Supplemental Materials Molecular Biology of the Cell

Stieg et al.

Supplemental Table 1

Strain	Genotype*	Source			
RSY10		(Strich <i>et al.</i> , 1989)			
RSY1006	slt2∆::his5⁺	(Krasley <i>et al.</i> , 2006)			
RSY1696	cnc1∆::KANMX6	(Cooper <i>et al.</i> , 2000)			
RSY1701	med13∆::HIS3	(Khakhina <i>et al.</i> ,			
		2014)			
RSY1706	med13∆:: KANMX6	(Khakhina <i>et al.</i> ,			
		2014)			
RSY1726	cdk8∆:: KANMX6	(Khakhina <i>et al.</i> ,			
		2014)			
RSY1736	kdx1∆::KANMX6	(Jin <i>et al.</i> , 2014)			
RSY1737	kdx1∆::KANMX6 slt2∆::his5⁺	(Jin <i>et al.</i> , 2014)			
RSY1798	Med13-myc::KANMX4	(Khakhina <i>et al.</i> ,			
		2014)			
RSY1770	grr1∆∷his5⁺	This study			
RSY1771	grr1∆::his5+ MED13-13Myc:: KANMX6	This study			
RSY1787	Med12-myc::KANMX4	This study			
RSY2066	PTetO7-Ubi-Ile::3HA-Cdk8::NatMX4	This study			
PJ69-4a	LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ	(James <i>et al.</i> , 1996)			
	gal4 Δ gal80 Δ				

Yeast strains used in this study. Genotype of all strains is *MATa* ade2 ade6 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 except PJ69-4alpha which is *MATa* trp1-901 leu2-3,112 ura3-52 his3-200 gal4 Δ gal80 Δ

Supplemental Table 2

Plasmid	Gene	Epitope	Marker	Promoter	2μ/	Reference
Name		Тад			CEN	
					1	
					int	
pBK38	CNC1	GFP	URA3	ADH1	CEN	(Cooper et
						<i>al.</i> , 2012)
pKC337	CNC1	1myc	TRP1	ADH1	CEN	(Cooper et
						<i>al.</i> , 1997)
pKC800	GAL4AD-MED13	1HA	LEU2	ADH1	CEN	This study
pKC801	MED13	3HA	URA3	ADH1	CEN	This study
pKC802	<i>MED13</i> ^{T210A}	3HA	URA3	ADH1	CEN	This study
pKC803	MED13	3HA	LEU2	ADH1	CEN	This study
pLR106	BCK1-20	None	HIS3	ADH1	CEN	(Krasley et
						<i>al.</i> , 2006)
pLR141	CNC1	1 myc	URA	ADH1	2µ	This study
pLR166	CNC1 ^{S266A}	1 myc	TRP1	ADH1	CEN	(Jin <i>et al</i> .,
						2014)
pDS2	GAL4AD -MED13 ¹⁻³⁰⁵	1HA	LEU2	ADH1	CEN	This study
pDS4	GAL4AD-MED13 ⁹⁰⁷⁻¹⁴²¹	1HA	LEU2	ADH1	CEN	This study
pDS5	GAL4AD-MED13 ³⁰⁶⁻⁹⁰⁶	1HA	LEU2	ADH1	CEN	This study
pDS6	GAL4AD-MED13 ¹⁻⁹⁰⁶	1HA	LEU2	ADH1	CEN	This study

pDS7	GAL4AD-MED13 ³⁰⁶⁻⁵⁷⁰	1HA	LEU2	ADH1	CEN	This study
pDS8	GAL4AD-MED13 ⁵⁷¹⁻⁹⁰⁶	1HA	LEU2	ADH1	CEN	This study
pDS10	6HIS- MED13 ⁵⁷¹⁻⁹⁰⁶	-	-	-		This study
pDS15	GAL4AD-MED13 ⁵⁷¹⁻⁶⁵⁰	1HA	LEU2	ADH1	CEN	This study
pDS16	GAL4AD-MED13 ⁶⁵¹⁻⁹⁰⁶	1HA	LEU2	ADH1	CEN	This study
pDS30	GST-MED13 ⁷⁴²⁻⁸⁴⁴	GST	-	-	-	This study
pDS22	6His- <i>MED13</i> 571-650	6His	-	-	-	This study
pDS32	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	This study
pDS33	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	This study
	S748A					
pDS34	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	This study
	T781A					
pDS36	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	This study
	T835A, T837A					
pDS40	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	This study
	T801A					
pDS41	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	This study
	T781A, T801A					
pDS42	GAL4AD-MED13 ⁷⁴²⁻⁸⁴⁴	1HA	LEU2	ADH1	2μ	This study
	S748A, T781A					
pSW108	hCCNC1-GAL4 ^{BD}	1HA	TRP1	ADH1	2μ	This study
GST-	GST-yCNC1	GST	-	-	-	(Wang et
yCNC1						<i>al.</i> , 2014)
6His-	6His-hCNC1	6His	-	-	-	This study

hCNC1						
6His-	6His-yCNC1	6His	-	-	-	This study
pACT2	GAL4AD	1HA	LEU2	ADH1	CEN	(Van
						Criekinge
						and
						Beyaert,
						1999)
pAS2	GAL4BD	1HA	TRP	ADH1	CEN	(Van
						Criekinge
						and
						Beyaert,
						1999)
pAS2-	GAL4BD-GRR1	1HA	TRP	ADH1	CEN	(Wang and
Grr1						Solomon,
						2012)
pAS2-	GAL4BD-GRR1 ^{∆L} -	1HA	TRP	ADH1	CEN	(Wang and
Grr1∆L						Solomon,
						2012)
pGrr1	Grr1	1HA	TRP	ADH1		(Hsiung <i>et</i>
						<i>al.</i> , 2001)
pGrr1∆L	Grr1∆L	1HA	TRP	ADH1		(Hsiung <i>et</i>
						<i>al.</i> , 2001)
Mt-dsRed	Mito-targeting	dsRed	URA3	ADH1	CEN	(Naylor et
						<i>al.</i> , 2006)
pHY1022	MED13	3HA	URA3	ADH1	2μ	(Chang <i>et</i>

