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Supplementary Information

Finding influential nodes for integration in brain networks using optimal percolation theory

Del Ferraro et al.

Supplementary Note 1 - Finding the essential nodes for integration in the brain network

In this section, we provide the heuristic algorithms used to identify influential nodes. For

each algorithm, we assign the score to each node by following the described algorithms and sort

the nodes according to the score.

Degree centrality. Degree centrality is the number of nearest neighbors in the network.

Degree centrality is one of the simplest metric for identifying important nodes. Hubs refer to

nodes in the network with large degree.

k-core and k-shell index [1–3]. k-core (KC) refers to a subset of nodes formed by iteratively

removing all nodes that have degree less than k. In other words, k-core is a maximal subgraph

where all nodes have at least k neighbors. k-shell index is then the largest k value of k-core

that the node belongs to. To assign k-shell index for each node, we first delete all nodes with

degree k = 1, iteratively. The removed nodes via the process belong to k-shell with kS = 1. We

remove next k-shell with kS = 2 and we proceed to remove all the higher shells iteratively until

all nodes are removed. Then, we can assign a unique k-shell index to each node in networks. It

has been shown that the importance of hub nodes can be highly diminished if they are located

in the periphery of the network, i.e., the low ks shells. On the other hands, nodes in the inner

ks shells define the core of the network and correspond to the influencers in the network [1].

However, by its own definition, the nodes in the inner shells are generally high degree nodes,

therefore the k-core centrality is highly correlated with the degree.

Collective Influence [4, 5]. Collective influence (CI) is designed to approximately identify

the minimal set of nodes that can produce disconnected networks, based on optimal percolation

network theory [4]. Mathematically, the problem can be mapped to optimal percolation and
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can be solved by the minimization of the largest eigenvalue of the non-backtracking matrix of

the network [4, 5]. This optimization theory was originally developed for single networks in

[4] and was extended to the case of brain networks in [5] in the context of brain network of

networks. The activation of nodes in the brain network was described by a state variable σi,

which acts as an ON and OFF switch (1 and 0, respectively) to reflect the activation/inactivation

state of node i. If a node is directly inactivated, then σi = 0. A node can also be inactivated

indirectly as a result of lacking input from its inactivated neighbors in the other network, which,

mathematically, is equivalent to the McCulloch-Pitts model of neuronal activation [6]:

σi = 0 direct inactivation ,

σi = Θ

( ∑
j∈N (i)

σj

)
otherwise.

(1)

The sum in the second equation reflects the integration of incoming activity from all nodes j that

connect to node i from other networksN (i), and the threshold operation via the Heaviside step

function Θ indicates that a minimum of incoming activity is needed for activity to propagate

[6].

The collective influence (CI) score assigned to each node i in the brain network in this model

is given by [5]:

CI`(i) = (ki − 1)
∑

j∈∂Ball(i,`)

(kj − 1) +
∑

j∈F(i) :
kinterj =1

(kj − 1)
∑

m∈∂Ball(j,`)

(km − 1). (2)

Here, ki ≡ kintrai + kinteri is the degree, kintrai is the number of connections of node i within its

network, kinteri is the number of connections to nodes in different networks in the set F(i), and

∂Ball(i, `) indicates the sphere of influence of node i at distance `.

Technically, CI is the contribution of each node to the eigenvalue of the non-backtracking

matrix, which determines the stability of the giant component [4]. CI is an optimization mea-

sure that attempts to find the smallest set of nodes that will produce the largest damage to the

giant connected component of the brain network, which is analogous to minimize the largest

eigenvalue of the non-backtracking matrix [4] defined on the 2M × 2M edges of the network

(in the case of single networks):
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Bk→`,i→j =

1, if j = k and i 6= ` ,

0, otherwise.
(3)

Thus, the matrix Bk→`,i→j has non-zero entries only when (k → `, i → j) form a pair of

consecutive non-backtracking directed edges, i.e. (k → `, ` → j) with k 6= j. In this case

Bk→`,`→j = 1. The powers of the matrix B̂ give the number of non-backtracking walks of a

given length between two nodes in the network [7, 8], in analogy to the powers of the adjacency

matrix which count the number of paths [9].

The CI algorithm runs as follows [5]: i) at the beginning, we choose the value ` of the radius

of the Collective Influence sphere. In our analysis of the brain network, we use the value ` = 2.

We find that higher values of ` give nearly the same results since the networks contain short

paths. The value of ` is always smaller than the largest path in the network, and it can be

optimally chosen by systematically changing it from ` = 1 to the diameter of the network. We

find that the optimal set of nodes is obtained when ` = 2. ii) Next, CI for all nodes is computed

using Eq. (2), and the node with the largest CI is inactivated. iii) Then, the CI values of the

remaining active nodes are recalculated, and the next highest CI node is inactivated. iv) Step

iii) is repeated until the giant active component vanishes.

Betweenness centrality [10]. Betweenness centrality (BC) measures the influence of nodes

based on the shortest paths on networks. BC for each node is defined as the number of the

shortest paths that pass through the node. BC identifies crucial nodes for information flow

and packing transportation by definition. This centrality can capture low-degree nodes that are

strategically located between large communities. For instance, imagine a node with k = 2 with

each link connecting to a large community of tightly connected nodes. Such a low degree node

will have a large BC since all the paths between nodes in the two distinct communities will

necessarily pass through this bridge node.

