than what proportion of common variants found in 
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1000 Genomes European (1KG EUR) samples were represented in our 
data as originally intended. 
 
In regards to the question of how many common variants were 
excluded from our post-QC dataset, we have identified 227,793 
common (MAF ≥0.05) variants within the 1KG EUR dataset, of which 
186,907 (82%) passed our QC procedures. Of the 40,886 common 
variants excluded during QC, 3056 were excluded during basic QC 
due to INFO <0.4, whilst the vast majority, 37,830, were removed in 
the additional strict filtering step to exclude variants with greater 
genotype uncertainty (discordance of variant MAFs calculated based 
on “dosage” and “best-guess” genotypes ≥10%). Deeper investigation 
of these 37,830 variants revealed that 72% were situated within 
segments of the genome flagged as potentially lower accessibility to 
genotyping (either masked as low complexity by RepeatMarker, or 
excluded when applying the 1000 Genomes Phase 3 Strict Mask), 
whilst a further 12% had intermediate INFO score values (0.4-0.8). 
 
We concur with the above statement that fine-mapping relies on 
high density variant coverage within a region; however exhaustive 
variant QC to remove low quality variants is also of paramount 
importance, in order to prevent potential false positive errors arising 
from the presence of imputation artefacts. Whilst there is no 
uniformly agreed upon QC procedure that is routinely applied to 
every fine-mapping study or dataset, we believe that the stringent 
criteria we have implemented here will increase the robustness of 
our results; as demonstrated by the high proportion of variants 
excluded during the additional internal consistency check that are 
located within repetitive or otherwise ambiguous segments of the 
genome, which are less amenable to accurate genotyping. 
 
We had previously presented our QC procedures solely in the 
methods section without elaboration for conciseness. However, we 
agree with the suggestion above to provide more detailed statement 
of the proportion of variants retained during our analyses, and also 
that additional description of our methodology and appraisal of the 
potential benefits and limitations of this approach may be beneficial 
to the reader. We have therefore added the requested commentary 
to our discussion section on pages 21-22 and stated the number of 
variants excluded during QC and proportion of common European 
variants represented in our dataset to the methods section page 24. 



REVIEWERS' COMMENTS:  

 

Reviewer #2 (Remarks to the Author):  

 

I'm grateful to the authors for taking the time to add the extra detail that I requested. I find it very 

interesting and am pleased to see that there is a fair degree of consistency between their curent and 

previous finemapping studies. I'm quite happy with this now.  

 

 

Reviewer #3 (Remarks to the Author):  

 

I am happy that the authors have dealt with my comment and the issues raised by the other reviewer . 
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