Analytical and Bioanalytical Chemistry

Electronic Supplementary Material

Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter

David L. Duewer, Margaret C. Kline, Erica L. Romsos, Blaza Toman

DATA	ESM-3
Table S1 λ/F , Dilution-Adjusted Copies per Nanoliter	ESM-3
Fig. S1 Relationships Among Experimental Factors	ESM-4
OpenBUGS ANALYSIS OF VARIANCE	ESM-4
Definition of Terms	ESM-4
OpenBUGS Code	ESM-5
Initialization Values	ESM-6
Data	ESM-6
Results	ESM-7
Table S2 Component Means, λ/F Copies per Nanoliter	ESM-7
Table S3 Component Relative Standard Uncertainties, %	ESM-7
Table S4 Between-Assay Relative Standard Uncertainties, %	ESM-7
Table S5 Relative Between-Assay Differences, %	ESM-8
Table S6 Relative Standard Measurement Repeatability, %	ESM-8
POISSON SAMPLING UNCERTAINTY AND CHOICE OF COPIES PER DROPLET	ESM-9
Fig. S2 Relative Standard Deviations as Functions of λ for $N_{\text{tot}} = 17000$	ESM-9
dMIOE CHECKLIST	
Table S7 dMIQE Checklist	ESM-10
DISCLAIMER	ESM-12
REFERENCES	ESM-12

INDEX

DATA

Results were obtained for the three human DNA components of a candidate certified reference material (CRM). The components are labeled "A", "B", and "C".

Each component was assessed with ten human nuclear DNA (nDNA) assays, each assay designed to be specific to a unique genetic locus and optimized for droplet digital PCR (ddPCR). The assay indices and codes are: 1) 2PR4, 2) POTP, 3) NEIF, 4) R4Q5, 5) D5, 6) ND6, 7) D9, 8) HBB1, 9) ND14, and 10) 22C3.

Five sets of results were obtained for each component for each of the ten assays. Each set consisted of two technical replicates per assay. Within each set, all results reflect subsamples from the same independently prepared 1:4 dilution of the CRM component. Results were collected from a total of five 96-well plates, each plate providing one set of results for each of the three components plus non-template controls. The plate indices and codes are: 1) d20170711, 2) d20170712a, 3) d20170712b, 4) d20170713, and 5) d20170714.

Table S1 lists the data used in in this study.

Table S1 λ/F , Dilution-Adjusted Copies per Microliter

							ddPCR Plate						
	Ass	ay	1) d20	170711	2) d201	70712a	3) d201	70712b	4) d20	170713	5) d20	5) d20170714	
Sample	Index	Code	Rep1	Rep2	Rep1	Rep2	Rep1	Rep2	Rep1	Rep2	Rep1	Rep2	
А	1	2PR4	12.25	12.48	12.26	12.78	12.04	12.25	13.87	14.25	11.74	11.69	
	2	POTP	12.16	12.38	11.66	12.51	12.32	12.04	13.73	13.34	11.27	10.32	
	3	NEIF	12.11	12.23	12.33	11.86	11.87	11.93	14.36	13.98	10.74	11.26	
	4	R4Q5	11.72	12.19	11.97	12.95	11.46	11.66	13.07	13.75	10.97	11.16	
	5	D5	12.16	12.37	12.77	12.12	11.82	12.14	14.14	15.61	11.30	11.65	
	6	ND6	11.97	12.11	12.25	12.33	11.84	11.68	13.68	13.13	10.96	11.14	
	7	D9	12.16	12.14	12.46	12.15	11.15	11.81	13.40	13.55	11.23	11.30	
	8	HBB1	12.08	11.84	12.91	12.86	11.44	11.63	13.30	13.22	11.38	11.62	
	9	ND14	12.09	12.55	13.01	12.96	11.79	11.94	13.70	13.65	11.12	11.13	
	10	22C3	11.35	11.78	12.95	12.92	12.31	11.88	14.18	14.27	11.48	а	
В	1	2PR4	13.73	14.40	15.98	16.40	13.30	13.27	13.11	13.38	12.63	12.99	
	2	POTP	13.59	13.09	16.18	16.85	13.70	13.23	12.75	13.32	12.88	12.48	
	3	NEIF	12.56	12.54	15.96	16.29	13.27	13.13	13.07	13.33	13.03	13.17	
	4	R4Q5	13.64	13.13	а	15.27	13.80	12.99	13.48	12.86	13.06	12.79	
	5	D5	13.58	13.44	16.39	16.11	13.40	13.15	13.18	13.58	13.25	13.19	
	6	ND6	13.44	13.42	15.39	14.95	12.99	12.27	12.50	12.57	12.63	12.44	
	7	D9	13.68	13.66	14.32	15.51	13.31	12.86	13.22	13.07	13.24	12.81	
	8	HBB1	13.41	13.73	14.49	15.60	12.96	12.80	12.97	13.00	13.48	12.82	
	9	ND14	13.75	13.03	15.61	15.18	13.71	13.09	12.89	12.68	12.72	12.60	
	10	22C3	13.05	13.98	15.48	15.03	13.34	13.71	13.17	13.33	13.54	а	
С	1	2PR4	11.98	12.53	11.02	11.00	10.67	10.46	10.80	10.61	10.92	10.71	
	2	POTP	11.73	11.58	11.58	11.84	9.90	10.27	10.37	10.49	10.45	10.72	
	3	NEIF	11.57	11.30	11.36	11.47	10.25	9.92	11.11	10.57	10.57	10.76	
	4	R4Q5	11.69	11.43	11.64	11.36	10.60	10.72	10.67	10.79	10.58	10.79	
	5	D5	11.83	11.81	11.59	11.23	10.64	11.77	11.52	11.20	11.13	10.71	
	6	ND6	11.68	11.38	11.75	10.86	10.75	10.55	10.88	10.46	10.35	10.38	
	7	D9	11.53	11.55	11.66	11.05	10.30	10.53	10.60	10.72	10.80	10.84	
	8	HBB1	11.50	12.35	11.17	11.40	10.83	10.89	10.51	10.78	10.67	10.50	
	9	ND14	11.49	10.97	10.87	10.57	10.77	10.89	10.38	10.37	10.77	10.48	
	10	22C3	11.38	12.16	11.11	10.98	10.58	11.52	10.92	10.87	10.02	10.23	