Eigenvector centrality [11]. Eigenvector centrality (EC) is defined as the entry of the eigen-

vector that corresponds to the largest eigenvalue of adjacency matrix defined as
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Aij =

1, if i and j are connected

0, otherwise.
(4)

The main idea of EC is that the influence of nodes is determined by the importance of its

neighbors. Therefore, neighbors with high-scoring eigenvector centrality more contribute to the

score of the node. PageRank is also a variant of EC. It has been proved in [12] that the use of the

largest eigenvalue of the adjacency matrix can lead to a localization of the influence in the hubs.

Thus the EC centrality is highly correlated with the high degree and contains similar information

about the influencers. This localization problem is solved by replacing the adjacency matrix in

the centrality by the non-backtracking matrix Eq. (3).

Closeness centrality [13]. Closeness centrality (CC) is defined as the inverse of the average

distance of shortest paths between the node with all other nodes in the network. The higher

closeness is, the closer it is to all other nodes in average. In practice, closeness play an important

role in transportation since nodes with higher CC can disseminate information efficiently to the

whole connected network via shortest paths. This centrality is mainly determined by the degree

since hubs will naturally be closers to other nodes in the networks, thus, it is considered as one

of the hub-centric centralities.

Supplementary Note 2 - Experimental Design and Long-term potentiation experiments

The brain network is based on long-term potentiation (LTP) experiments. LTP is a synaptic

strength modification protocol that leads to changes in neuronal networks, and is believed to

be one of the key mechanisms by which the brain undergoes memory processes (acquisition,

consolidation, and extinction) [14–20]. It refers to the enhancement of synaptic transmission

efficacy in specific neuronal connections. This mechanism has been observed to occur under

natural learning conditions, yet, experimental manipulation of synaptic transmission has al-

lowed deciphering many of its characteristics, dissecting the synaptic plasticity process from

other on-going processes during memory formation. In the present work, we use experimental

LTP induction in the rat hippocampus to provide an experimental model of controlled long-
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range functional connectivity reorganization.

All experiments were approved by the Spanish authorities (IN-CSIC), CCNY Institutional

Animal Care and Use Committee Review of Research Protocol No. 980, and were performed

in accordance with Spanish (law 32/2007) and European regulations (EU directive 86/609, EU

decree 2001-486). The data used in this study can be found at: http://kcorelab.org.

Details of the experiments are explained in the next sections.

Subjects

A total of 37 Sprague-Dawley male rats, weighing between 250-350 g, were used in these

experiments. From these, 29 animals were conserved for data analysis (6 controls for the LTP

network generation in baseline conditions, 4 for NAc inactivation with DREADDs, 5 for PFC

inactivation with DREADDs, 4 for Hippocampal inactivation with DREADDs, 5 for Hippocam-

pal inactivation with TTX, 2 for S1 inactivation with DREADDs, and 3 for S1 inactivation with

TTX. A total of five animals were discarded due to surgery complications or poor quality of

MR images, and additional three because of leak of viral particles to the neocortex in the NAc

inactivation experiments. Animals were purchased from Janvier Labs (France) and maintained

under a 12/12 h light/dark cycle (lights on 07:00-19:00 h) at room temperature (22±2 C). Food

and water were provided ad libitum. Rats were housed in groups (4-5 animals per cage) and

adapted to these conditions for at least 7 days before any manipulation.

Surgery and electrode implantation

The animals are anesthetized briefly with isoflurane (3-4 % isoflurane in 0.8 L/min O2 flow)

and then injected intraperitoneally with urethane (1.3 g/kg). After 60 minutes, the main reflexes

disappearance is tested and, if necessary, a second dose of urethane is injected (1/5 of the

initial dose) as reinforcement. When reflexes disappear the surgery starts. During the complete

procedure animals are maintained with constant temperature (37.0-37.5 C) with a water pad.

Vital constants (pulse and breath distension, heart and breath rate, and oxygen saturation) are

http://kcorelab.org
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monitored using a paw-clip pulse oximeter (MouseOx Plus, Starr Life Sciences, Oakmont, US).

A constant flow of O2 (0.8 L/min) is supplied through a mask.

The anesthetized animal is placed in a stereotaxic frame (Narishige, Japan) and a local anes-

thetic is injected subcutaneously in the incision points (0.2 mL of bupivacaine). The skin is

opened and retracted with suture thread hold to haemostat clamps to expose the bone surface.

Special care is taken to remove all traces of blood from the skull and mussel that would de-

crease MRI data quality due to susceptibility artefacts. Care during surgery is maximized to

prevent even minor spontaneous bleeding throughout the MRI session which would also distort

the BOLD (blood oxygenation level dependent) signal. Trephine holes are made by hand with a

manual driller (2 mm diameter) in the target coordinates and the dura is pinched with a curved

needle at the incision points to allow the penetration of the electrodes.

