

В

С

D

Figure S1. Ciona embryo single dissociation and gene expression. Related to Figure 1.

(A) Images of intact embryos and embryos that have been dissociated to single-cells at the 4, 8 and 16 cell stages. Each cell is labelled to indicate its identity. 4- and 8-cell intact embryos are oriented anterior left. Two individual 16-cell embryos are oriented anterior up with the embryo on the left showing the animal hemisphere and the embryo on the right showing the vegetal hemisphere. Scale bar = 100 μ m. (B) The number of genes that are expressed at or beyond specific RPKM cutoffs averaged over single-cell gene expression levels at the 4-, 8-, and 16-cell stages.

(**C**) Single-cell expression levels for Pem and Foxa.a. Cells from individual embryos are separated by dotted lines. Cells that are known to show a positive in situ hybridization signal for the gene is indicated by a solid red dot and cells that are known to not show in situ hybridization signals are indicated by hollow dots. For *Foxa.a*, the B5.1 cells, known to show a weaker in situ hybridization signal, are indicated by solid blue dots. The identities of the cells for each embryo on the graph are (from left to right) 4-cell: A3, B3, A3, B3 8-cell: a4.2, A4.1, b4.2, B4.1, a4.2, A4.1, b4.2, B4.1 and 16-cell: a5.3, a5.4, b5.3, b5.4, A5.1, A5.2, B5.1, B5.2, a5.3, a5.4, b5.3, b5.4, A5.1, A5.2, B5.1, B5.2.

(D) Expression levels of genes from the 2- to 16-cell stages relative to the expression level at the early 1-cell stage determined by qPCR. Individual diamonds denote a single measurement from pooled total RNA purified from eggs collected from a single adult.

Figure S2. Hes.a, Pem and Ccnb3 triple knockdowns. Related to Figure 2.

In situ hybridizations of Foxa.a, Tfap2-r.b, Foxd.b and Tbx6-r.b in early Ciona embryos simultaneously injected with MOs targeting Hes.a, Pem and Ccnb3 (H/P/C). Expression in cells matching controls are indicated with a white arrowhead. The expansion of expression into additional cells is indicated with a yellow arrowhead. Precocious expression is indicated with a red arrowhead. 4- and 8- cell stage embryos are orientated anterior left. Scale bar = 50 μ m.

A

Ccnb3 MO

Treatment from 4-cell stage onwards

Cytochalasin B + Aphidicolin

Cytochalasin B

Figure S3. *Ccnb3* is essential for ZGA during early *Ciona* development. Related to Figures 2-3.

(A) A depiction of the cell cycle lengths for the first 170 minutes of development for normal *Ciona* embryos and in embryos where *Ccnb3* was perturbed. The start of each stage developmental stage is considered to be the point when cleavage is completed.

(B) Effects of *Ccnb3* perturbation at later gastrula and tailbud stages. All morphogenetic processes have failed in *Ccnb3* mRNA overexpressions. In *Ccnb3* MO knockdowns gastrulation succeeded but neurulation failed. The yellow arrowhead indicates the position of the blastopore. The red arrowhead indicates the unfused neural folds. Embryos are oriented anterior left except for *Ccnb3* mRNA injections where the embryos could not be oriented to any axis. Scale bar = 100 μ m.

(C) *Foxa.a* expression in *Ciona* embryos treated from the 4-cell stage onwards with cyctochalasin B by itself or in combination with aphidicolin. The embryos are oriented anterior left.

Figure S4. Pooled embryo RNA-seq analysis of *Ccnb3* perturbations of zygotic genes in *Ciona*. Related to Figure 4.

(A) Pooled embryo expression levels of *Gapdh*, *Pgk1* and *Actb* from the 4 to 16-cell stages.

(B) Volcano plot depicting the same data as in Figure 4 of the main text but with *Ccnb3* included.

(C) Expression levels of genes identified as significantly affected by *Ccbn3* perturbation at the 16-cell stage or upregulated from the 4- to 16-cell stage in normal *Ciona* development based on differential expression anaylsis. Each stage and experimental condition was performed in biological triplicate (n=3) with embryos from different parent animals. *Tfap2-r.b* was not identified by the analysis but is indicated for reference. Genes are grouped based on their known or predicted functions. Error bars indicate ± the standard error of the mean.

Species	Gene	Method	Reference
Human	Ccnb3	Single cell RNA-seq	[S1]
Mouse	Ccnb3	Single cell RNA-seq	[S2]
Xenopus	Ccnb1, Ccnb2	Developmentally staged RNA-seq	[S3]
Sea urchin	СусВ, СусВЗ	Developmentally staged RNA-seq	[S4]
Drosophila	СусВ	Fluorescent in situ hybridization	[S5]
C. elegans	Cyb-2.1	Single cell RNA-seq	[S6]

Table S1. List of organisms that display diminishing levels of Cyclin B genes correlating with the onset of zygotic transcription. Related to Figure 4.