a) Technical failure

Fig. S1 provides a schematic image of the relationships among the study's factors.

Fig. S1 Relationships Among Experimental Factors

OPENBUGS ANALYSIS OF VARIANCE

Using a Markov Chain Monte Carlo Bayesian approach [1,2] to analysis of variance, we model the measurement results as

 $y_{ijk} \sim N(\gamma_{ijk}, \sigma_i^2),$ $\gamma_{ijk} \sim N(\alpha_{ij}, \sigma_{plate_{ij}}^2),$ $\alpha_{ij} \sim N(\mu_i, \sigma_{component_i}^2).$

where "~" signifies "distributed as", $N(\mu, \sigma^2)$ represents a Gaussian distribution with mean μ and variance σ^2 , *i* indexes the CRM components, *j* the assays, and *k* the plates. The variance components are $\sigma^2_{component_i}$ which measures the between-assay variability for component *i*, $\sigma^2_{plate_{ij}}$ which measures the between-plate variability for each component and assay combination, and σ^2_{ij} which measures the repeatability variability.

The data was analyzed using Bayesian MCMC with non-informative Gaussian priors for the means and either Gamma priors for the variance components or Uniform priors for standard deviations when Gamma variance priors would not converge.

OpenBUGS is a freely available open-source software package for performing Bayesian inference Using Gibbs Sampling [3]. The user defines a statistical model that states the relationships between related variables and controls the evaluation of the data using the model. Please see http:// <u>http://www.openbugs.net/w/FrontPage</u> on how to obtain 1) the package and 2) the User's Manual.

The following provides the complete code, initialization values, and data required to estimate the values of interest.

Definition of Terms

# Outputs	
# c0[3]	Between-plate %CV for each component
# c1a[3,5]	Between assay %CV for each component-plate combination
# c1aA[3]	Mean within-component between-assay %CV
# c1aGA	Global mean between-assay %CV
# c1b[3,5]	Repeatability %CV for each component-plate combination
# c1bA[3]	Mean within-component repeatability %CV
# c1bGA	Grand mean repeatability %CV
#	
# d1[3,10]	% difference from mean for each component-assay combination
# d1A[3]	Mean % difference from mean for each component
# d1GA	Grand mean % difference
#	
# m0[3]	Grand mean for each component
# m1[3,5]	Mean for each plate for each component