A bipolar stimulation electrode made of twisted platinum-iridium wires (Teflon coated,

0.025 mm diameter, WPI, USA) is inserted in the perforant pathway, a bundle of axonal fibers

that represents the principal input of information to the hippocampus (AP 0.0 mm from lambda;

ML 4.1 mm from lambda; DV 2.1-2.5 mm from brain surface). A recording multichannel

electrode (multichannel recording electrode, 32 channels, model A1x32-6mm-100-177, Neu-

roNexus, Ann Arbor, Michigan, USA) is lowered in the ipsilateral dorsal hippocampus (AP

3.5 mm from bregma, ML 2.5 mm from bregma, DV 3.5 mm from brain surface). Electro-

physiological recordings are made in order to precisely position the stimulating electrode in its

optimal location based on the evoked potential recorded in the hippocampus. Once in place, the

multichannel recording electrode is replaced by a single channel recording probe (MRI compat-

ible) in the dentate gyrus of the ipsilateral dorsal hippocampus. Both stimulation and recording

electrodes are implanted in the brain with acrylic dental cement (SuperBond, Sun Medical,

Japan) and bone cement (Palacos, Heraheus Medical GmbH, Germany) and the animal is then

transported into the MRI facility.
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Electrophysiological recordings

A single pulse stimulation protocol (100 µs bipolar pulse, delivered at a 0.05 Hz rate) is

recorded before and after LTP induction to assess synaptic potentiation (Fig. 1a). To this end,

an Input-Output curve is obtained at different stimulation intensities (50, 100, 200, 400, 800,

1000, and 1200 µA) while recording the evoked field potentials in the dentate gyrus. After

filtering (0.1 Hz – 3 kHz) and amplification, the electrophysiological signals are digitized (20

kHz acquisition rate) and stored in a personal computer for offline processing with Spike2. The

population spike (PS) in the hilus of the DG is measured as the amplitude from the precedent

positive crest and the negative peak, and the excitatory postsynaptic potential (EPSP) is mea-

sured as the maximal slope of the raising potential preceding the PS.

fMRI measurements

Imaging experiments are carried out in a 7 Tesla scanner with a 30 cm bore diameter (Biospec

70/30v, Bruker Medical, Ettlingen, Germany). Acquisition is performed in 15 coronal slices

using a GE-EPI sequence applying the following parameters: FOV= 25.25 mm; slice thickness=

1 mm; matrix= 96 × 96; segments= 1; FA, 608; TE= 15 ms; TR =2000 ms. This provides a

resolution of the raw images of 0.26×0.26×1 mm.

Additionally, T2 weighted anatomical images are collected using a rapid acquisition relax-

ation enhanced sequence (RARE): FOV= 25.25 mm; 15 slices; slice thickness= 1 mm; matrix=

192×192; TEeff= 56 ms; TR= 2 s; RARE factor= 8. A 1H rat brain receive-only phase array

coil with integrated combiner and preamplifier, and no tune/no match, is employed in combina-

tion with the actively detuned transmit-only resonator (Bruker BioSpin MRI GmbH, Germany).

Once in the MRI scanner, the anesthetized animal is constantly supplied with a 0.6-0.8 l/min

O2 and heated with a water-bath system to keep a constant temperature (37 ± 0.5 C). Phys-

iological constants are measured as before using a paw-clip pulse oximeter (MouseOx Plus,

Starr Life Sciences, Oakmont, US) equipped with a MRI compatible cable. Functional MR

images are acquired before (Pre condition) and after LTP induction (POST condition) using a
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low-frequency 10 Hz stimulation protocol that activates the hippocampal formation without al-

tering synaptic plasticity, as shown before [21–24]. This stimulation consists of a block design

protocol as follows (see Fig. 1d): ON periods lasting 4 s of 40 pulses train, each composed of a

10 Hz stimulation train at 800 µA. We follow the ON period by OFF period with no stimulation

for 26 s. This ON/OFF sequence is repeated 10 times, for a total of 300 s.

LTP is induced inside the MRI scanner using a high frequency stimulation (HFS) protocol,

consisting of 6 bursts of 8 pulses each delivered at 250 Hz, with bursts repeated 6 times with

a 2 minute separation between them. The total duration of the protocol is 960 s. MR images

are not acquired during LTP induction. Three hours after induction, the same low-frequency

stimulation protocol as used for the PRE-LTP condition (10 Hz) is used and fMRI acquisition

is performed to record the consequences of synaptic potentiation on functional connectivity.

Functional MR images are preprocessed separately using FSL 5.1 M [25, 26] and AFNI

[27, 28] tools. First, the images are converted from Bruker to NIfTI format. Then, motion is

corrected by aligning each volume to the mean image volume [29], slice timing correction is

applied, and the brain is extracted [30]. The next step is to obtain the transformation matrix to

register the functional images to a rat brain T2-weighted MRI template [31]. This registration

Mark [29, 32] is performed in two steps: 1) functional images are aligned to anatomical images

using a rigid-body transformation and 2) anatomical images are affine-registered to the standard

template. Both matrices are concatenated but not applied to the functional images, which re-

mained in their native space. The inverse transformation is used to bring the regions of interest

(i.e hippocampus, prefrontal cortex, nucleus accumbens and the venous sinus) from the Paxinos

and Watson rat brain atlas [33] to the functional space. The venous sinus is removed from the

images. Afterwards, spatial smoothing using a 2-mm FWHM (full width at half maximum)

Gaussian kernel is applied, followed by mean-based intensity normalization to obtain a global

4D mean of 10,000. Subsequently, linear and quadratic trends, global signal and six motion

parameters (three translations plus three rotations) are regressed out. Finally, the time series

are bandpass temporally filtered [0.01-0.1] Hz via Fast Fourier Transform. After this process a

BOLD signal as a function of time, xi(t), is output for every voxel i in the brain. This signal is
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the basis for the construction of the brain network model as we explain next.

