
Supplemental Material

The Likelihood function

Although, the form of the likelihood function (2) is in itself elementary, computing a maximum likelihood

estimation is a task not obvious. This will be explained in detail in what follows.

The structure of each parenthesis of equation (2) allows a symbolical simplification of the form

fi(D
sire, Ddam, p1, p2) = aiD

sireDdam + bi(p1, p2)D
sire + ciD

dam + di(p1, p2), i = 1, 2, . . . , 9 (S1)

given that ai and ci are constants, whereas both coefficients bi and di are functions of the parameters p1 and

p2. Their values and parametrization are summarized in Table S1.

Table S1: Values for the coefficients in (S1)

i ai bi ci di

1 1 (1− p1)(1− p2) 0.25 0.25(1− p1)(1− p2)

2 -2 −(1− p1)(1− 2p2) 0 0.25(1− p1)

3 1 −(1− p1)p2 −0.25 0.25(1− p1)p2

4 -2 −(1− 2p1)(1− p2) 0 0.25(1− p2)

5 4 (1− 2p1)(1− 2p2) 0 0.25

6 -2 (1− 2p1)p2 0 0.25p2

7 1 −p1(1− p2) −0.25 0.25p1(1− p2)

8 -2 p1(1− 2p2) 0 0.25p1

9 1 p1p2 0.25 0.25p1p2∑
ai = 0

∑
bi = 0

∑
ci = 0

∑
di = 1

Based on (S1), the Likelihood function (2) can be written as (omitting constants)

LF (Dsire, Ddam, p1, p2 |ni) =

9∏
i=1

(
fi(D

sire, Ddam, p1, p2)
)ni

, (S2)

where ni denote the observed frequencies (their correspondence according to genotype is displayed in Table

S2).
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Table S2: Correspondence for ni’s in (S2), (S3) according to genotype.

1 2 3 4 5 6 7 8 9

BB,BB BB,AB BB,AA AB,BB AB,AB AB,AA AA,BB AA,AB AA,AA

Employing (S2) favors an extended manipulation of equation (2). In particular, the logarithmic Likelihood

function corresponding to (2) reads as

lnLF (Dsire, Ddam, p1, p2 |ni) =

9∑
i=1

ni ln fi, (S3)

provided that fi > 0 for each i. We note that only for i = 1 and 9 the corresponding logarithms are positive

by default. For the remaining, proper intervals must be chosen. Moreover,
∑9

i=1 fi = 1 which is easily

demonstrated utilizing the last line of Table S1.

Optimization

Obtaining extrema in the classic framework of calculus requires the application of the derivative test. Recall

that the logarithm is a monotonic transformation preserving the locations of possible extrema. Therefore,

it is irrelevant if one utilizes (S2) or (S3) for the acquisition of the critical points. However, working with

factored products as present in (S2) is simpler as working with series, by virtue of

∂LF (ϑ)

∂ϑj
=
(
n>Fϑj

) M∏
i=1

(fi(ϑ))
ni , (S4)

where ϑ is a generic K-dimensional vector with entries ϑj , j ∈ {1, . . . ,K}, whereas

Fϑj
=


1

f1(ϑ)
∂f1(ϑ)
∂ϑj

...
1

fM (ϑ)
∂fM (ϑ)

∂ϑj

 =
∂

∂ϑj


ln f1(ϑ)

...

ln fM (ϑ)

 . (S5)

In the instance described in the manuscript, ϑ = (Dsire Ddam p1 p2)
> and M = 9. The corresponding

expressions for the derivatives present in (S5) are given in Table S3.

Critical points ϑ∗ are evaluated by equating (S4) to zero, namely n>Fϑj = 0, yielding 4 highly non-linear

equations with 4 unknowns. These equations are in detail,

9∑
i=1

ni

fi
(ai D

dam + bi) = 0,

9∑
i=1

ni

fi
(ai D

sire + ci) = 0,

9∑
i=1

ni

fi
(∂pk

bi D
sire + ∂pk

di) = 0, k = 1, 2. (S6)

The instance where
∏9

i=1 f
ni
i = 0 is examined separately.
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Table S3: Expressions for the derivatives ∂ϑj
fi

i ∂Dsirefi ∂Ddamfi ∂p1fi ∂p2fi

1 Ddam + (1− p1)(1− p2) Dsire + 0.25 −0.25(1 + 4Dsire)(1− p2) −0.25(1 + 4Dsire)(1− p1)

2 −2Ddam + (1− p1)(1− 2p2) −2Dsire −0.25 +Dsire − 2Dsirep2 2Dsire(1− p1)

3 Ddam − (1− p1)p2 Dsire − 0.25 −
(
0.25−Dsire

)
p2 0.25(1− 4Dsire)(1− p1)