m1P[3,10] Prediction mean for each assay for each component

m2[3,5,10] ... Mean for each assay for each plate for each component

#

Indices

i..... components (A, B, C) # j..... assays (2PR4, POTP, NEIF, R4Q5, D5, ND6, D9, HBB1, ND14, 22C3) # k..... plates (dd20170711a, dd20170711b, dd20170712, dd20170713, dd20170714) #1..... Technical replicates (Rep1, Rep2) # # Intermediate variance-related variables initialized as uniform distributions # s1a[3,5]...... Between assay standard deviation for each component-plate combination # s1P[3,10]..... Prediction between plate standard deviation for each component-assay combination # v1a[3,5]...... Between assay inverse-variance for each component-plate combination # v1P[3,10]..... Prediction between plate inverse-variance for each component-assay combination # # Intermediate variance-related variables requiring initialization # v0[3] Between-plate inverse-variance for each component # v1b[3,5] Repeatability inverse-variance for each component-plate combination # # Data # lamb1[3,10,5,2]... dilution-adjusted copies per droplet arranged by component/plate/assay/technical replicate # lamb2[3,10,5,2]... same as lamb1; required for predicting the differences (BUGS doesn't allow data re-use)

OpenBUGS Code

```
Anova Begin{
#
# Define distributions
for(i \text{ in } 1:3) \{m0[i] \sim dnorm(0,1.0E-5); v0[i] \sim dgamma(1.0E-5,1.0E-5); c0[i] < -100/(m0[i]*sqrt(v0[i])) \}
for(i in 1:3) \{ for(k in 1:5) \{ m1[i,k] \sim dnorm(m0[i],v0[i]) \} \}
s1a[i,k] \sim dunif(0,3); v1a[i,k] < -1/pow(s1a[i,k],2); c1a[i,k] < -100/(m0[i]*sqrt(v1a[i,k]));
v1b[i,k] \sim dgamma(1.0E-5,1.0E-5);c1b[i,k] < -100/(m0[i]*sqrt(v1b[i,k])))
for(i in 1:3) \{ for(j in 1:10) \{ for(k in 1:5) \} \{ m2[i,j,k] \sim dnorm(m1[i,k],v1a[i,k]) \} \} \}
#
# Define average %CV
c0A < -mean(c0[]); c1aGA < -mean(c1a[,]); c1bGA < -mean(c1b[,])
for(i in 1:3){c1aA[i] < -mean(c1a[i,]); c1bA[i] < -mean(c1b[i,])}
#
# Parameterize distributions
for(i \text{ in } 1:3) \{ for(j \text{ in } 1:10) \} \{ for(k \text{ in } 1:5) \} \{ for(1 \text{ in } 1:2) \} \{ amb1[i,j,k,l] \sim dnorm(m2[i,j,k],v1b[i,k]) \} \} \}
# Prediction phase
# Define the between-assay differences
for(i \text{ in } 1:3) \{ for(j \text{ in } 1:10) \{ m1P[i,j] \sim dnorm(0,1.0E-5); s1P[i,j] \sim dunif(0,5); v1P[i,j] < -1/pow(s1P[i,j],2) \} \}
for(i in 1:3){for(j in 1:10){d1[i,j] < -100*(m1P[i,j]/m0[i]-1)}
#
# Define average difference
d1GA <-mean(d1[,]); for(j in 1:10) \{d1A[j] <-mean(d1[,j])\}
#
# Parameterize prediction-phase distributions
for(i \text{ in } 1:3) \{ for(j \text{ in } 1:10) \{ for(k \text{ in } 1:5) \} \{ for(1 \text{ in } 1:2) \{ lamb2[i,j,k,l] \sim dnorm(m1P[i,j],v1P[i,j]) \} \} \}
}End Anova
```

Initialization Values

list(v0=c(1,1,1), v1b=structure(.Data=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),.Dim=c(3,5)))