Supplementary Note 3 - Method to construct the LTP brain network

After the BOLD signal has been obtained for every voxel in the brain, we construct the

brain network model via the following procedure: (1) Identification of statistically significant

activated voxels (activation map)→ (2) Calculation of correlation Cij between all pair of voxels

in the activation map→ (3) Identification of brain modules through clustering algorithms→ (4)

Inference of interactions Jij between pairs of voxels using graphical-lasso→ (5) Determination

of essential influential nodes using the CI algorithm from optimal percolation theory.

Activation map

We first determine which brain voxels are activated by the low-frequency stimulation proto-

col using the FEAT analysis tool in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

FEAT). The regression assumes for the explanatory variable the block-design of the low-

frequency stimulation as described above. After the general linear model (GLM) analysis, the Z

statistic map is thresholded and cluster corrected (cluster Z threshold = 2.3). Figure 1f shows

the activation map for a single animal in the POST-LTP condition. In Supplementary Figure

1a we show the same activation map but averaged over the six animals. This map represents

voxels that are activated in the POST-LTP state in at least 2 out of 6 animals with p < 0.001

(determined after co-registering the fMRI recordings to a common anatomical rat brain atlas of

Paxinos and Watson [33]). Supplementary Figure 1b shows the anatomical areas corresponding

to the HC, PFC, and NAc. Comparison between both images indicates that voxels in these three

areas are activated after the LTP induction. These activated areas form the basic voxels used as

“nodes” in the subsequent calculation of the brain network model.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
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Supplementary Figure 1: Activation map and anatomical areas of interest. a, Group (n=6) average

activation map after LTP induction. This map represents voxels that are activated three hours after LTP

stimulation (POST condition) in at least 33% of the animals with p < 0.01 (see Supplementary Note 3).

Note activation in the hippocampus (HC), prefrontal cortex (PFC) and nucleus accumbens (NAc).

Numbers indicate distance from bregma. b, Anatomical map defining the three main areas of study:

HC, PFC and NAc.

Construction of memory networks

In order to construct the brain network we first compute the correlation coefficients or sample

covariance Cij of the BOLD signal between voxels i and j in the activation map, often referred

to as “functional connectivity”:

Cij =
〈xixj〉 − 〈xi〉〈xj〉√

(〈x2i 〉 − 〈xi〉2)(〈x2j〉 − 〈xj〉2)
, (5)

where xi(t) is the BOLD signal of voxel i as a function of time t and 〈·〉 represents the tem-

poral average over the recording period. Correlations are computed separately for each animal

for all voxels that showed significant activation in at least 2 animals (activation maps were

co-registered to a standard atlas, but correlation is computed in the original space to avoid in-
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troducing spurious correlations due to resampling).

In the animal original space, the BOLD signal is measured at a resolution of 0.26×0.26×1

mm. Another source of spurious correlations might arise when applying the customary spatial

smoothing to the image with a Gaussian kernel, because the volume space is not isotropic. So,

to avoid including spurious correlations of fMRI signals in the (x, y)-plane, we consider only

every four voxels so that nodes are separated by 1.04 × 1.04 × 1 mm, and are approximately

isotropic in all three dimensions. Therefore, the size of the voxel, that is, each node in the

brain network, is approximately 1 mm3 and this corresponds to a single node in the network.

This size is commensurate with the size of the target in the pharmacogenetic interventions. The

same downsampling procedure described above is applied in all the analysis described in the

text, with or without pharmacogenetic intervention. Following existing literature we model

these correlations as the result of pairwise interactions between nodes [34–38].

Inference of the connections of sparse network

The pair-wise correlation modelling literature typically assumes that brain networks have

sparse connectivity [35–38, 40]. We therefore construct sparse graphs by using machine learn-

ing techniques like the graphical Lasso algorithm [41]. Given normal distributed data, the

log-likelihood for observing the sample covariance C = {Cij}, defined in Eq. (5, is given by

the log of the Wishart distribution:

logL(J) = log det(J)− Tr(CJ), (6)

where J = {Jij} is the model for the inverse covariance. These Jij reflects the strength of

interactions between a pair of nodes i and j. To implement the assumption of sparse interactions

the Graphical Lasso algorithm assumes a Laplace prior, which results in a maximum a posteriori

estimate with a L1-norm penalty term [41]:

J∗ = argmin
J

[Tr(CJ)− log det(J) + λ|J|], (7)

where |J| is the L1-norm of the interaction matrix and λ is the penalty parameter controlling

how sparse the estimated J∗ will be. A sparse interaction matrix will have many zero entries.
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A non-zero entry indicates that there is a pair-wise interaction, while J∗ij = 0 means that there

is no direct interaction between i and j. We infer the sparse matrix Jij fixing the λ penalization

parameter in Eq. (7) as described below, for each separate animal.