						<i>al.</i> , 2004)
pHY1089	MED13 ^{S608A,S1236A}	3HA	URA3	ADH1	2μ	(Chang et
						<i>al</i> ., 2004)
Slt2	SLT2	3HA	LEU2	SLT2	2μ	(Kim <i>et al.</i> ,
						2008)
SIt2 ^{K54R}	SLT2 ^{K54R}	3HA	LEU2	SLT2	2μ	(Kim <i>et al.</i> ,
						2008)
pCM188	TET	-	URA3	ADH1-Tet02	CEN	(Gari <i>et al.</i> ,
						1997)
pMK634	Ubi-ILe-3HA		NAT-	ADH1	Int.	(Gnanasun
			MX4			dram and
						Kos, 2015)

Plasmids used in this study.

В

321 S S V T LT PP T S 330human Med13324 C G M P LT PP T S 330human Med13L205 Q G Y L IT PP K H 214yeast Med13

med13∆, no stress

В

В

FIGURE S1. The human Fbw7 degron on Med13 is not required for Med13 degradation. (A) RSY1771 (*grr1*∆::*HIS3 MED13-myc::KAN*) harboring either *ADH1_{PR0}-GRR1* or a vector control were treated with 0.4 mM H₂O₂ for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels were used as loading controls. (B) Conservation of the human Med13 SCF^{Fbw7} degron in yeast. (C) Degradation of Med13-HA after treatment of the cells with cycloheximide. Wild type cells (RSY10) harboring Med13-HA (pKC801) were treated with cycloheximide as previously described (Jin *et al.*, 2014) and Med13-HA degradation analyzed as described. Pgk1 was used as a loading control. (D) *med13* Δ cells (RSY1701) harboring Med13^{T210A} as the only copy of Med13 were treated with 0.4 mM H₂O₂ for the timepoints indicated and Med13 levels analyzed by Western blot. Tub1 levels were used as a loading control. (E) Quantification of Med13-HA degradation from C and D.

FIGURE S2. Fluorescence microscopy of mid-log phase $med13\Delta$ cells (Y1701) harboring the Gal^{AD}-Med13 fusion constructs shown and cyclin C-YFP (pBK38). Cells were stained with Dapi to visualize the nucleus. Bar = 10μ M

FIGURE S3. PKA mediated phosphorylation of Med13 is not required for its degradation following H₂O₂ stress. (A) Wild type (RSY10) cultures expressing either PHY1066 (2µ Med13-HA) or PHY2081 (2µ Med13-HA plasmid with PKA sites, S608 and S1236 mutated to alanine) were grown to mid-log phase (0 hr) then treated with 0.4 mM for the indicated times. Med13-HA levels were determined by Western blot analysis. Tub1 levels were used as a loading control. (B) The Med13^{S808A,S1236A} mutant complements *med13* Δ mitochondrial morphology. *med13* Δ cells (RSY1701) expressing either PHY1066 ,PHY2081 or a vector and the DsRed mitochondrial targeting plasmid (mt-DsRed) were grown to mid-log. Mitochondrial morphology was examined using fluorescence microscopy of living cells. The left hand panel shows representative images of reticular or fragmented mitochondria are shown. Bar = 10µM. The percent of cells (mean ± s.e.m.) within the population displaying mitochondrial fission is given * p<0.05 difference from wild type.

FIGURE S4. (A) Quantification of Med13-HA degradation following 0.4mM H₂O₂ stress for the experiments shown in Fig. 6 (A) and Fig. 7 (B). (C) Wild type (RSY10) cultures harboring either wild type Gal4AD-Med13⁷⁴²⁻⁸⁴⁴ or the various point mutations indicated

were grown to mid-log phase (0 hr) then treated with 0.4 mM H_2O_2 for the indicated times. Med13-HA levels were determined by Western blot analysis. Tub1 levels were used as a loading control. (D) Med12 is not destroyed in H_2O_2 stress. A strain harboring endogenous Med12-myc (RSY1787) was treated with 0.4 mM H_2O_2 for the timepoints indicated and Med12 levels analyzed by Western blot. Tub1 levels were used as loading controls.

FIGURE S5. (A). IUPred and ANCHOR plot analysis of Med13. These programs generates a plot with the profiles calculated by IUPred (Dosztanyi *et al.*, 2005), a general disorder prediction method (in red), and ANCHOR (Dosztanyi *et al.*, 2009), a prediction of disordered binding regions (in blue). Underneath the profile, predicted binding regions are indicated by the horizontal bars. The bar is shaded according to the prediction score. Regions that are filtered out are marked by empty bars. Grr1 and cyclin C binding domains identified in this work are also shown. In addition, the domain of Med13 that does not interact with cyclin C is marked as well as the CCR4-NOT4 complex and TFIIS interaction domains (Liu *et al.*, 2001; Wery *et al.*, 2004). (B) Phyre2 (Kelley *et al.*, 2015) plot analysis of yeast Med13.