Data

list(lamb1=structure(.Data=c(12.25, 12.48, 12.26, 12.78, 12.04, 12.25, 13.87, 14.25, 11.74, 11.69, 12.16,12.38,11.66,12.51,12.32,12.04,13.73,13.34,11.27,10.32, 12.11,12.23,12.33,11.86,11.88,11.93,14.36,13.98,10.75,11.26, 11.72,12.19,11.97,12.95,11.46,11.66,13.07,13.75,10.97,11.16, 12.16,12.37,12.77,12.12,11.82,12.14,14.14,15.61,11.30,11.66, 11.97,12.11,12.25,12.33,11.84,11.68,13.68,13.13,10.96,11.14, 12.16,12.14,12.46,12.15,11.15,11.81,13.40,13.55,11.23,11.30, 12.08,11.84,12.91,12.86,11.44,11.63,13.30,13.22,11.38,11.62, 12.09,12.55,13.01,12.97,11.79,11.94,13.70,13.65,11.12,11.13, 11.35,11.78,12.95,12.92,12.31,11.88,14.18,14.27,11.48, NA, 13.73,14.40,15.98,16.40,13.30,13.27,13.11,13.38,12.63,12.99, 13.59,13.09,16.18,16.85,13.70,13.23,12.75,13.32,12.88,12.48, 12.56,12.54,15.96,16.29,13.27,13.13,13.07,13.33,13.03,13.17, 13.64,13.13, NA ,15.27,13.80,12.99,13.48,12.86,13.06,12.79, 13.58,13.44,16.39,16.11,13.40,13.15,13.18,13.58,13.25,13.19, 13.44,13.42,15.39,14.95,12.99,12.28,12.50,12.57,12.63,12.44, 13.68, 13.66, 14.32, 15.51, 13.31, 12.86, 13.22, 13.07, 13.24, 12.81, 13.41,13.73,14.49,15.60,12.96,12.80,12.97,13.00,13.48,12.82, 13.75,13.03,15.61,15.18,13.71,13.09,12.89,12.68,12.72,12.60, 13.05,13.98,15.48,15.03,13.34,13.72,13.17,13.33,13.54, NA 11.98,12.53,11.02,11.00,10.67,10.46,10.80,10.61,10.92,10.71, 11.73,11.58,11.58,11.84,09.90,10.27,10.37,10.49,10.45,10.72, 11.57,11.30,11.36,11.47,10.25,09.92,11.11,10.57,10.57,10.76, 11.69,11.43,11.64,11.36,10.60,10.72,10.67,10.79,10.58,10.79, 11.84,11.81,11.59,11.23,10.64,11.77,11.52,11.20,11.13,10.71, 11.68,11.38,11.75,10.86,10.75,10.55,10.88,10.47,10.35,10.38, 11.53,11.55,11.66,11.05,10.30,10.53,10.60,10.72,10.80,10.84, 11.50,12.35,11.17,11.40,10.83,10.89,10.51,10.78,10.68,10.50, 11.49,10.97,10.87,10.57,10.77,10.89,10.38,10.37,10.77,10.48, 11.38, 12.16, 11.11, 10.98, 10.58, 11.52, 10.92, 10.87, 10.02, 10.23, Dim=c(3,10,5,2)), lamb2=structure(.Data=c(12.25, 12.48, 12.26, 12.78, 12.04, 12.25, 13.87, 14.25, 11.74, 11.69, 12.16,12.38,11.66,12.51,12.32,12.04,13.73,13.34,11.27,10.32, 12.11,12.23,12.33,11.86,11.88,11.93,14.36,13.98,10.75,11.26, 11.72,12.19,11.97,12.95,11.46,11.66,13.07,13.75,10.97,11.16, 12.16,12.37,12.77,12.12,11.82,12.14,14.14,15.61,11.30,11.66, 11.97,12.11,12.25,12.33,11.84,11.68,13.68,13.13,10.96,11.14, 12.16,12.14,12.46,12.15,11.15,11.81,13.40,13.55,11.23,11.30, 12.08,11.84,12.91,12.86,11.44,11.63,13.30,13.22,11.38,11.62, 12.09,12.55,13.01,12.97,11.79,11.94,13.70,13.65,11.12,11.13, 11.35.11.78.12.95.12.92.12.31.11.88.14.18.14.27.11.48. NA. 13.73,14.40,15.98,16.40,13.30,13.27,13.11,13.38,12.63,12.99, 13.59,13.09,16.18,16.85,13.70,13.23,12.75,13.32,12.88,12.48, 12.56, 12.54, 15.96, 16.29, 13.27, 13.13, 13.07, 13.33, 13.03, 13.17, 13.64,13.13, NA ,15.27,13.80,12.99,13.48,12.86,13.06,12.79, 13.58,13.44,16.39,16.11,13.40,13.15,13.18,13.58,13.25,13.19, 13.44,13.42,15.39,14.95,12.99,12.28,12.50,12.57,12.63,12.44, 13.68,13.66,14.32,15.51,13.31,12.86,13.22,13.07,13.24,12.81, 13.41,13.73,14.49,15.60,12.96,12.80,12.97,13.00,13.48,12.82,

```
\begin{split} &13.75, 13.03, 15.61, 15.18, 13.71, 13.09, 12.89, 12.68, 12.72, 12.60, \\ &13.05, 13.98, 15.48, 15.03, 13.34, 13.72, 13.17, 13.33, 13.54, NA, \\ &11.98, 12.53, 11.02, 11.00, 10.67, 10.46, 10.80, 10.61, 10.92, 10.71, \\ &11.73, 11.58, 11.58, 11.84, 09.90, 10.27, 10.37, 10.49, 10.45, 10.72, \\ &11.57, 11.30, 11.36, 11.47, 10.25, 09.92, 11.11, 10.57, 10.57, 10.76, \\ &11.69, 11.43, 11.64, 11.36, 10.60, 10.72, 10.67, 10.79, 10.58, 10.79, \\ &11.84, 11.81, 11.59, 11.23, 10.64, 11.77, 11.52, 11.20, 11.13, 10.71, \\ &11.68, 11.38, 11.75, 10.86, 10.75, 10.55, 10.88, 10.47, 10.35, 10.38, \\ &11.53, 11.55, 11.66, 11.05, 10.30, 10.53, 10.60, 10.72, 10.80, 10.84, \\ &11.50, 12.35, 11.17, 11.40, 10.83, 10.89, 10.51, 10.78, 10.68, 10.50, \\ &11.49, 10.97, 10.87, 10.57, 10.77, 10.89, 10.38, 10.37, 10.77, 10.48, \\ &11.38, 12.16, 11.11, 10.98, 10.58, 11.52, 10.92, 10.87, 10.02, 10.23), Dim=c(3, 10, 5, 2)))) \end{split}
```