Since we are interested to study the integration of a set of networks aggregated into a giant

connected component, we define the brain network via a procedure involving a change in the

penalty parameter λ, which tunes the sparsity of the network (see Eq. (7)). A giant component

is a connected component of a given graph that contains a constant fraction of the entire graph’s

vertices in the thermodynamic of an infinite system size. As λ is changed from a high value to a

low value, a series of networks emerge to form the giant connected component of brain network

in a procedure that we explain below. Higher values of λ penalize almost all of the links and

therefore the brain network is disconnected. As we reduce the values of λ in Eq. (7), more links

appear and the brain network transforms into a giant connected components of nodes (inside

this component there is a path connecting every pair of nodes). For a finite graph, we consider

the giant component as the largest connected component in the graph and study the behaviour

of its relative size Gbond as a function of λ. In these plots, Gbond represents the ratio of nodes

belonging to the largest connected component to the total number of nodes in the brain network.

The suffix bond refers to the fact that this process builds the brain network via a process anal-

ogous to bond percolation (see below) [42–45]. Thus, we use the ’bond’ denomination of this

giant connected component since it is constructed by adding links to the network by reducing

the penalty parameter λ. Indeed this process is analogous to bond-percolation and attempts to

solve the problem of choosing the thresholding or penalty parameter that defines the binary net-

work from the weighted covariance matrix by using the concept of the emergence of the giant

connected component. That is, following [46] we choose the penalty in such a way that the

resulting network is at the point of emergence of the connected components that connect each

cluster HC, PFC and NAc in turn. This process results into a sparse, yet, connected network

and it follows the idea that the most important feature of the network that we want to capture

in our study is the long-range connectivity and integration of the different components into a

unitary network. Thus, we whole analytical procedure starts by findings the sparse connected
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Supplementary Figure 2: For the same representative animal of Fig. 1f and 1h: Adjacency matrix of

the resulting brain network, obtained by bond-percolation using the penalty parameter λ in the graphical

lasso algorithm as described in Supplementary Note 3. Nodes are ordered according to their

membership to one of the anatomical clusters: HC, PFC and NAc. From above to below, the first

module corresponds to the HC, the second to the PFC, the third to the NAc.

network of HC-PFC-NAc via graphical-lasso and bond percolation of the penalty parameter

to then apply the optimal percolation method via the collective influence algorithm to find the

essential nodes for inactivation. We explain this procedure next.

In a percolation problem one monitors the size of (fraction of nodes belonging to) the giant

connected component Gbond as a function of the driving external parameter. In the present case,

we first apply the graphical lasso for a given λ and obtain the inferred matrix Jij from Cij . We

binarize this matrix and construct a network by considering a link if |Jij| is above a given small

resolution threshold, as it is customary in the graphical lasso algorithm. We then monitor the

giant component of this network for a given λ versus the penalty parameter λ and we search

for the appearance of the giant component as λ is decreased from a large value. The process of

constructing the network by decreasing λ adds links to an initially empty network as in bond

percolation. We fix the penalty parameter λ, which tunes the sparsity of the network, as the

highest value at which the giant component of the network appears between each cluster, in

turn. i.e. such that all nodes in the three clusters HC-PFC-NAc are connected through a path.
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In other words, the final network is the sparsest architecture that yet has one connected giant

component which includes nodes from the three clusters. The connectivity matrix is obtained by

binarizing the obtained Jij from the graphical lasso at a given λ by considering a link when Jij

is non-zero with a given small resolution. The resulting connectivity matrix from Jij is shown

in Supplementary Fig. 2, for the same representative animal used in Fig. 1f and 1h. From this

matrix we identify the three anatomical components HC, PFC and NAc and the links inside the

clusters or strong or intra-links and the links across the clusters, the weak or inter-links [46].

Supplementary Note 4 - Measure of average maps of centralities in the brain network

For all nodes in the brain network we compute the score of each centrality for each ex-

perimental animal. We then rank all the nodes from high to low score. We then ’attack’ the

brain network following each ranking for each centrality from hubs, CI, KC, EC, CC and BC.

We monitor the size of the giant component as we remove a fraction of influential nodes q

following each strategy and for each network corresponding to each of the six animals [4, 5].

Supplementary Figure 3 shows the results. We see how the strategy following CI destroys the

giant component with the smallest number of nodes. For each strategy, we extract the set of

most influential nodes, the essential nodes according to each strategy, by considering the first

nodes that reduce the size of the connected component to 5% of its original size. These are the

set of essential nodes for each centrality and correspond to the ranking of top nodes according

to each centrality.