Gene names	Synonyms	KH gene model (2012)	мо	MO reference	qPCR Primer 1	qPCR Primer 2	qPCR reference	ISH clone
Foxa.a	FoxA	KH.C11.313			CACCATCAGTGAATGACACTA	GAGACGGAGTGGACACTGA	[58]	GC13a23
Sox1/2/3	SoxB1	KH.C1.99			AGCAGAGAGTGAAACGACCA	CCGTTTCGCTTCGTCGATAA	this study	
Foxd.b	FoxD-b	KH.C8.396			GCCTTGTTTTGGCAGAACTTA	GGTTTCACAGCTGCCACTT	[58]	GC29n08
Fgf9/16/20	Fgf9	KH.C2.125			CTTTCCGACAAGGAAGCTAT	GCGTTCGTCTGCTGTGAAA	[58]	
Tfap2-r.b	AP2	KH.C7.43			CCAACGACCTCTTACACATTTCAG	GATAACGCAGCATCTCCGTTAAGT	this study	GC25n01
Efna.d	EphA	KH.C3.716			CGTTGCTGGTCATGCTTACA	AGGTCACTCTGACTCATGCC	this study	
Tbx6-r.b	Tbx6b	KH.S654.3			AACGACCACATCTCCGTTTTA	AGTGCCGCATGCAGTAGTAA	[58]	GC09i19
Ctnnb	Beta catenin	KH.C9.53			AGCTCCGTCAGTTCAGTTCA	AAAGTCCATGGGTTGTTGGC	this study	
Zic-r.a	Macho1	KH.C1.727			CTGCATTCGTCGCATCAGCA	AGCGTCTGCGTTCTCGTACA	this study	
Pem	PEM	KH.C1.755	ATACTGTGCATGTTTACATTCATAT	[S7]	TTCTCCGGCAACTGGAATCT	TGAGGTGTTGAGGTAACGCT	this study	
Ccnb3	Cyclin B3	KH.L139.17	ACGAGGCATATTTATAGGCAGCTAT	this study	TTTATCGCCGTAGCCGCAGT	ACGGGAACTTTACCAGTGCGA	this study	
Hes.a	HesA	KH.C1.159	TTCTTCGTTCAACAGGCATGATTGT	[58]	ACCCTAACGTTCCCACCAACC	CCGATGACGTAGGTGAGGGT	this study	
Ccnb1	Cyclin B1	KH.C4.213			AAACCCACAACTGTGTTCGG	GTGGTGAACTTGGACCAACC	this study	
Gapdh	GAPDH	KH.C11.121						
Pgk1	PGK1	KH.C14.296						
Actb	Beta actin	KH.C13.70						
		KH.C3.174						
Foxd.a	FoxD-a	KH.C8.890						
Smpdl3b	Asm3a	KH.C8.685						
Rgs4		KH.C11.577						
Ttll1		KH.C8.745						
Pim1		KH.C14.414						
		KH.C2.313						
		KH.S1497.1						
		KH.L61.10						
		KH.C8.299						
		KH.S1172.1						
		KH.S1236.1						
		KH.L117.4						
		KH.S1352.1						
		KH.S1996.1						
		KH.C11.529						
		KH.C14.54						
Mark2/3		KH.C11.697						
		KH.C4.97						
		KH.L137.5						
		KH.C13.61						
Fz4		KH.C6.162						
Gas2l3		KH.L152.12						

Table S2. List of gene names and reagents use. Related to STAR Methods.

SUPPLEMENTAL REFERENCES

- S1. Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J. et al., (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131-1139.
- S2. Deng, Q., Ramskold, D., Reinius, B. and Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196.
- S3. Peshkin, L., Wuhr, M., Pearl, E., Haas, W., Freeman, R.M.Jr., Gerhart, J.C., Klein, A.M., Horb, M., Gygi, S.P. and Kirschner, M.W. (2015). On the Relationship of Protein and mRNA Dynamics in Vertebrate Embryonic Development. Dev. Cell 35, (383-394).
- S4. Tu, Q., Cameron, R. A., Worley, K. C., Gibbs, R. A. and Davidson, E. H. (2014). Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 385, 160-167.
- S5. Benoit, B., He, C.H., Zhang, F. Votruba, S.M., Tadros, W., Westwood, J.T., Simbert, C.A., Lipshitz, H.D. and Theurkauf, W.E. (2009). An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition. Development 136, 923-932.
- S6 Tintori, S.C., Osborne Nishimura, E., Golden, P., Lieb, J. D. and Goldstein, B. A (2016). Transcriptional lineage of the early C. elegans embryo. Dev. Cell 38, 430-444.
- S7. Shirae-Kurabayshi, M., Matsuda, K. and Nakamura, A. (2011). Ci-Pem-1 localizes to the nucleus and represses somatic transcription in the germline of Ciona intestinalis embryos. Development 138, 2871-2881.
- S8. Imai, K. S., Levine, M., Satoh, N. and Satou, Y. (2006). Regulatory blueprint for a chordate embryo. Science 312, 1183-1187.