Results

The results in Tables S2 through S6 were obtained using OpenBUGS Version 3.2.3 rev 1012. Initial burn-in used 10 000 samplings with 10-fold thinning. The posterior distributions were defined with 100 000 samplings with 2-fold thinning. For each parameter, the listed statistics summarize the resulting posterior distributions.

Mean..... arithmetic mean SD..... standard deviation 2.5 %..... 0.025 percentile 25 %..... 0.25 percentile (1st quartile) median 0.50 percentile (2nd quartile) 75 %..... 0.75 percentile (3rd quartile) 97.5 %..... 0.975 percentile Asym right-hand/left-hand asymmetry, (97.5 % - 50 %)/(50 % - 2.5 %)

Note: when "Asym" is about 1, the mean and median results will be similar and the SD will provide a useful estimate of the standard deviation of that mean value. As the asymmetry increasingly deviates from 1, the mean and SD estimates become increasingly biased. For this reason, we base our estimated values on the median results. The results of interest to this study are in red font.

Parameter	Mean	SD	2.5 %	25 %	median	75 %	97.5 %	Asym
m0[1]	12.29	0.59	11.14	11.98	12.29	12.60	13.46	1.02
m0[2]	13.64	0.69	12.31	13.28	13.64	14.00	15.00	1.02
m0[3]	10.99	0.29	10.41	10.83	10.99	11.14	11.56	0.98

Table S2 Component Means, λ/F Copies per Nanoliter

Parameter	Mean	SD	2.5 %	25 %	median	75 %	97.5 %	Asym
c0[1]	9.59	5.43	4.42	6.49	8.29	11.03	22.6	3.70
c0[2]	9.86	10.42	4.38	6.67	8.54	11.39	23.06	3.49
c0[3]	5.14	2.93	2.29	3.46	4.46	5.96	12.06	3.49
c0A	8.2	4.04	4.88	6.46	7.64	9.25	14.70	2.55

Table S3 Component Relative Standard Uncertainties, %

Table S4 Between-Assay Relative Standard Uncertainties, %

Parameter	Mean	SD	2.5 %	25 %	median	75 %	97.5 %	Asym
c1aA[1]	2.20	0.57	1.21	1.81	2.16	2.54	3.42	1.33
c1aA[2]	2.19	0.63	1.18	1.78	2.14	2.53	3.51	1.44
c1aA[3]	2.19	0.53	1.25	1.82	2.16	2.52	3.33	1.30
claGA	2.19	0.33	1.60	1.97	2.17	2.39	2.89	1.25