Lastly, we normalize the ranking of each node using the following formula [5] to compare

across strategies:

R(i) =
ro − ri
ro − 1

, (8)

where ri is the ranking of node i, that is defined as the step at which it is inactivated (for example,

the first node to be inactivated is assigned ri = 1, the second ri = 2, and so on). The quantity

ro is a baseline, which, in our analysis, we set as the ranking of the node for which the giant

active component takes the valueG = 0.05. Note thatR(i) = 1 represents the highest node. On

the other hand, if node i is not targeted by an external inactivation, then we set R(i) = 0. The
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Supplementary Figure 3: Size of the giant connected component G as a function of the fraction of

inactivated nodes, q for all six rats for degree, CI, KC, EC, BC, and CC. For CI, smaller number of

inactivated nodes are required to disintegrate the network consistently for all six rats.

normalization in Eq. (8) allows us to properly sum over all samples to get an averaged map of

the most important nodes in the brain network which allows us to compare the impact of each

centrality. The results are used to generate the the hub-map in Fig. 2g and the averaged CI map

in Fig. 2h, as well as all the centrality maps shown in Fig. 3.
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Supplementary Note 5 - Influencers map for the resting state dynamics

In this section we present results regarding which nodes are responsible for integration dur-

ing resting state dynamics, as discussed in Sec. 2. The analysis of the essential nodes for

integration presented in the main text, indeed, is performed on brain networks stimulated by

LTP induction which, in addition to the hippocampus, produces the activation of the prefrontal

cortex and of the nucleus accumbens. In the PRE-LTP condition, stimulation of the hippocam-

pus does not recruit activation of neither the PFC nor the NAc and therefore, the relevance of

these latter areas for brain integration cannot be investigated. To clarify their role in the brain

network, we analyze the fMRI signal of the resting state dynamics in a PRE-LTP condition.

Since we are interested in investigating the role of the HC, the PFC and the NAc during

unperturbed brain dynamics, we take into consideration the same anatomical areas, i.e. same

voxels, studied to analyze the LTP-induced network. This guarantees that nodes in the resulting

brain networks are the same for both the LTP-induced and the resting-state network. What

changes between the two cases are the BOLD signals and, therefore, the statistical dependences

between these voxels, i.e. the wiring of the resulting architecture.

The analysis is done on the same six animals presented in the main text (in that case POST-

LTP), same p-value (p < 0.001). Each resting-state brain network is constructed similarly to

the LTP-induced one, as described in Sec. 2 and in Supplementary Note 3. For each of these

networks we rank the nodes according to the CI centrality measure, obtaining a CI-map for each

rat. We then average the CI-score across the six animals, similarly to the LTP-induced networks,

as described in Supplementary Note 4. The averaged results are shown in Supplementary Figure

4 which shows no role for the NAc as director of brain integration. High CI-score nodes, indeed,

are less localized to a single brain area and are rather spread in different brain regions, mostly

involving the hippocampus and the prefrontal cortex. These findings demonstrate that brain

integration is related to brain dynamics. The role of the NAc as director of brain integration

discussed in the main text is not simply arising because of its anatomical location in the brain

but, rather, it is due to the functional re-organization stimulated by LTP-induction.
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Supplementary Figure 4: Average (n = 6) CI-map for the resting-state brain dynamics. The map

shows the CI-score (Eq. (2)) of each voxel averaged over six animals for the case of unperturbed brain

PRE-LTP induction. High CI-score voxels are not localized in a single brain areas but appears spread

around and mostly located between the hippocampus and the prefrontal cortex.

Supplementary Note 6 - Directed brain network analysis

The network analysis of influencers in the rodent brain presented in Sec. 2 and 2 is based on

the construction of an undirected network. All biological networks are directional and so is the

neural wiring in the brain. At the neuronal level, indeed, each synapse and axon has a specific

direction for the flow of electric and chemical signal. A single voxel, which is the maximal

spatial resolution of a fMRI scan, contains about 104 neurons. The information flow between

two voxels can be thought as resulting from the average flow of chemical and electric signals

between all the neurons in these voxels.

To date, Granger causality [47] is a useful tool to statistically test probabilistic causal and

directional relations between two temporal variables and since its introduction in 1969, it has

been applied in several disciplines, ranging from finance to neuroscience and biology. In this

section we re-construct the same brain networks induced by LTP for the rodent brain made of

the active brain areas during fMRI scans, i.e. HC, NAc and PFC, as discussed in the main text
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and, in addition, we use Granger causality [47] to infer probabilistic directions of the network’s

links. We first start from the undirected network as discussed in Section 2 for each one of the six

animals. For each connected pair of nodes in the functional network throughout an undirected

link, we infer directionality of the connection by applying Granger causality to the BOLD signal

of the pair of voxels. We use a confidence level α = 0.01 and a lapse tl = 1-step in the scanning

time, which correspond to 2 seconds, this is the minimum temporal resolution available from

the fMRI in use.

Given two voxels i and j, from their time series, we test the hypothesis i Granger-causes j

and, if the hypothesis is accepted, we assign a link i→ j. We then test the opposite hypothesis:

j Granger-causes i. If both hypothesis are accepted we add no directionality to the link i − j,

the same in the case when none of the two hypothesis is accepted. Therefore, directionality is

assigned when either i Granger-causes j (i→ j) or j Granger-causes i (j → i).

