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MESH CONVERGENCE DETAILS
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FIG. 1: (a) Schematic representation of the computational domain, b) fully resolved mesh for a translating sphere and (c) rotating
sphere in the vicinity of the contact line for converged solutions for h/a=35 (semi-infinite case), θ = π/2 and λ/a = .01

A solid spherical colloid with radius a, translating along the z axis or rotating around the x axis at the origin of
Cartesian coordinate system is located in the computational volume of a rectangular box of dimensions 250a(in z) ×
Ma(in y)×250a(in x) where M varies from 1.2−35 to account for different film thicknesses and to achieve semi-infinite
conditions [see Fig. 1a]. The values used for the z and the x dimensions insured that the results did not depend on
the lateral dimensions of the box (i.e. the interface was infinite in extent). Reduction of the box size to 200a× 200a
resulted in values of the drag and torque coefficients that changed from the 250a × 250a results by less than a few
percent.

Numerical solutions for the fluid flow in the computational domain are obtained by using the COMSOL Multiphysics
program, which solves the mass conservation and hydrodynamic equations and associated boundary conditions (see
Methods) using a finite element method with a mesh discretization of the computational domain that is built using
a custom construction feature of the software. The computational domain is discretized into tetrahedral elements by
first applying triangular meshes to the surfaces of the computational domain and then subdividing the volume into
tetrehedra that connect to the triangular surface elements. The lengths of the sides of the triangular elements on the
section of the surface of the sphere within the computational domain and the lengths of these surface elements which
intersect the contact line edge are the key parameters for assigning specific numerical values for the lengths of the
elements of the mesh construction, and for the refinement of the mesh to achieve converged solutions. In general, the
range (maximum and minimum sizes) for the lengths of the surface (ηmax/a and ηmin/a, respectively) and contact
line edge elements (ξmax/a and ξmin/a) are specified, and the remainder of the surface element lengths and the edge
lengths are assigned by the program using their default normal construction. After a solution is obtained, drag and
torque coefficients are computed by integration. The convergence criterion is set to 0.0001% relative error /tolerance)
and it took 16 iterations to reach convergence. An iteration scheme is set-up in which the size parameters for the
surface and edge elements are reduced and the coefficients recomputed until the recomputed values differ by less than
two percent from the previous iteration.

For converged solutions, the mesh refinement needed in the case of rotation was much finer than for translation. In
Table I are given, for a translating sphere, the parameters for the last two iterations in the refinement that resulted in
convergence. These parameters correspond to the case in which the contact angle is π/2, the film thickness (h) divided
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by the radius (a) is equal to 35, which is large enough to obtain the results for translation above a semi-infinite liquid.
This particular calculation can be checked against the Brenner et al[1] analytical solution which allows verification of
the numerical solution. Table I shows that the error relative to the analytical solution is less than approximately five
percent, and in Fig. 1b the triangular surface meshes at convergence are shown.

λ /a ηmax/a ηmin/a ξmax/a ξmin/a k
t
D ktT % Error in krD % Error in krT

0.01 0.1 0.01 0.05 0.005 9.673 4.7121 2.68 2.99

0.01 0.09 0.009 0.05 0.005 9.563 4.6582 1.518 1.82

TABLE I: Convergence of drag and torque coefficients for translating sphere with mesh refinement for h/a=35, θ = π/2 and
λ/a = .01.

For rotational motion, a much finer mesh is required on the surface of the sphere at the contact line due to the
large velocity gradients at the line, and ηmax/a, ηmin/a, ξmax/a and ξmin/a are reduced considerably to achieve
convergence and agreement with the analytical calculation (Table II and Fig. 1c). We found, as noted by Yulil et al
[2], that fine mesh parameterization also removed spurious vortices near the corners of the rotating sphere in order to
obtain accurate values in particular for the torque coefficient due to rotation. A comparison of the number of mesh

λ/a ηmax/a ηmin/a ξmax/a ξmin/a k
r
D krT % Error in krD % Error in krT

0.01 0.05 0.0005 0.02 0.0002 4.9989 20.459 11.92 9.265

0.01 0.035 0.00035 0.02 0.0002 4.3797 24.059 3.57 4.269

0.01 0.02 0.0002 0.02 0.0002 4.3867 24.021 4.116 3.41

0.05 0.05 0.0005 0.02 0.0002 4.3381 15.438 5.85 4.64

0.05 0.04 0.0004 0.03 0.0003 4.2429 15.163 3.535 6.343

TABLE II: Convergence of drag and torque coefficients for rotating sphere with mesh refinement for h/a=35, θ = π/2 and λ/a
= .01 and .05.

vertices, the number of tetrahedral volume elements, surface triangular and edge elements are given in Table III .

Mesh Parameter Translating Sphere Rotating Sphere

Number of Mesh Vertices 7537 51772

Number of Tetrahedral Elements 36990 241295

Number of Triangular Elements 5154 48196

Number of Edge Elements 272 1179

TABLE III: Mesh Statistics for a translating and rotating sphere at interface of thin film on a solid substrate for h/a=35,
θ = π/2 and λ/a = .01

Finally, in the cases where the distance between the bottom interface and the bottom of the sphere surface or (for
complete immersion) the top free surface and the top of the sphere become of the order of the radius of the sphere finer
meshes were constructed in this gap by decreasing the lengths of the edge elements for the tetrehedra and gas/liquid
and liquid/solid surface triangular elements. We note that as the mesh around the sphere becomes finer, inversion of
the finite element matrix becomes more difficult and leads to longer computational times.
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