
Diet-induced obesity affects muscle regeneration after murine blunt muscle trauma – a broad spectrum analysis

Pengfei Xu^{1†}, Jens-Uwe Werner^{1†}, Sebastian Milerski¹, Carmen Hamp¹, Tatjana Kuzenko¹, Markus Jähnert², Pascal Gottmann², Luisa de Roy³, Daniela Warnecke³, Alireza Abaei⁴, Annette Palmer⁵, Markus Huber-Lang⁵, Lutz Dürselen³, Volker Rasche⁴, Annette Schürmann², Martin Wabitsch^{6*}, Uwe Knippschild^{1*}

^{*} Correspondence: Prof. Dr. Uwe Knippschild, uwe.knippschild@uniklinik-ulm.de and Prof. Dr. Martin Wabitsch, martin.wabitsch@uniklinik-ulm.de

Sup. Fig. 1: Experimental setup for the induction of a blunt muscle trauma on left *extensor iliotibialis anticus*. (A) A weight with a mass of 40 g was dropped down by removing a pin over an effective drop height of 104 cm in order to induce a blunt skeletal muscle injury. (B) A spacer of 3 mm prevented the impact to break the bone by limiting the depth of penetration. The left leg of the mouse was placed onto the scaffold, whereas the wedge was placed on top of the *extensor iliotibialis anticus* muscle.