To find which are the influencers, i.e. the integrators, in this directional network we develop

an heuristic version of the Collective Influence (CI) algorithm, presented in Eq. (2) in the SI,

which accounts for link directionality. Once the network is directed, each node has a given

in-degree (kini ) and out-degree (kouti ) and undirected links contribute to both of them. A natural

generalization of the CI algorithm to the directed case is then the following:

CIDIR
`(i) = (k∗i − 1)

∑
j∈∂Ball∗(i,`)

(k∗j − 1) +
∑

j∈F∗(i) :

k∗in−inter
j =1

(k∗j − 1)
∑

m∈∂Ball∗(j,`)

(k∗m − 1). (9)

Where here, slightly differently from the undirected case, k∗i = kini + kouti is the total degree of

node i, with kini ≡ kin−intrai + kin−interi that accounts for: the total in-links coming from nodes

in the same network as i (kin−intrai ); and in-links coming from nodes belonging to a different

network than i (kin−interi ). Analogously, kouti ≡ kout−intrai + kout−interi , with kout−intrai and

kout−interi having a similar meaning but for the out-degree of node i. Diversely from Eq. (2),

the symbol ∂Ball∗(i, `) indicates the directed sphere of influence of node i: this is the sphere

of influence that can be reached with a directed path starting at node i. Whereas j ∈ F∗(i) :

k∗in−interj = 1 instead indicates the set of nodes connected to i through a directed interlink and

which have no more interlinks with any of the other nodes in the network.
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Supplementary Figure 5: Average (n = 6) CI-directed map. The map indicates the CI-score (Eq. (9))

of each voxel averaged over six animals for the case of directed brain network. The Nucleus

Accumbens appears as the area with the highest CI averaged score and, therefore, it is identified as the

main area responsible for integration.

To identify the influencers of the directed brain network, for each rat, we compute the di-

rected CI-score according to Eq. (9), in analogy with the undirected case, for each node in

the brain network. For each animal, we then rank the nodes from high to low score and we

then compute an average CI-directed map similarly to what described in Supplementary Note

4. Results are shown in Supplementary Fig. 5, to be compared with results for the undirected

network discussed in the main text and illustrated in Fig. 2h. Despite the fact that the net-

works are directed in this case, the nucleus accumbens still results to be the brain area with the

highest CI-directed score and so, according to our theory, the main brain areas responsible for

integration.

Supplementary Note 7 - Degree analysis of nodes responsible for integration

In this section we present a study of the degree statistics for the top CI nodes in each rodent

brain network and of the top hub nodes in the same network. In particular, for each rat brain
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Supplementary Figure 6: Degree distribution across animals (n = 6) of: (blue bins) the whole brain

network; (green bins) top 30 CI nodes; (red bins) top 30 hub nodes. The figure shows that the top CI

nodes, which our theory identify as responsible for brain integration, are comparatively of lower degree

than hub nodes in the same networks.

network, we identify the top 30 CI nodes according to equation (2) and we then determine the

degree of each one of these nodes in their relative network. Analogously, for each rat, we also

identify the top 30 hub nodes by using a high-degree algorithm and then determine their degree.

We choose the first 30 nodes because, across animals, this is the max number of CI nodes

which can be removed before the network is completely dismantled and so, the max number of

nodes which can be used to compare the CI and hub degree statistics. For completeness, we

also compute the degree statistics of all rodent brain networks by identifying the degree of each

node in the network. In Supplementary Fig. 6 we report the corresponding degree distributions

obtained from the above analyses. This figure illustrates that high CI nodes, i.e. nodes that we

find responsible for integration within our theory, are comparatively of lower degree than hubs

in the brain network.
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Supplementary Note 8 - Pharmacogenetic (Dreadd) experiment

The fundamental goal of this experiment is to use Designer Receptors Exclusively Activated

by Designer Drugs (DREADDs) technology [48, 49] to specifically inactivate nodes in the shell

part of the nucleus accumbens (NAc), the contralateral hippocampus (cHC), the anterior part

of the prefrontal cortex (PFC), and the somatosensory cortex (S1) and study, using fMRI and

optimal percolation analysis, its impact on the functional architecture in the memory network

induced by LTP. More specifically, with the aid of adenoviral vectors, we directed the expres-

sion of a Gi-DREADD (hM4Di) protein into the target regions which, under intra-peritoneal

administration of the otherwise inert ligand clozapine-N-oxide (CNO), activates the receptor

inducing neuronal silencing and blocking those regions output. Details are provided below.

Subjects

A total of 15 Sprague-Dawley male rats, weighing between 260-280 g, were used in this

experiment. From these, three animals were not considered in the analysis due to absence or

poor DREADD expression in the post-mortem validation. As before, animals were purchased

from Janvier Labs (France) and maintained under a 12/12 h light/dark cycle (lights on 07:00-

19:00 h) at room temperature (22±2 C). Food and water were provided ad libitum. Rats were

housed in groups (4 animals per cage) and adapted to these conditions for at least 7 days before

any manipulation.

Viral constructs and injection procedures

A mixture of two viruses is used to express hM4Di in the NAc. The first virus (AAV5-hSyn-

GFP-Cre) drives the expression of Cre under the control of Synapsin (hSyn) in neurons and

provides amplification of the Cre-dependent DREADD construct. The second virus (AAV5-

hSyn-DIO-hM4D(Gi)-mCherry) expresses the inhibitory DREADD in Cre positive neurons.