Parameter	Mean	SD	2.5 %	25 %	median	75 %	97.5 %	Asym
d1[1,1]	2.43	5.98	-8.07	-1.01	2.19	5.49	14.17	1.17
d1[1,2]	-0.70	5.97	-11.34	-4.20	-0.94	2.43	11.17	1.16
d1[1,3]	0.05	6.27	-11.10	-3.64	-0.17	3.40	12.51	1.16
d1[1,4]	-1.41	5.83	-11.68	-4.79	-1.64	1.62	10.21	1.18
d1[1,5]	2.82	6.70	-9.21	-1.18	2.55	6.48	16.24	1.16
d1[1,6]	-1.24	5.75	-11.28	-4.55	-1.47	1.71	10.12	1.18
d1[1,7]	-1.04	5.76	-11.11	-4.37	-1.27	1.94	10.34	1.18
d1[1,8]	-0.27	5.69	-10.24	-3.53	-0.49	2.64	10.98	1.18
d1[1,9]	1.10	6.02	-9.52	-2.37	0.86	4.23	13.03	1.17
d1[1,10]	2.48	6.49	-9.18	-1.40	2.25	5.98	15.57	1.17
d1[2,1]	2.30	6.48	-9.34	-1.61	2.03	5.79	15.42	1.18
d1[2,2]	1.45	6.81	-10.89	-2.64	1.19	5.21	15.16	1.16
d1[2,3]	0.22	6.52	-11.64	-3.67	-0.01	3.79	13.40	1.15
d1[2,4]	-1.18	5.73	-11.32	-4.45	-1.42	1.74	10.32	1.19
d1[2,5]	2.36	6.45	-9.19	-1.47	2.09	5.83	15.35	1.18
d1[2,6]	-2.54	6.00	-13.22	-6.08	-2.79	0.64	9.58	1.19
d1[2,7]	-0.27	5.73	-10.51	-3.55	-0.50	2.67	11.25	1.17
d1[2,8]	-0.60	5.83	-10.94	-3.97	-0.83	2.40	11.06	1.18
d1[2,9]	-0.59	6.06	-11.46	-4.16	-0.82	2.59	11.63	1.17
d1[2,10]	1.78	5.99	-8.84	-1.68	1.53	4.87	13.78	1.18
d1[3,1]	0.81	3.57	-6.00	-1.37	0.75	2.90	7.96	1.07
d1[3,2]	-0.79	3.67	-7.84	-3.05	-0.85	1.36	6.54	1.06
d1[3,3]	-0.83	3.33	-7.13	-2.82	-0.89	1.08	5.86	1.08
d1[3,4]	0.42	3.14	-5.51	-1.43	0.35	2.18	6.66	1.08
d1[3,5]	3.31	3.20	-2.73	1.45	3.23	5.08	9.68	1.08
d1[3,6]	-0.69	3.25	-6.87	-2.63	-0.75	1.15	5.74	1.06
d1[3,7]	-0.20	3.18	-6.24	-2.08	-0.27	1.57	6.09	1.06
d1[3,8]	0.74	3.38	-5.66	-1.30	0.67	2.68	7.44	1.07
d1[3,9]	-2.05	2.91	-7.50	-3.71	-2.12	-0.48	3.69	1.08
d1[3,10]	-0.02	3.50	-6.68	-2.14	-0.08	2.01	6.89	1.06
d1GA	0.28	3.44	-4.50	-1.33	0.16	1.71	5.61	1.17

 Table S5 Relative Between-Assay Differences, %

Table S6 Relative Standard Measurement Repeatability, %

Parameter	Mean	SD	2.5 %	25 %	median	75 %	97.5 %	Asym
c1bA[1]	2.65	0.31	2.11	2.43	2.63	2.84	3.32	1.36
c1bA[2]	2.63	0.37	2.08	2.41	2.60	2.82	3.32	1.39
c1bA[3]	2.62	0.28	2.13	2.42	2.60	2.80	3.22	1.32
clbGA	2.63	0.19	2.32	2.51	2.62	2.74	3.00	1.21

POISSON SAMPLING UNCERTAINTY AND CHOICE OF COPIES PER DROPLET

The relative standard uncertainty associated with Poisson processes involved in ddPCR is a function of both the mean number of copies per droplet, λ , and the number of droplets counted, N_{tot} [4]:

$$CV_{Poisson} = f(\lambda, N_{tot}) = 100 \sqrt{\frac{1 - e^{-\lambda}}{N_{tot}\lambda^2 e^{-\lambda}}} \%.$$

For $\lambda = 0.3$ copies per droplet and $N_{\text{tot}} = 17\,000$ droplets, the relative standard deviation due to Poisson sampling is

$$CV_{Poisson} = 100 \sqrt{\frac{1 - e^{-0.3}}{(17\ 000)(0.3^2)(e^{-0.3})}} = 1.51 \%.$$

From Table S6, we estimate the measurement repeatability for the processes used in this study as 2.62 %.