4 −2Ddam − (1− 2p1)(1− p2) −2Dsire 2Dsire(1− p2) −0.25 +Dsire − 2Dsirep1

5 4Ddam + (1− 2p1)(1− 2p2) 4Dsire −2Dsire(1− 2p2) −2Dsire(1− 2p1)

6 −2Ddam + (1− 2p1)p2 −2Dsire −2Dsirep2 0.25 +Dsire − 2Dsirep1

7 Ddam − (1− p2)p1 Dsire − 0.25 0.25(1− 4Dsire)(1− p2) (Dsire − 0.25)p1

8 −2Ddam + p1(1− 2p2) −2Dsire 0.25 +Dsire − 2Dsirep2 −2Dsirep1

9 Ddam + p1p2 Dsire + 0.25
(
0.25 +Dsire

)
p2 (Dsire + 0.25)p1∑

∂Dsirefi = 0
∑

∂Ddamfi = 0
∑

∂p1
fi = 0

∑
∂p2

fi = 0

The vector n corresponds to the observed genotype frequencies, thus connected to the measurements,

and accordingly, finding n such that n⊥Fϑj
is an invalid statistical statement. Therefore, it must Fϑj

= 0.

A straightforward scenario for the latter implies solutions constrained about the boundary of the four-

dimensional solution space. These are, ∂ϑjfi = 0 or/and fi very large, so that (fi)
−1 vanishes for specific

i’s. The latter or/and requirement is justified as follows.

The solution space regarding Dsire and Ddam is restricted as Dsire ∈ [0, 0.25] as well as Ddam ∈ [L1, L2],

where L1 = max{−p1p2,−(1−p1)(1−p2)}, L2 = min{p1(1−p2), (1−p1)p2}. It is apparent that the imposed

constrains put restrictions on the scenario where ∂ϑjfi = 0, since a number of derivatives involve the term

Dsire + 0.25 (see Table S3), which does not vanish in the given interval.

On the other hand, solutions ϑ∗ in the interior of the solution space must be obtained by synchronously

solving equations (S6), thus taking into consideration the data.

Recognizing the identity (minimum, maximum, saddle) of ϑ∗’s, the Hessian matrix

Hk,j =
∂2LF

∂ϑk∂ϑj
, 1 ≤ k, j ≤ 4, (S7)

is computed, where

∂2LF

∂ϑk∂ϑj
=

{
9∑

i=1

ni

fi

(
∂2fi

∂ϑk∂ϑj
− 1

fi

∂fi
∂ϑk

∂fi
∂ϑk

)
+

(
9∑

i=1

ni

fi

∂fi
∂ϑk

)(
9∑

i=1

ni

fi

∂fi
∂ϑj

)}
9∏

i=1

fni
i . (S8)

It is evident from (S8) that Hk,j = 0, 1 ≤ k, j ≤ 4, if evaluated at the roots of fi, provided that ni > 2,

and thus the second derivative test is inconclusive.
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Working with the logarithmic likelihood instead, yields

Hk,j =
∂2 lnLF

∂ϑk∂ϑj
= n>Fϑkϑj

, 1 ≤ k, j ≤ 4, (S9)

where, analytically

∂2 lnLF

∂ (Dsire)2
= −

9∑
i=1

nif
−2
i

(
ai D

dam + bi

)2
< 0, (S10)

∂2 lnLF

∂ (Ddam)2
= −

9∑
i=1

nif
−2
i

(
ai D

sire + ci

)2
< 0, (S11)

∂2 lnLF

∂ (p`)2
= −

9∑
i=1

nif
−2
i

(
∂bi
∂p`

Dsire +
∂di
∂p`

)2

< 0, ` = 1, 2 (S12)

∂2 lnLF

∂Dsire∂Ddam
=

9∑
i=1

ni

(
fi(D

sire, Ddam, p1, p2)
)−2 (

ai di − bi ci

)
, (S13)

∂2 lnLF

∂p1∂p2
= −

9∑
i=1

nif
−2
i

2∏
`=1

(
∂bi
∂p`

Dsire +
∂di
∂p`

)

+

9∑
i=1

nif
−1
i

(
∂2bi

∂p1∂p2
Dsire +

∂2di
∂p1∂p2

)
(S14)

∂2 lnLF

∂Dsire∂pk
=

9∑
i=1

nif
−2
i

[(
ci D

dam + di
) ∂bi
∂p`
−
(
ai D

dam + bi
) ∂di
∂p`

]
, (S15)

∂2 lnLF

∂Ddam∂p`
= −

9∑
i=1

nif
−2
i

(
ai D

sire + ci
)( ∂bi

∂p`
Dsire +

∂di
∂p`

)
, ` = 1, 2. (S16)
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