Both viruses are mixed 1:1 and 0.25 µL are injected stereotaxically in the shell portion of the
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NAc. For this, isoflurane anesthetized animals (4 % induction and 2.5 % for maintenance in

0.8 L/min O2) are fixed in an stereotaxic frame, as described above, and bilateral craniotomies

opened over the NAc (from bregma, AP 2.5 mm, ML 1.3 mm, and DV 7 mm), the PFC (from

bregma AP -3.2 mm, ML 0.5 mm, and DV 2.0 and 3.8 mm), the contralateral Hippocampus

(from bregma, AP -3.5 mm, ML 2.6 mm, and DV 3.2 mm), and the somatosensory cortex S1

(from bregma, AP 0.8 mm, ML 3.6 mm, and DV 1.4 mm). Injections are performed using

silica cannula (GC22-20, 22 gauge internal cannula, WPI, USA) coupled to an infusion pump

(SP200IZ Syringe pump, WPI, USA) through polyethylene tubing. The cannula is lowered

slowly in the tissue to the final stereotaxic coordinate, stays in place 10 min before infusion

starts, and 10 min more before retraction. Retraction is done slowly to prevent sucking the in-

jected solution. At the end of the procedure, both craniotomies are covered with small amounts

of bone cement (Palacos, Heraheus Medical GmbH, Germany), and the skin sutured. After the

surgery animals receive analgesics (buprenorphine 0.3 mg, Buprex, Reckitt Benckiser Health-

care, UK) and antibiotics (enrofloxacine 3 %, Syvaquinol 25, Syva, Spain) during 3-5 days.

DREADD fMRI procedures

We wait 4 to 6 weeks after the injection of the viruses to allow proper expression of the

DREADD proteins in the NAc neurons. The experimental procedures for electrode implanta-

tion and fMRI data acquisition are the same as explained above for the LTP experiment. In

addition, animals in this experiment are intraperitoneally cannulated for CNO administration

inside the magnet. After baseline fMRI acquisition is completed (corresponding to the PRE-

LTP, PRE-CNO condition), CNO is administered i.p (1 mg/Kg, 10 mL/Kg) and 30 min later a

first set of functional images is acquired during low frequency stimulation (PRE-LTP, POST-

CNO condition). After that, and still under the effect of CNO (which last more than 10 h, [50]),

LTP is induced as before and 1h later a new set of functional images is acquired (POST-LTP,

POST-CNO condition).
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Histology

At the end of each experiment, rats are perfused intracardially with 100 mL of 1% phosphate-

buffered saline (PBS) solution and 100 mL of ice-cold 4% paraformaldehyde (PFA). Brains are

kept for 24h on 4% PFA post-fixation at 4 C and cut in a fixed material vibratome in 50 µm

thick slices. Slices are then stained with 4’,6-diamidino-2-phenylindole (DAPI) for photogra-

phy under a fluorescence microscope. Expression of hM4Di in the NAc is validated by GFP

fluorescence in the neurons.

Supplementary Note 9 - Pharmacologic (TTX) inactivation experiments

In this experiment, we used an acute infusion of the voltage-dependent sodium channel

blocker Tetrodotoxin (TTX), to strongly inactivate nodes in targeted regions and study, using

fMRI and optimal percolation analysis, its impact on the functional architecture in the memory

brain network induced by LTP.

Subjects

A total of 8 Sprague-Dawley male rats, weighing between 250-300 g, were used in this

experiment, 4 for Hippocampal inactivation and 3 for S1 inactivation. As before, animals were

purchased from Janvier Labs (France) and maintained under a 12/12 h light/dark cycle (lights

on 07:00-19:00 h) at room temperature (22 ± 2 C). Food and water were provided ad libitum.

Rats were housed in groups (4 animals per cage) and adapted to these conditions for at least 7

days before any manipulation.

Drug and injection procedures

Urethane anesthetized animals are fixed in a stereotaxic frame, as described above, and cran-

iotomies are opened bilaterally over the Hippocampus (from bregma, AP -3.5 mm, ML 2.6 mm,
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and DV 3.2 mm), or the somatosensory cortex S1 (from bregma, AP 0.8 mm, ML 3.6 mm, and

DV 1.4 mm). Injections are performed using silica cannula (GC22-20, 22-gauge internal can-

nula, WPI, USA) coupled to an infusion pump (SP200IZ Syringe pump, WPI, USA) through

polyethylene tubing. The cannula is lowered slowly in the tissue to the final stereotaxic coor-

dinate, stays in place 10 min before infusion starts, and 10 min more before retraction. 0, 5µL

of TTX (100 µM in ACSF) are infused in the target region. Retraction is done slowly to pre-

vent sucking the injected solution. Two multichannel recording electrodes are inserted in the

ipsilateral and contralateral Hippocampus to account for the induced TTX inactivation and the

successful induction of LTP. After TTX is infused as described above, field potentials in the

contralateral Hippocampus are abolished, whilst field potentials in the ipsilateral Hippocampus

remain intact (not shown). After that, LTP induction and fMRI procedures proceed as described

in the main text and Supplementary Note 2.
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