The "extra" variability of the processes can be estimated from the difference between the variances associated with the mean relative repeatability, $CV_{observed}$ (the "c1bGA" term in the OpenBUGS code and Table S6) and $CV_{Poisson}$:

$$CV_{extra} = \sqrt{CV_{observed}^2 - CV_{Poisson}^2} = \sqrt{2.62^2 - 1.51^2} \approx 2.14 \%.$$

Assuming that the source(s) of CV_{extra} are independent of the DNA content in the sample, the expected relative standard uncertainty for the total measurement process becomes:

$$CV_{expected} = f(\lambda, N_{tot}, CV_{extra}) = 100 \sqrt{\frac{1 - e^{-\lambda}}{N_{tot}\lambda^2 e^{-\lambda}}} + \left(\frac{CV_{extra}}{100}\right)^2 \%.$$

Fig. S2 displays CV_{Poisson} and CV_{expected} as functions of λ for $N_{\text{tot}} = 17000$.

Fig. S2 Relative Standard Deviations as Functions of λ for $N_{\text{tot}} = 17\,000$

One implication of a non-zero CV_{extra} is the effective "flattening" of the $CV_{Poisson}$ curve. While the minimum value for both $CV_{Poisson}$ and the $CV_{expected}$ remains the same ≈ 1.6 copies per droplet, the interval of "almost minimum" variability is much wider for $CV_{expected}$. In our experience, ddPCR results for targets on minimally fragmented human nDNA can become biased-low for $\lambda > \approx 0.8$ (data not shown). We therefore chose to make our certification studies with $\lambda \approx 0.3$ copies per droplet, accepting some increase in variability to minimize the potential for bias.

dMIQE CHECKLIST

Table S7 follows the "Minimum Information for Publication of Quantitative Digital PCR Experiments" guidelines [5]. Note that much of the requested information is intended for studies focused on biological issues and is "Not Applicable" to studies characterizing dPCR platform performance.

EXPERIMENTAL DESIGN	Comments				
Definition of experimental and control groups	Studies on the metrological traceability of dPCR				
	platforms using human nuclear DNA (nDNA)				
Number within each group	Variable				
Assay carried out by core lab or investigator's lab?	Investigator's lab				
SAMPLE	Comments				
Description	nDNA extracted from Buffy coat cells using a modified				
	salt-out method [6]				
Volume or mass of sample processed	Multiple 5 mL aliquots				
Microdissection or macrodissection	Not applicable				
Processing procedure	Not applicable				
If frozen - how and how quickly?	Not applicable				
If fixed - with what, how quickly?	Not applicable				
Sample storage conditions and duration	Samples stored at 4 °C.				
NUCLEIC ACID EXTRACTION	Comments				
Quantification - instrument/method	denatured to ssDNA, spectrophotometry (Cary 100 Bio)				
Storage conditions: temperature, concentration, duration	4 °C in TE ⁻⁴ pH 8.0 buffer				
huffer	(10 mmol/L tris(hydroxymethyl)aminomethane HCl,				
	0.1 mmol/L ethylenediaminetetraacetic acid).				
DNA or RNA quantification	DNA				
Template structural information	Very large fragment (> 48 502 bp) dsDNA, gel				
	electrophoresis and UV absorption spectroscopy				
Template modification (digestion, sonication, pre-	none				
Tomplate treatment (initial heating or chemical					
denaturation)	none				
Inhibition dilution or spike;	Not applicable				
DNA contamination assessment of RNA sample	Not applicable				
Details of DNase treatment where performed	Not applicable				
Manufacturer of reagents used and catalogue number					
Storage of nucleic acid: temperature, concentration,	nDNA: < 1 year at 4 °C				
	Commente				
GPCR TARGET INFORMATION	Comments				
Location of amplicon					
In silico specificity screen (BLAST, etc.)					
Location of each primer by exon or intron	Not applicable				
	Commente				
Drimer sequences and/or amplicen context sequences	Comments See Table 1				
Probe sequences					
Location and identity of any modifications	Not applicable				
Location dru luentity of dry moundations					
Durification method	calt free purification				

Table S7 (Continued). dMIQE Checklist

dPCR PROTOCOL	Comments			
Complete reaction conditions	See text			
Reaction volume and amount of RNA/cDNA/DNA	See text			
Primer, (probe), Mg++ and dNTP concentrations	See text			
Polymerase identity and concentration	See text			
Buffer/kit Catalogue No and manufacturer	See text			
Exact chemical constitution of the buffer	Proprietary			
Additives (SYBR Green I, DMSO, etc.)	Not applicable			
Plates/tubes Catalogue No and manufacturer	Various			
Complete thermocycling parameters	See text			
Reaction setup	See text			
Gravimetric or volumetric dilutions (manual/robotic)	Gravimetric and manual volumetric			
Total PCR reaction volume prepared	See text			
Partition number	10 000 to 20 000			
Individual partition volume	ddPCR: 0.7349 nL ± 1.2 %, see [7]			
Total volume of the partitions measured	Variable			
Partition volume variance/standard deviation	See [4]			
Comprehensive details and appropriate use of controls	See text			
Manufacturer of dPCR instrument	ddPCR: Bio-Rad			
dPCR VALIDATION	Comments			
Optimisation data for the assay	See [8,9]			
Specificity (when measuring rare mutations, pathogen	Not applicable			
Limit of detection of calibration control	Not applicable			
If multipleving, comparison with singleplev assays	Not applicable			
Average copies per partition	$\Lambda = 0.3$			
dPCR analysis program (source, version)	BIO-Rad QuantaSoft, Ver 1.7.4.0917			
	three technical failures (of 400 manurements) identified			
Outlier identification and disposition	by manufacture's diagnostics			
Desults of NTCs				
Examples of positive(s) and positive experimental results as				
examples of positive(s) and negative experimental results as	Not applicable			
Supplemental data				
reference genes	See text			
Where appropriate description of permalisation method	Not applicable			
Number and concordance of biological replicates	Not applicable			
Number and stage (RT or gPCR) of technical replicates	Not applicable			
Reneatability (intra-assay variation)	See Table SA			
Reproducibility (inter-assay variation)	See Table S3			
Experimental variance or confidence interval	Variable			
Statistical methods used for analysis	Not applicable			
Data submission using RDMI	Not applicable			
	וויטר מאטורמטוב			

DISCLAIMER

Certain commercial equipment, instruments, or materials are identified in this report to specify adequately experimental conditions or reported results. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment, instruments, or materials identified are necessarily the best available for the purpose.

REFERENCES

- 1 Gill J. Bayesian Methods: A Social and Behavioral Sciences Approach, 2nd Ed. Chapman & Hall/CRC, Boca Raton, FL USA. 2002. Chapter 9: A Primer on Markov Chain Monte Carlo. Free on-line at: http://www4.stat.ncsu.edu/~sghosh/TEACHING/st790/lectures/GillMCMC.pdf
- 2 Gelman A, Carlin JB, Stern HA, Rubin DB. Bayesian Data Analysis, 2nd Ed. Chapman and Hall/CRC, Boca Raton, FL USA. 2004.
- 3 Lunn DJ, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future directions (with discussion), Statistics in Medicine 2009;28:3049–3082. See also http://www.mrc-bsu.cam.ac.uk/bugs/ and http://www.openbugs.info/w/
- 4 Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 2012;40(11):e82. https://doi.org/10.1093/nar/gks203
- 5 Huggett, J.F.; Foy, C.A.; Benes, V.; et al. The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin Chem. 2013, 59(6), 892-902. https://doi.org/10.1373/clinchem.2013.206375
- 6 Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16(3):1215. https://doi.org/10.1093/nar/16.3.1215
- 7 Dagata, J.A.; Farkas, N.; Kramer, J.A. Method for Measuring the Volume of Nominally 100 μm Diameter Spherical Water-in-Oil Emulsion Droplets, NIST Special Publication 260-184, 2016. https://doi.org/10.6028/NIST.SP.260-184
- 8 Kline MC, Romsos EL, Duewer DL. Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets. Anal Chem 2016;88(4):2132-2139. https://doi.org/10.1021/acs.analchem.5b03692
- 9 Kline MC, Duewer DL. Evaluating Droplet Digital Polymerase Chain Reaction for the Quantification of Human Genomic DNA: Lifting the Traceability Fog. Anal Chem 2017;89(8):4648 4654. https://doi.org/10.1021/acs.analchem.7b00240